

Open Source Software
Security
A research summary
December 2020

Table of Contents

Executive Summary ... 5

Welcome ... 6

Introduction .. 7

Background .. 9

Systems-level Approach ... 9

Component-level approach... 12

Research Topics ... 13

Research Overview .. 14

National Telecoms and Information Administration (NTIA) ... 15

SAFECode.org ... 19

OWASP (https://owasp.org) .. 25

OASIS Open Standards, Open Source (OASIS)... 27

The Linux Foundation (LF) ... 28

ETSI TR 103 306 V1.3.1 Technical Report CYBER; ... 30

National Institute of Standards and Technology (NIST) .. 31

The European Union Agency for Cybersecurity (ENISA) .. 35

UK National Cyber Security Centre (NCSC) ... 38

Secure Software Alliance - Agile Secure Software Lifecycle Management 40

Synopsys Cybersecurity Research Center ... 42

IEEE ... 45

British Computer Society .. 46

The Software Alliance... 48

Whitesource software ... 49

Building Security In Maturity Model (BSIMM) .. 50

Financial Services Information Sharing and Analysis Center (FS-ISAC) 51

Cloud Native Compute Foundation ... 52

Center for Internet Security (CIS Controls v7.1).. 53

DARPA ... 54

Alliance for Telecommunications Industry Solutions ... 55

Cloud iNfrastructure Telco Task Force (CNTT) .. 56

Conclusion & Next Steps ... 58

 4

 5

Executive Summary
This report is intended to offer a summary of some of the key information sources researched, so that the
reader can relatively quickly gain an overview of open source software security considerations and
undertake their own research into the referenced sources. This document is structured as a series of topic
areas relevant to open source software security. Each topic has reference links and some direct copies of
relevant excerpts.

Open source code has a number of advantages, notably including that source code is accessible and subject
to inspection, a wide community of developers can contribute and there is potential to accelerate telco cloud
implementation. There are various best practice steps that aim to ‘make secure software' but none of these
are mandated in the open source community whose main focus is functionality1.

The report outlines two perspectives on managing and implementing change: systems and component.
When considering security controls and mitigations, it is useful to assess these within these perspectives.
The ultimate aim will be to identify those security controls that can be applied to mobile networks as they
evolve and are upgraded. The underlying security principles are often described at the component-level.
Dependent on the delivery model for network changes, it is entirely possible that this level of detail will
require to be delivered through a third party systems integrator / lead vendor. In this case, consideration will
be needed as to how to achieve the security outcome through systems-level steps such as requirement and
design activities.

The next stage of activity will seek to combine these security considerations with the output from a parallel
project seeking mobile network operator feedback on their considerations for open source software security
to identify deployment scenarios and associated security considerations. A later stage of activity will
consider broader system security considerations particularly in the infrastructure area. The longer-term aim
is to build a set of best practice considerations for operators to consider when dealing with open source
software. It is intended to complete this sequence of activity, however, it is recognised that this cycle may
need further development as deployment scenarios and security controls evolve.

1 https://www.linuxfoundation.org/wp-content/uploads/2020/12/2020FOSSContributorSurveyReport_121020.pdf

https://www.linuxfoundation.org/wp-content/uploads/2020/12/2020FOSSContributorSurveyReport_121020.pdf

 6

Welcome
Welcome to this initial GSMA report summarising research undertaken for the open source software security

project as part of the broader open networking initiative. This report is intended to offer a summary of some

of the key information sources researched, so that the reader can relatively quickly gain an overview of open

source software security considerations and undertake their own research into the referenced sources.

The next stage of activity will seek to combine these security considerations with the output from a parallel

project seeking mobile network operator feedback on their considerations for open source software security

to identify deployment scenarios and associated security considerations. A later stage of activity will

consider broader system security considerations particularly in the infrastructure area. The longer-term aim

is to build a set of best practice considerations for operators to consider when dealing with open source

software. It is intended to complete this sequence of activity, however, it is recognised that this cycle may

need further development as deployment scenarios and security controls evolve. This sequence of activity is

illustrated below:

This report and the Open Source Software Security project is undertaken as part of the broader GSMA Open

Networking initiative where work is ongoing to define Minimum Viable Products and Use Cases. The Open

Source Software Security project informs these models and provides high level considerations for security.

The following MNOs supported the open

source software security project: AT&T, China

Mobile, China Unicom, Hutchison MTN,

Telefonica, and Vodafone.

 7

Introduction
There are many initiatives driving open architectures and virtualised telecoms infrastructure such as

Telecoms Infrastructure Project (TIP), Open-Radio Access Network (O-RAN) Alliance, Linux Networking

Foundation, Open Networking Forum. The use of software from open source in a range of architectural

deployments is rapidly increasing such as a software component running on virtualised infrastructure, to

provide virtualised middleware, or within proprietary code implementation.

Open source code has a number of advantages, notably including that source code is accessible and subject

to inspection, a wide community of developers can contribute and there is potential to accelerate telco cloud

implementation. There are various best practice steps that aim to ‘make secure software' but none of these

are mandated in the open source community whose main focus is functionality2.

Consideration has been given to the differing deployment arrangements for open source software as

illustrated below.

Open source software may be applied in a wide range of ways including:

 as discrete code (such as a Virtual Network Function (VNF) running on top of Cloud / Network

Function Virtualisation Infrastructure (NFVI),

 as a component within a disaggregated solution,

 as Software As A Service (SaaS),

 as the middleware within a disaggregated solution or ‘hidden’ or re-used within a vendor’s

proprietary code.

The initial focus of this work has been on the former two examples which may be considered relatively new

to telecoms and will provide a best practice read-across to other deployment models. Operator engagement

will be used to assess the likely deployment approaches that are envisioned in the immediate future. This

may shift focus to middleware and re-use within vendor code.

The implementation of new capabilities can occur in varying levels of scale and at different parts of the

network architecture. Accordingly, the processes for managing security will vary from a systems level

approach (e.g. upgrade part of the RAN to a virtualised solution) to a more component level change (e.g.

adding a new Virtual Network Function / Cloud-native Network Function). Operators may need to have

different security approaches for both systems and component level network change so they can secure the

open source software used within their networks. The components within open and disaggregated networks

are changing as virtualisation of infrastructure increases. The move from physical integrated network

functions towards virtualised and cloud-native network functions running on virtualised infrastructure

introduces new security considerations. Virtual machines, hypervisors and containers will enable these

newer virtualised functions to be deployed and their deployment stacks must be properly secured.

2 https://www.linuxfoundation.org/wp-content/uploads/2020/12/2020FOSSContributorSurveyReport_121020.pdf

https://www.linuxfoundation.org/wp-content/uploads/2020/12/2020FOSSContributorSurveyReport_121020.pdf

 8

There are consistent themes across these references including a lifecycle approach to structured

development. For open source code, some of the early stages (including Coding) of any lifecycle approach

are undertaken by the developer community and our ability to influence security outcomes is limited.

Instead, focus can be considered across the rest of the lifecycle and in the longer-term by beginning to

influence developed education and skills development. These component-level lifecycles may have a short

cycle time due to emerging approaches such as Continuous Integration / Continuous Deployment (CI/CD)

and more integrated Development, Security & Operations (DevSecOps). Some sources in this document

focus on 3rd Party Code which represents a superset of open source so there is a strong read-across to our

problem area.

 9

Background
When a set of best practices is gathered, analysed and agreed, they can be used by operators to drive
strong security outcomes for their open source deployments. There is opportunity to feed in our current
knowledge of best practices to recognise their value and drive cross-industry security outcomes; essential in
our inter-connected networks. Adopting a consistent set of practices across operators can allow quicker,
better and more consistent security outcomes and learning and improvements can also be delivered. The
best practices could deliver a framework for end-to-end security throughout the life of the operational
systems.

The plan is to use this research to identify lifecycle activities which will drive good security outcomes when
using open source software in virtualised networks. Each activity will be mapped to a specific lifecycle step,
e.g. ‘Requirement Definition’, ‘Test’, ‘In-life’. As open source software is available for inspection, static and
dynamic code testing may be an appropriate activity within ‘Test’, as might Penetration testing be. Example
lifecycles are illustrated in the Background section (below).

The report outlines two perspectives on managing and implementing change: systems and component.
When considering security controls and mitigations, it is useful to assess these within these perspectives.
For example, if consideration is being given to mandating the need for a Software Bill of Materials (SBOM)
then this might be achieved at the systems level through a contractual requirement placed on a systems
integrator, whilst at the component level this might be achieved through implementing a software
composition analysis tool. The same control is achieved through differing means but to achieve the same
goal. The details developed in the Research section aim to help identifying these controls, before we can
consider how to effect these with a systems or component manner.

Systems-level Approach

The level of change (procurement, implementation) is at the systems level where the detailed view of change
is indirectly controlled through higher-level activities. Change happens over a longer period (months) and
applies to parts or all of a mobile network (e.g. RAN, Transport, Core etc.).

 10

The process steps through which change is effected are illustrated below in two lifecycle examples. There
are a variety of actions at each step that help deliver security outcomes. We aim to capture a set of best
practice security steps to take at each stage that will drive a set of strong security outcomes which are linked
to a component-level change cycle (described later).

Security considerations can and should be built within this lifecycle, aligned to its progress or through other
approaches such as gate approvals.

In practice, delivery can be managed directly by the operator or by engaging a systems integrator (SI) or
lead vendor. Using a systems integrator can provide a single point of responsibility for delivery and
integration of different vendor equipment / software / services etc but can also form a long-term in-life
reliance on the SI for support and maintenance etc. A more direct approach exposes increased detail of
integration operations, direct risk management of deployment issues and provides in-house expertise for the
system when in-life.

For example, implementation of a new RAN solution may involve several technology providers. Example
non-exhaustive set of providers illustrated below.

 11

To manage the delivery of this example may involve a
wider range of parties that need co-ordination and
management. This diagram is an example arrangement
illustrating the involvement of a systems integrator.

In practice, the operating system may involve a range
of other parties such as national regulators,
MNO Shareholders, MNO Staff
and skill interests, physical tower
infrastructure and in-life managed
service provider considerations.

 12

Component-level approach

The level of change (detailed capability and code delivery) is at the component level where the detailed level

of activity is influenced directly.

Non-exhaustive examples of these
components are:

 A Virtual Network Function

 A vRAN Control Unit

 A Cloud-native Network Function

 A middleware virtualisation layer

These changes can happen quickly (days) with different versions of code developed on collaborative
platforms and lifecycles may have a short cycle time due to emerging approaches such as Continuous
Integration / Continuous Deployment (CI/CD) and more integrated Development, Security & Operations
(DevSecOps) or (DevOps; shown below).

Examples of the process steps through which change is effected are illustrated below. There are a variety of
actions, tools and best practice that help deliver security outcomes at each step. We aim to capture a set of
best practice security steps to take at each stage that will drive a set of strong security outcomes.

 13

Research Topics
The following Research Overview offers a series of relevant security considerations. These are largely
technical in nature. Broader security considerations will form part of any overall control set: these might
include physical, personnel and procedural security controls. These aspects are not explored in this paper as
they will be addressed in future work. The table below conveys some of the recurring themes in the
research and is developed to convey the interest for this document.

The table is illustrative and on reviewing the detailed activities, one might find more detailed alignments for
each organisation. There are a number of recurring themes (such as adopting a lifecycle approach, Software
Bill of Materials, using threat / risk modelling, using secure coding techniques) and also some interesting
more unique considerations (such as Zero Trust, DevSecOps and protecting the development toolchain).
These considerations can form the basis for a set of additional component / systems security approaches.
The precise approach for each area will vary depending on the implementation method. For example, many
of the considerations are appropriate for direct application at the component level but naturally lend
themselves to a translation applicable at the systems level. The organisations themselves are abbreviated
and full details are available in the next section. The organisations have been chosen to provide a range of
views from differing geographic regions.

Concept / Organisation NIST NTIA Safecode OWASP OASIS LNF NCSC (UK) SSA SynOpSys BCS BSA Whitesource BSIMM IEEE ENISA CNCF CIS DARPA ATIS CNTT

Zero Trust

SBOM / Inventory /Config Management

Source Code Analysis

Lifecycle approach

Threat / Risk Model

System and Component Approach

Approved' Code / Re-use / Approve list

Secure Coding / Avoid vulnerabilities

Security Requirements (&Test)

Open source licensing

Cyber secure design

Cloud / Virtualisation Security

Secure by Default

Toolchain

Dev(Sec)Ops

Pentest

Least Privilege

Privileged Access Management

Vulnerability Management

Recovery / Incident Management

 14

Research Overview

Document Structure: This document is structured as a series of topic areas relevant to open source software
security. Each topic has reference links and some direct copies of relevant excerpts. In this section,
the black text is taken from the referenced source. GSMA comments are included in a call-out box like
this.

The underlying security principles are often described at the component-level. As discussed earlier,
dependent on the delivery model for network changes, it is entirely possible that this level of detail will require
to be delivered through a third party systems integrator / lead vendor. In this case, consideration will be
needed as to how to achieve the security outcome through systems-level steps such as requirement and
design activities. Alternatively, should the operator choose to act as their own integrator then these principles
can be more directly applied. The intention is this research can be used to develop a model of best practice
that can be applied at systems and component level, as required.

For example, there may be a requirement to have an explicit record of the software composition or ‘Software
Bill of Materials’ (SBOM). SBOM is described and referenced within the NTIA section below. This may be
discharged at the system level through ITT requirements to a vendor that a standards-compatible SBOM
exists and is maintained. Alternatively, at the component level it might be by selecting a suitable SBOM tool,
using it on the selected code and maintaining the build as the code changes over its lifetime.

 15

National Telecoms and Information Administration (NTIA)3

Report: A Survey of Existing SBOM Formats and Standards

The working group identified two formats in widespread use: Software Package Data eXchange (SPDX), an

open source machine-readable format stewarded as a de facto industry standard by the Linux Foundation,

and SWID, a formal industry standard used by various commercial software publishers.

SPDX, a product of the open source software development community, is geared for ease-of-ingestion within

a developer workflow. The open source nature of the format, as well as the availability of open source tooling

to generate it, supports broad adoption by a large and distributed population of commercial international

organizations, as well as developers who may not be associated with vendors. The accessibility of SPDX

means that the sole developer of an experimental library can generate an SBOM with minimal effort at no

cost. These cost savings and ready availability of open source tools is attractive to commercial organizations

as well. SPDX is useful in the “long tail” of upstream open source software componentry.

3 https://www.ntia.doc.gov/SoftwareTransparency

A strong set of principles that can be aligned to a lifecycle approach. A number of SBOM tools are identified.

NTIA’s SBOM project began in 2018 to focus on dependency tracking (in 6 fields) including a Proof-of-

Concept in the Healthcare sector. More work is planned on code integrity (signed-code). SBOM

specifications include Software Identification (SWID), Software Package Data eXchange (SPDX) and OWASP

CycloneDX.

A report describing the current SBOM approaches and a comprehensive list of approaches / tools.

https://www.ntia.doc.gov/
https://www.ntia.gov/files/ntia/publications/ntia_sbom_formats_and_standards_whitepaper_-_version_20191025.pdf
https://www.ntia.doc.gov/SoftwareTransparency

 16

How to produce SBOM?

Information that goes into

SBOMs can be best

obtained from the tools and

processes used in each

stage of the software

lifecycle (See Figure 1,

below). One may leverage

existing tools and processes

to generate SBOMs. Such

tools and processes include

intellectual property review,

procurement review and

license management

workflow tools, code

scanners, pre-processors,

code generators, source

code management systems,

version control systems,

compilers, build tools,

continuous integration

systems, packagers,

compliance test suites,

package distribution

repositories and app stores.

CycloneDX is a lightweight SBOM specification designed specifically for software security requirements and

related risk analysis. The specification is written in XML with JSON in development. It’s designed to be

flexible, easily adoptable, with implementations for popular build systems. The specification encourages use

of ecosystem-native naming conventions, supports SPDX license IDs and expressions, pedigree, and

external references. It also natively supports the Package URL specification and correlating components to

CPEs.

Report: Roles and Benefits for SBOM Across the Supply Chain

Most software includes other software. Software changes and evolves over time due to optimization, new

features, security fixes, and so forth. As a result, software producers throughout the supply chain have to

continually evaluate how changes might impact their software. This includes changes to 3rd-party

components used to compose software. How can organizations make confident, informed decisions? How

can they manage the complexity of their software supply chain in a sustainable manner? In a complex supply

chain, roles can blur.

For simplicity, we will initially describe the software supply chain from three perspectives:

● I produce software - the person/organization that creates a software component or software for use by

others [write/create/assemble/package]

● I choose software - the person/organization that decides the software/products/suppliers for use

[purchase/acquire/source/select/approve]

● I operate software - the person/organization that operates the software component

[uses/monitor/maintain/defend/respond]

This list is not a comprehensive list of perspective, there are other roles such as auditors, insurers and such

who will also benefit from an SBOM as it matures and the various use cases evolve. These three

perspectives are summarized in the following table:

https://www.ntia.gov/files/ntia/publications/ntia_sbom_use_cases_roles_benefits-nov2019.pdf

 17

A Software Bill of Materials (SBOM) can help a software supplier produce their software in the following

ways:

● reduce unplanned, unscheduled work

● reduce code bloat.

● adequately understand dependencies within broader complex projects

● know and comply with the license obligations

● monitor components for vulnerabilities

● end-of-life (EOL)

● make code easier to review

● a blacklist of banned components

● provide an SBOM to a customer

An SBOM can help an organization choose their software in the following ways:

● identify potentially vulnerable components

● a more targeted security analysis

● verify the sourcing

● compliance with policies

● aware of end-of-life components

● verify some claims

● understand the software’s integration

● pre-purchase and pre-installation planning

● market signal

 18

An SBOM can help an organization configure, maintain, and administer its software in the following ways:

● Organization can quickly evaluate whether it is using the component

● Drive independent mitigations

● Make more informed risk-based decisions

● Alerts about potential end-of-life

● Better support compliance and reporting requirements

● Reduce costs through a more streamlined and efficient administration

 19

SAFECode.org

 A report: Managing Security Risks Inherent in the Use of Third-party Components

One of the challenges associated with using third-party components is their discoverability, along with
establishing and maintaining the product bill of materials (BOM). There are automated solutions and tools
available that identify included third-party components and generate a BOM; however, there is not a one
size-fits-all solution that can be used for every different scenario. A company that uses several different
programming languages and frameworks would require a tool that understands all of them in order to be able
to find all included TPCs. Without an accurate BOM, including third-party component names and exact
versions, it is very difficult to correctly and consistently identify new or existing vulnerabilities in the TPCs
used, or identify all relevant patches. In the absence of a BOM, when new security vulnerabilities are
published, organizations must scramble to identify which of their products, if any, are affected. This can be a
painstaking process for organizations that do not know what TPCs they are using.

In order to create a product BOM covering all utilized third-party components, there must be a way to
uniquely identify each TPC. Unfortunately, a single TPC is sometimes known by multiple names, and it can
be difficult to find the correct or most commonly used name

Dependencies – Identifying the TPCs used in a product or by an organization overall is further complicated
by the hierarchical nature of TPCs. A single TPC may use several TPC sub-components, each of those
further referencing additional TPC sub-components, and so on

When a new security vulnerability is reported for a TPC, teams are faced with the challenge of determining
1) whether that TPC is included in their product and 2) whether the product is affected by the specific
vulnerability. It is not uncommon for a product to utilize a component and not be affected by a particular
CVE. Often, products will utilize a subset of the functionality contained in a TPC. Answering these questions
is made more difficult by the naming challenge, dependency challenge and vulnerability documentation.

One can save a lot of grief later on by taking security into consideration during the selection process. Some
third party components may not have been designed or implemented with security in mind, resulting in
security risks that could affect products or services that use them.

“Overview of the Third-party Component Management Life Cycle

The high-level steps in TPC
management are depicted in Figure
2 and described in detail below.
While Maintain, Assess, and Mitigate
depend on each other, Monitor can
be seen as an independent step that
is required throughout the entire
third-party component life cycle.

Summary: this is an excellent paper with many useful ideas on process and effective approaches. It is
attempts to combine both systems and component lifecycles.

https://safecode.org/wp-content/uploads/2017/05/SAFECode_TPC_Whitepaper.pdf

 20

I) Maintain a List of TPCs

Having a list of TPCs in use or to be used is the first step in managing them. Intuitively, this is similar to
having a bill of materials, with the key difference that it should include TPCs slated for future use as well as
those in current use.

II) Assess Security Risks from TPCs

Once a list of TPCs is available, the TPCs must be assessed to gauge risks in their use. A good and easy
starting point is determining known security vulnerabilities of a TPC and their impact on the TPC’s intended
use. This provides insight into potential issues with integrated TPCs. The risk assessment should consider
aspects that could hint at unknown security issues or impending problems in using a TPC. These aspects
should include assessing the maturity of the TPC provider, such as maintenance cadence, stability of the
TPC over time, development practices employed by the TPC provider, whether the TPC will reach end of life
within the expected lifetime of a product, etc. The outcome of this step can be a risk score for a TPC of
interest.

III) Mitigate or Accept Risks Arising Due to Vulnerable TPCs

With access to the risk profile for a TPC, an organization must decide whether its use is acceptable or
whether it needs mitigations. Mitigations can be done in a number of ways. The most straightforward is to
look for a newer patched version of the same TPC or an alternative TPC that has an acceptable risk score.
However, upgrading or changing TPCs may be difficult at times: the TPC in question may be providing a
unique functionality or it could have been incorporated in the legacy code already. In such circumstances,
mitigations should aim to bring down the impact of risks. For example, vulnerabilities in TPCs could be
mitigated by strict input validation/output sanitization by the embedding product or by reducing
privileges/access of code involving the TPC. This also includes hardening TPCs, such as by disabling
unused services, changing the configuration of a TPC or removing unused parts of it. In the event that a
patched version is not available, the organization using the component can submit a patch to the managing
entity or can remediate the vulnerability internally itself. There are pros and cons to each approach.

IV) Monitor for Changes

Once a TPC is incorporated in a product, it needs continuous monitoring of different information resources to
ensure that its risk profile remains acceptable over time. Discovery of new vulnerabilities in a TPC or the
TPC reaching end of life are scenarios that may tip the TPC’s risk profile to unacceptable. This step should
leverage public resources such as the TPC provider’s website and vulnerability databases, as well as
company-level policies, such as defining when a TPC is considered to be at its end of life.

TPC Life Cycle and Software
Development Life Cycle

As shown in Figure 3 and
Figure 4, the TPC life cycle
and software development
life cycle (SDLC) go hand in
hand. Both figures show the
four typical phases of the
SDLC -- Requirements,
Design, Develop and Support
-- and that the TPC life cycle
relates to them and is valid
during all phases of the
SDLC.

 21

One of the most effective ways to kick off a TPC management program is to piggyback it on an already
established process, e.g., SDLC or legal review. The TPCs should be tracked starting as early as the SDLC
requirements phase, when functional requirements may dictate the use of specific TPCs (step Maintain). The
bulk of TPC selection usually happens in the design and develop phases and populates the list of TPCs. For
legacy applications without any TPC life cycle management, TPC enumeration often starts in the support
phase of the SDLC.

The risk assessment process, step Assess, starts as soon as a candidate TPC is identified and continues
until no new TPCs are needed. If a TPC is determined to have high risk, the mitigation step includes
exploring alternatives, such as using a newer version of the TPC, using a different TPC with lower risk, or
choosing to accept the risk. In turn, this could cause the list of TPCs to change and risk assessment to
commence for the newly selected TPCs. Risk mitigation, step Mitigate, continues in the design and develop
SDLC phases, as in some cases design or code-level safeguards may be necessary to mitigate risks of a
TPC that must be used.

After risk mitigation, TPCs used (or the BOM) should be monitored for changes in risk profiles, step Monitor,
in response to newly discovered vulnerabilities or being marked EOL by the TPC provider. This step also
triggers risk assessment if new or updated TPCs are added to the BOM. This monitoring could kick off risk
assessment and a hunt for a new TPC version/alternative.

An important step of the TPC life cycle is to verify and confirm the bill of materials before a product is
shipped to customers and enters the support phase (“Verify BOM” in Figure 4). This ensures that no TPCs
were The overall TPC life cycle management steps, including the four high-level steps Maintain, Assess,
Mitigate and Monitor (red boxes), are depicted in Figure 5. These four main TPC life cycle management
steps have already been discussed in section 3.1. The key ingredients (green boxes) of each main TPC life
cycle step are also shown in Figure 5 and further discussed in this section. Green boxes with stars are
considered the bare minimum for a meaningful TPC life cycle management and thus at least these steps
should be covered by a quick starter TPC management process. missed during the develop phase and that
the BOM reflects reality.

 22

Centralized “Approved”
Components Store

One emerging best practice
that addresses many of the
challenges presented in this
document is the use of a
centralized, curated set of
“approved” third-party
components. This could take
the form of a repository of
components or a list of
approved components and
versions. Workflow can be as
simple or complex as the
organization requires, and
policy and automation should
be used to ensure that only
thirdparty components from
the approved list are used.

Practices Used by the
Community/Supplier in
Handling Vulnerabilities

Where possible, the
development practices of the
provider should be examined to determine whether the provider practices aspects of secure development. If
the provider has a well-established and published set of secure development practices, it is more likely to
produce components that satisfy security objectives. The development practices of a community or supplier
are a key indicator of the security risk associated with its software components. Proactive efforts of the
suppliers should be recognized and used in assessing risk. An example of such an effort is the Linux
Foundation Core Infrastructure Initiative (CII), which provides “Best Practice Badges” for Free/Libre and
Open Source Software (FLOSS) projects to show that they follow best practices. Projects that voluntarily
self-certify receive a badge, which allows consumers to quickly assess which FLOSS projects are following
the best practices.

The following should be considered:

• Does the community/supplier provide clear vulnerability/patch reporting methods, to include
reporting to commonly used repositories (e.g., CVE ID in the National Vulnerability Database), and
provide frequent feedback on submitted vulnerabilities?

• Is there a dedicated website for security issues?
• Is there a way to (privately) submit security patches?
• Does the supplier’s process incorporate security best practices?
• Does the supplier perform automated security testing (e.g., static analysis, dynamic analysis,

vulnerability scanning) of the components, both periodically and on an ongoing basis (since tooling
quality usually improves over time)?

• Do the supplier’s automated standards-based assessment tools utilize public vulnerability and
security flaw repositories (Common Weakness Enumeration, CVE, Common Attack Pattern
Enumeration and Classification, etc.)?

• Does the community/supplier routinely disclose vulnerabilities and prepare customers for patch
deployment?

• Does the community/supplier have a history and reputation for actively patching reported
vulnerabilities?

• Does the community/supplier have a way for researchers or customers to responsibly submit a
security vulnerability to it?

 23

• Does the community/supplier issue security advisories or alerts as a way to notify customers of
remediation of security vulnerabilities?

When evaluating operational risk, consider the following:

• Does the component have a regular maintenance and update cycle?
• Does the component have a clearly defined and consistent set of maintainers?
• What controls does the supplier have to protect against unapproved changes/updates?
• What is the expected lifetime of the component?
• What criteria or process will be used to determine when to update the component?
• How does the TPC maintainer manage security response?
• How much documentation is available on the component, and what is the quality of that

documentation?
• What kind of community surrounds the component (this can take the form of support forums (Stack

Overflow, paid support desk), user blogs, IRC chat rooms, email groups or books)?
• How long has the component existed and when was the last major release?
• How widely used is this component both publicly and within your organization?
• What is the reputation of the component, author, supplier or community?

Mitigate or Accept Risk (MITIGATE)

When security vulnerabilities are discovered in TPCs used or included in the product, the team must
understand the risk and choose the appropriate response.

The response to a vulnerability will vary, depending on certain factors, such as the severity of the
vulnerability, availability of a patch/update, ease of patching/updating and the context-specific risk. Just
because a CVE is rated "high severity" in the National Vulnerability Database does not mean it is high
severity for its usage in a given product. The team may choose to mitigate the risk, via a variety of
mechanisms, or accept the risk and not mitigate.

MITIGATE1: Patch/Update the Version.

MITIGATE2: Replace with an Equivalent.

MITIGATE3: Branch Code Internally.

MITIGATE4: Contribute to Community/Vendor.

MITIGATE5: Mitigate Through Code.

MITIGATE6: Accept Risk.

Safecode have published another document entitled Principles for Software Assurance Assessment - A
Framework for Examining the Secure Development Processes of Commercial Technology Provider. It
describes a risk-based software assurance approach. The high level approach is illustrated below and each
area is developed more fully in the text of the document.

https://safecode.org/wp-content/uploads/2015/11/SAFECode_Principles_for_Software_Assurance_Assessment.pdf
https://safecode.org/wp-content/uploads/2015/11/SAFECode_Principles_for_Software_Assurance_Assessment.pdf

 24

Safecode published another document entitled Fundamental Practices for Secure Software Development.
It provides an overview of some of the key activities within software development and some of the lifecycle
priorities. These include:

 Design (including Threat Modelling (see below)

 Secure Coding Practices

 Managing the security risk inherent in the use of Third-Party components

 Testing and validation

 Manage security findings

 Vulnerability responses and disclosure

 Planning the implementation and deployment of secure development practices.

Safecode published an approach to Tactical Threat Modelling to describe an overview approach to threat
modelling within a development context.

https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
https://safecode.org/wp-content/uploads/2017/05/SAFECode_TM_Whitepaper.pdf

 25

OWASP
The Open Web Application Security Project (OWASP)4 is a nonprofit foundation that works to improve the
security of software. Through community-led open source software projects, hundreds of local chapters
worldwide, tens of thousands of members, and leading educational and training conferences, the OWASP
Foundation is the source for developers and technologists to secure the web.

The mission of OWASP Software Assurance Maturity Model (SAMM) is to be the prime maturity model for
software assurance that provides an effective and measurable way for all types of organizations to analyze
and improve their software security posture. OWASP SAMM supports the complete software lifecycle,
including development and acquisition, and is technology and process agnostic. It is intentionally built to be
evolutive and risk-driven in nature. SAMM is a prescriptive model, an open framework which is simple to
use, fully defined, and measurable. The solution details are easy enough to follow even for non-security
personnel. It helps organizations analyze their current software security practices, build a security program in
defined iterations, show progressive improvements in secure practices, and define and measure security-
related activities.

Dependency-Check is a Software Composition Analysis (SCA) tool that attempts to detect publicly disclosed
vulnerabilities contained within a project’s dependencies. It does this by determining if there is a Common
Platform Enumeration (CPE) identifier for a given dependency. If found, it will generate a report linking to the
associated CVE entries.

4 https://owasp.org

OWASP have 66 Cheetsheets available covering a range of topics including Authentication, Access Control,
Crypto Storage, Docker Security, MFA, Threat Modelling and Vulnerability Disclosure.

OWASP also publish their Top 10 vulnerabilities for Mobile and Web Applications.

https://owaspsamm.org/model/
https://owasp.org/www-project-dependency-check/
https://owasp.org/
https://cheatsheetseries.owasp.org/cheatsheets/Index.html
https://owasp.org/www-project-mobile-top-10/
https://owasp.org/www-project-top-ten/

 26

OWASP Devsecops Maturity Model

From a startup to a multinational corporation the software development industry is currently dominated by
agile frameworks and product teams and as part of it DevOps strategies. It has been observed that during
the implementation, security aspects are usually neglected or are at least not sufficient taken account of. It is
often the case that standard safety requirements of the production environment are not utilized or applied to
the build pipeline in the continuous integration environment with containerization or concrete docker.
Therefore, the docker registry is often not secured which might result in the theft of the entire company’s
source code.

The DevSecOps Maturity Model shows security measures which are applied when using DevOps strategies
and how these can be prioritized. With the help of DevOps strategies security can also be enhanced. For
example, each component such as application libraries and operating system libraries in docker images can
be tested for known vulnerabilities. Attackers are intelligent and creative, equipped with new technologies
and purpose. Under the guidance of the forward-looking DevSecOps Maturity Model, appropriate principles
and measures are at hand implemented which counteract the attacks.

The model includes a number of dimensions including Build, Deployment, Patch Management:, Education
and Guidance, Culture and Org, Process, Monitoring, Logging, Infrastructure Hardening, Dynamic depth for
applications, Static depth for applications, Test-Intensity, Consolidation, Application tests, Dynamic depth for
infrastructure and Static depth for infrastructure.

https://owasp.org/www-project-devsecops-maturity-model/

 27

OASIS Open Standards, Open Source (OASIS)

OASIS Open offers projects—including open source projects—a path to standardization and de jure
approval for reference in international policy and procurement.

OASIS has a broad technical agenda encompassing cybersecurity, blockchain, privacy, cryptography, cloud
computing, IoT, urban mobility, emergency management, content technologies. In fact, any initiative for
developing code, APIs, specifications, or reference implementations can find a home at OASIS.

The OASIS community is committed to advancing work that lowers cost, improves efficiency, stimulates
innovation, grows global markets, and promotes interoperability. Each project operates independently under
industry-leading process and clear IPR policies.

Some of the most widely adopted OASIS Standards include AMQP, CAP, CMIS, DITA, DocBook, KMIP,
MQTT, OpenC2, OpenDocument, PKCS, SAML, STIX, TAXII, TOSCA, UBL, and XLIFF. Many of these have
gone on to be published as ISO, IEC, or ITU standards. New work is encouraged, and all are welcome to
participate.”

Summary: there is potential to think of aligning software packages to this sort of validation approach

https://www.oasis-open.org/

 28

The Linux Foundation (LF)

CII Best Practices Badge Program (CII)

The Core Infrastructure Initiative (CII) Best Practices badge is a way for Free/Libre and Open Source
Software (FLOSS) projects to show that they follow best practices. Projects can voluntarily self-certify, at no
cost, by using this web application to explain how they follow each best practice. The CII Best Practices
Badge is inspired by the many badges available to projects on GitHub. Consumers of the badge can quickly
assess which FLOSS projects are following best practices and as a result are more likely to produce higher-
quality secure software.

The LF Openchain initiative maintains the industry-standard for the key requirements of a quality open
source compliance program. Companies, governments and non-profit organizations use our standard for
open source compliance every day to build trust in the supply chain.

The OpenChain Project establishes trust in the open source from which software solutions are built. It
accomplishes this by making open source license compliance simpler and more consistent. The
OpenChain Specification defines inflection points in business workflows where a compliance process, policy
or training should exist to minimize the potential for errors and maximize the efficiency of bringing solutions
to market.

The Eight Best Practices describes a set of “activities” that teams producing secure software should do. This
section balances guidance that is meaningful and relatively easy to implement without being overly
prescriptive or rigid. They are:

1. Roles and Responsibilities
2. Security Policy
3. Know Your Contributors
4. The Software Supply Chain
5. Technical Security Guidance
6. Security Playbooks
7. Security Testing
8. Secure Releases and Updates

The final section of the document describes a Certification Scheme that is designed to enable open source
projects to self-certify, and for commercial open-source companies to provide higher levels of independent
third party certification through a network of Linux Foundation certified security consultants.

Throughout the document we allow for levels of security maturity and ease of getting started by describing
varying depth of specific practices as Basic, Standard and Advanced.

Basic practices are considered things that everyone should do, regardless of their project type and maturity.
They are generally easy to implement and have a low overhead to the team while providing a basic level of
assurance. Knowing that a team applies all of the Basic practices allows consumers to quickly appreciate
that all the basics have been thought about and are being implemented.

Standard practices provide a higher level of assurance but usually require a higher degree of overhead
therefore are suited to more mature projects and teams. Standard practices require some thought and come

More information on the CII Best Practices Badging program, including background and criteria, is available
on GitHub.

Summary: Although there may be limited value in a ‘badge’ based scheme, the controls are a useful (but not
complete) set.

The Linux Foundation published a document in February 2020 entitled Improving Trust and Security in Open
Source Projects. It describes:

https://www.linuxfoundation.org/
https://bestpractices.coreinfrastructure.org/en
https://www.coreinfrastructure.org/
https://www.openchainproject.org/
https://github.com/coreinfrastructure/best-practices-badge/blob/master/doc/criteria.md
https://github.com/coreinfrastructure/best-practices-badge
https://github.com/coreinfrastructure/best-practices-badge
https://www.linuxfoundation.org/wp-content/uploads/2020/02/improving_trust_security_in_oss_projects.pdf
https://www.linuxfoundation.org/wp-content/uploads/2020/02/improving_trust_security_in_oss_projects.pdf

 29

with some over-head but are appropriate to software teams producing applications that run in production.
Knowing that a team applies all of the Standard practices allows consumers to quickly appreciate that
security is important to the project.

Advanced practices go further than Standard and are designed for teams producing mission critical software
or for teams wishing to use and or demonstrate security as a differentiator. Advanced practices usually
require careful implementation and come with a cost. Knowing that a team applies all of the Advanced
practices allows consumers to quickly appreciate that security is of utmost importance to the project.

This is focused on open source software and as such has a set of valuable considerations in managing the
trust in open source.

 30

ETSI TR 103 306 V1.3.1 Technical Report CYBER;
A report: Global Cyber Security Ecosystem

Summary: A comprehensive list of global and national cyber security organisations with a brief summary of

their activity.

https://www.etsi.org/deliver/etsi_tr/103300_103399/103306/01.03.01_60/tr_103306v010301p.pdf

 31

National Institute of Standards and Technology (NIST)

The Zero Trust Architecture project is also underway (due 12m from April 2020). The proliferation of cloud
computing, mobile device use, and the Internet of Things has dissolved traditional network boundaries.
Hardened network perimeters alone are no longer effective for providing enterprise security in a world of
increasingly sophisticated threats. Zero trust is a design approach to architecting an information technology
environment that could reduce an organization’s risk exposure in a “perimeter-less” world.

A zero trust architecture treats all users as potential threats and prevents access to data and resources until
the users can be properly authenticated and their access authorized. In essence, a zero trust architecture
allows a user full access but only to the bare minimum they need to perform their job. If a device is
compromised, zero trust can ensure that the damage is contained.

The concept of zero trust has been around for more than a decade, but technology to support it is now
moving into the mainstream. A zero trust architecture leans heavily on components and capabilities for
identity management, asset management, application authentication, network segmentation, and threat
intelligence. Architecting for zero trust should enhance cybersecurity without sacrificing the user experience.
The NCCoE is researching ongoing industry developments in zero trust and its component technologies that
support the goals and objectives of a practical, secure, and standards-based zero trust architecture.

NIST Cybersecurity White Paper: Mitigating The Risk Of Software Vulnerabilities By Adopting An SSDF:
April 23, 2020

Few software development life cycle (SDLC) models explicitly address software security in detail, so secure
software development practices usually need to be added to each SDLC model to ensure the software being
developed is well secured. This white paper recommends a core set of high level secure software
development practices called a secure software development framework (SSDF) to be integrated within each
SDLC implementation. The paper facilitates communications about secure software development practices
among business owners, software developers, project managers and leads, and cybersecurity professionals
within an organization. Following these practices should help software producers reduce the number of
vulnerabilities in released software, mitigate the potential impact of the exploitation of undetected or
unaddressed vulnerabilities, and address the root causes of vulnerabilities to prevent future recurrences.
Also, because the framework provides a common vocabulary for secure software development, software
consumers can use it to foster communications with suppliers in acquisition processes and other
management activities.

The NIST National Cybersecurity Center of Excellence (NCCoE) project started Oct 2019 and aims to build a

reference model: Security Practice Guide for VMware Hybrid Cloud Infrastructure as a Service (IaaS)

Environments with hardware roots of trust (Draft).

The SSDF contains structured reference to a number of the other sources cited in this research paper. It
contains some excellent content including these excerpts:

https://www.nist.gov/
https://www.nccoe.nist.gov/projects/building-blocks/zero-trust-architecture
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04232020.pdf
https://www.nccoe.nist.gov/
https://www.nccoe.nist.gov/projects/building-blocks/trusted-cloud/hybrid
https://www.nccoe.nist.gov/projects/building-blocks/trusted-cloud/hybrid

 32

 33

 [1] Newhouse W, Keith S, Scribner B, Witte G (2017) National Initiative for Cybersecurity Education (NICE)
Cybersecurity Workforce Framework. (National Institute of Standards and Technology, Gaithersburg, MD),
NIST Special Publication (SP) 800-181. https://doi.org/10.6028/NIST.SP.800-181

[2] National Institute of Standards and Technology (2018), Framework for Improving Critical Infrastructure
Cybersecurity, Version 1.1. (National Institute of Standards and Technology, Gaithersburg, MD).
https://doi.org/10.6028/NIST.CSWP.04162018

[3] Migues S, Steven J, Ware M (2019) Building Security in Maturity Model (BSIMM) Version 10. Available at
https://www.bsimm.com/download/

[4] BSA (2019) Framework for Secure Software. Available at https://www.bsa.org/reports/bsa-framework-for-
secure-software

[5] Hong Fong EK, Wheeler D, Henninger A (2016) State-of-the-Art Resources (SOAR) for Software
Vulnerability Detection, Test, and Evaluation 2016. (Institute for Defense Analyses [IDA], Alexandria, VA),
IDA Paper P-8005. Available at https://www.ida.org/research-and-
publications/publications/all/s/st/stateoftheartresources-soar-for-software-vulnerability-detection-test-and-
evaluation-2016

[6] International Organization for Standardization/International Electrotechnical Commission (ISO/IEC),
Information technology – Security techniques – Application security – Part 1: Overview and concepts,
ISO/IEC 27034-1:2011, 2011. Available at https://www.iso.org/standard/44378.html

[7] Microsoft (2019) Security Development Lifecycle. Available at https://www.microsoft.com/en-us/sdl

[8] Open Web Application Security Project (2019) OWASP Application Security Verification Standard 4.0.
Available at https://github.com/OWASP/ASVS

Includes an excellent set of references:

https://www.bsa.org/reports/bsa-framework-for-secure-software
https://www.bsa.org/reports/bsa-framework-for-secure-software
https://www.iso.org/standard/44378.html
https://github.com/OWASP/ASVS

 34

[9] Open Web Application Security Project (2014) OWASP Testing Guide 4.0. Available at
https://www.owasp.org/images/1/19/OTGv4.pdf

[10] Payment Card Industry (PCI) Security Standards Council (2019) Secure Software Lifecycle (Secure
SLC) Requirements and Assessment Procedures Version 1.0. Available at
https://www.pcisecuritystandards.org/document_library?category=sware_sec#results

[11] Open Web Application Security Project (2017) Software Assurance Maturity Model Version 1.5.
Available at https://www.owasp.org/index.php/OWASP_SAMM_Project

[12] Software Assurance Forum for Excellence in Code (2012) Practical Security Stories and Security Tasks
for Agile Development Environments. Available at
http://www.safecode.org/publication/SAFECode_Agile_Dev_Security0712.pdf

[13] Software Assurance Forum for Excellence in Code (2018) Fundamental Practices for Secure Software
Development: Essential Elements of a Secure Development Lifecycle Program, Third Edition. Available at
https://safecode.org/wpcontent/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_
Dev elopment_March_2018.pdf

[14] Software Assurance Forum for Excellence in Code (2010) Software Integrity Controls: An Assurance-
Based Approach to Minimizing Risks in the Software Supply Chain. Available at
http://www.safecode.org/publication/SAFECode_Software_Integrity_Controls0610.pdf

[15] Software Assurance Forum for Excellence in Code (2017) Managing Security Risks Inherent in the Use
of Third-Party Components. Available at
https://www.safecode.org/wpcontent/uploads/2017/05/SAFECode_TPC_Whitepaper.pdf

[16] Software Assurance Forum for Excellence in Code (2017) Tactical Threat Modeling. Available at
https://www.safecode.org/wpcontent/uploads/2017/05/SAFECode_TM_Whitepaper.pdf

[17] Joint Task Force Transformation Initiative (2013) Security and Privacy Controls for Federal Information
Systems and Organizations. (National Institute of Standards and Technology, Gaithersburg, MD), NIST
Special Publication (SP) 800-53, Revision 4, Includes updates as of January 22, 2015.
https://doi.org/10.6028/NIST.SP.800-53r4 [18] Ross R, McEvilley M, Oren J (2016) Systems Security
Engineering: Considerations for a Multidisciplinary Approach in the Engineering of Trustworthy Secure
Systems. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP)
800-160, Volume 1, Includes updates as of March 21, 2018. https://doi.org/10.6028/NIST.SP.800-160v1

 35

The European Union Agency for Cybersecurity (ENISA)

Advancing Software Security in the EU

This study discusses some key elements of software security and provides a concise overview of the most

relevant existing approaches and standards while identifying shortcomings associated with the secure

software development landscape, related to different inherent aspects of the process. Lastly, it provides a

number of practical considerations relevant to the different aspects of software development within the newly

established EU cybersecurity certification framework and the EU cybersecurity certification schemes.

Section 2 discusses some key elements of software security in order to allow a better comprehension of the

document’s direction, being completed with an overview of the most relevant existing approaches and

standards. Section 3 provides an overview of the shortcomings inside the software security landscape,

related with different inherent aspects of the process, of the products and of the concepts surrounding the

software security concept itself. Section 4 provides a number of practical considerations that can be

considered and adopted with regards to the different aspects of software development within the newly

established EU cybersecurity certification framework and the EU cybersecurity certification schemes.

There are several standards and good practices focusing on software security. Most notably:

 Common Criteria is a consolidated and widely recognized framework for product (often times meaning

software) security evaluations. The evaluation process, in essence, pertains to the assessment

against pre-defined security functional and assurance requirements

 The OWASP ASVS (Application Security Verification Standard) is a community developed verification

framework focusing on technical security controls verifiable in the software product and in the

development process. It distinguishes maturity levels that reflect a system’s security profile; this

suggests which security requirements must or may apply.

 BSIMM is a commercial initiative, based on a bottom-up approach that starts with listing activities of

large successful software companies. This benchmark shows which controls can be considered in

maturity terms, in which higher maturity levels are typically a step-up from lower maturity levels.

 BSI PAS 754 “Software Trustworthiness. Governance and management. Specification” is a standard

developed by the British Standards Institution encompassing both security and reliability concerns

(safety, reliability, availability, resilience and security).

 ISA 99 / IEC 62443 provides a set of standards aimed at industrial control systems and provides a

flexible framework to address and mitigate current and future security vulnerabilities in industrial

automation and control systems

 ISO/IEC 27034 is a multipart, guidance international standard focusing on application security. Each

of its numerous parts goes down in deep details on how software security should be achieved

 ISO/IEC 62304 is a certifiable standard in the field of medical (device) software focusing on life cycle

requirements for the development of medical software and software within medical device

 PCI SSC has been relying for the last decade on the PA-DSS standard for payment applications

certification

ENISA have published 2 reports in this area: Advancing Software Security in the EU and Good Practices for

Security of IOT- Secure Software Development Lifecycle.

These are relevant documents pointing to a number of relevant security best practices and a summary of

various approaches and standards.

https://www.enisa.europa.eu/
https://www.enisa.europa.eu/publications/advancing-software-security-through-the-eu-certification-framework
https://www.enisa.europa.eu/publications/good-practices-for-security-of-iot-1
https://www.enisa.europa.eu/publications/good-practices-for-security-of-iot-1

 36

 OWASP Software Assurance Maturity Model (SAMM) is a community developed framework to help

organizations formulate and implement a strategy for software security.

 The Microsoft SDL is considered a classical model in secure development frameworks. It distinguishes

Training (a prerequisite), Requirements, Design, Implementation, Verification, Release, and

Response (to external or unexpected events).

 The Dutch SSA (Secure Software Alliance) has defined a framework for secure software development

intending to conform to all phases of the SDLC. It focuses on threat modeling as a prerequisite for

secure software development.

 Safecode.org is an initiative to identify and promote best practices for secure software development.

Their “Fundamental Practices for Secure Software Development” follows steps in the development

process from governance to design, coding, testing, and vulnerability response

When analysing available SDLC (Software Development Lifecycle) standards it becomes clear that there is

consensus on what activities should be included. This consensus centers on the key activities that can be

distinguished in the development lifecycle like: training, requirements, coding guidelines, design, design

review, threat modelling, secure verification (automated testing, static analysis tools, test tools, manual code

review and penetration testing), dependency management, incident management, vulnerability management

and environment hardening.

Good Practices for Security of IOT- Secure Software Development Lifecycle

…the aim of this study is to define a set of good practices and guidelines to be applied in the different

phases of the secure SDLC of IoT solutions.

To organise the domains in a logical manner, they were classified into three main groups:

 People: security considerations that affect all stakeholders involved in the life cycle of IoT solutions,

from the software developers, to the end users of the product.

 Processes: secure development addresses security in the process of software development when a

software project is conceived, initiated, developed, and brought to market.

https://www.enisa.europa.eu/publications/good-practices-for-security-of-iot-1

 37

Technologies: technical measures and elements used in order to reduce vulnerabilities and flaws during the

software development process

The document contains a comprehensive set of best practices (referenced in an Appendix). Its focus is

IOT but there is a broader read across to software development more generally. It is written as if there is

full influence over the development lifecycle (which may not be the case for open source software where

some of the early stages (including Coding) may be delivered by others).

 38

UK National Cyber Security Centre (NCSC)
The NCSC has a range of advice and best practice including:

 A systems risk management approach: System-driven risk analyses are best suited to identifying

risks which emerge from the interaction of all a system's components. These risks can occur without

any individual component breaking or being compromised, so they identify risks that component-

driven approaches cannot. Identifies several commonly used system-driven cyber risk management

methods and frameworks: STAMP, TOGAF and SABSA.

 A component driven risk management approach: component-driven risk assessments are focused

on system components. Typical examples include: hardware (computers, servers, etc.), software,

data sets, services, personal information, business critical information, staff.” Identifies a brief

description of commonly used component-driven cyber risk management methods and frameworks:

ISO/IEC 27005:2011, Information Security Forum (ISF) IRAM 2, HMG Information Assurance

Standard 1 & 2, US National Institute of Standards and Technology (NIST) SP 800-30, Octave

Allegro, and ISACA COBIT 5 for Risk

 Risk Management

 Secure development and deployment guidance: 8 principles are listed; Secure development is

everyone's concern, Keep your security knowledge sharp, Produce clean & maintainable code,

Secure your development environment, Protect your code repository, Secure the build and

deployment pipeline, Continually test your security & Plan for security flaws. Each principle area

include more detailed actions.

 Guides for the design of cyber secure systems: These guides are not specifically written for open

source software solutions but still contain useful approaches to system design.

The Cyber Security Principles offer the most generally applicable advice.

The Virtualisation Design Principles apply to the more specific case of systems which rely on virtualisation
technologies.

We have divided each set of principles into five categories, loosely aligned with stages at which an
attack can be mitigated:

 Establish the context

Determine all the elements which compose your system, so your defensive measures will have

no blind spots.

 Making compromise difficult

An attacker can only target the parts of a system they can reach. Make your system as difficult

to penetrate as possible

 Making disruption difficult

Design a system that is resilient to denial of service attacks and usage spikes

 Making compromise detection easier

Design your system so you can spot suspicious activity as it happens and take necessary action

 Reducing the impact of compromise

If an attacker succeeds in gaining a foothold, they will then move to exploit your system. Make

this as difficult as possible

Cloud security guidance

https://www.ncsc.gov.uk/
https://www.ncsc.gov.uk/collection/risk-management-collection/component-system-driven-approaches/understanding-system-driven-risk-management
https://www.ncsc.gov.uk/collection/risk-management-collection?curPage=/collection/risk-management-collection/component-system-driven-approaches/understanding-component-driven-risk-management
https://www.ncsc.gov.uk/collection/risk-management-collection?curPage=/collection/risk-management-collection/component-system-driven-approaches/understanding-component-driven-risk-management
https://www.ncsc.gov.uk/collection/risk-management-collection/component-system-driven-approaches/understanding-component-driven-risk-management
http://www.iso.org/iso/catalogue_detail?csnumber=56742
https://www.securityforum.org/tool/information-risk-assessment-methodology-iram2/
http://www.nist.gov/
http://www.cert.org/resilience/products-services/octave/index.cfm
http://www.cert.org/resilience/products-services/octave/index.cfm
http://www.isaca.org/COBIT/Pages/Risk-product-page.aspx
https://www.ncsc.gov.uk/collection/risk-management-collection/essential-topics/fundamentals
https://www.ncsc.gov.uk/collection/developers-collection
https://www.ncsc.gov.uk/collection/cyber-security-design-principles
https://www.ncsc.gov.uk/collection/cyber-security-design-principles/cyber-security-design-principles
https://www.ncsc.gov.uk/collection/cyber-security-design-principles/virtualisation-security-design-principles
https://www.ncsc.gov.uk/collection/cloud-security

 39

 Cyber Assessment Framework (CAF): The CAF Collection consists of a set of 14 cyber security &

resilience principles, together with guidance on using and applying the principles, and the Cyber

Assessment Framework (CAF) itself. The CAF cyber security principles define a set of top-

level outcomes that, collectively, describes good cyber security for organisations performing

essential functions. Each principle is accompanied by a narrative which provides more detail,

including why the principle is important. Additionally, each principle is supported by a collection of

relevant guidance which both highlights some of the relevant factors that an organisation will usually

need to take into account when deciding how to achieve the outcome, and recommends some ways

to tackle common cyber security challenges.

 Secure by Default

The CAF itself has 14 Principles and is written as a set of security outcomes. These are Governance,

Risk Management, Asset Management, Supply Chain, Service Protection Policies and Processes,

Identity and Access Control, Data Security, System Security, Resilient Networks & Systems, Staff

awareness and training, Security Monitoring, Proactive Security Event Discovery, Response recovery &

planning and Improvements.

https://www.ncsc.gov.uk/collection/caf/caf-principles-and-guidance
https://www.ncsc.gov.uk/information/secure-default

 40

Secure Software Alliance - Agile Secure Software Lifecycle Management

In an ideal world the Framework Secure Software would try to answer the utopian question: “Is this software

system completely secure?”. Unfortunately, it is impossible to give that answer. The very definition of secure

(“protected against threats”) implies that one would need to know all possible threats against the software

system to answer this question, which cannot be guaranteed. However, if the question is rephrased as “Is

this software system protected against all known threats?”, answering that question becomes easier. The

framework will and cannot not guarantee that a software system is completely secure, but they will give the

assurance that security has been sufficiently implemented.

To answer that question, one needs to know what the known threats are for a software system, and when

protection against these threats is sufficiently implemented.

In a product as diverse as software, there is no set of threats that applies to all software systems and that is

valid under all circumstances. Threats to a software system depend on the type of software system, how it is

built, the environment in which it is used and how it is used. This context will determine the threats that are

applicable to a specific software system.

Once the threats are defined, it becomes possible to verify if the software system is sufficiently protected

against these threats. This protection is realized by a secure design, by implementing mitigation measures,

by coding securely, security testing and by not making mistakes when doing this. The Framework Secure

Software aims to provide a secure software development process that ensures correctness and

completeness as much as possible, and that can be evaluated to make sure it has been applied

appropriately.

To achieve this, essential security practices throughout the Software Development Life Cycle (SDLC) were

observed and criteria to evaluate the results of those practices were created. By covering the full SDLC and

connecting the essential security practices, it is possible to bridge the gap between the software purchaser’s

abstract idea of security and the developer’s concrete understanding of a secure implementation.

By focusing on evaluating results instead of process as much as possible, it becomes possible to evaluate

the security of a software system in a more objective way. This is where the real value of the Framework

Secure Software is to be found compared to other frameworks: it measures the security of the result of a

development process, namely the produced software itself. Other frameworks mostly focus on good

processes, hoping these will result in secure software, but they don’t provide a method to verify this in a

manner that can be performed in an objective and reproducible way by a developer or auditor.

The result of applying the Framework Secure Software is an intrinsically secure and traceable development

process, and a method that allows software purchasers and software developers to communicate about

software security in a common language both can understand.

Framework Secure Software

The evaluation process of software security is divided into four phases.

1. In the context phase, the software system is described along with its desired security

properties and assumptions. This is the basis for the rest of the evaluation and will be part of

the public audit report.

2. The threats phase deals with identifying possible attacks against the software system and

the associated mitigating measures against these threats.

3. In the implementation phase, the code and configuration of a software system is inspected.

4. The verification phase looks at how the development organization verifies whether the

implementation really is secure. This should not be confused with the assessment that an

auditor performs on the implementation.

https://www.securesoftwarealliance.org/

 41

In each phase, developers create something that an auditor can assess. The exact developer actions and

audit criteria are described as controls.

Summary: this approach is interesting as it attempts to focus objectively on the actual code produced (much

akin to the start point in assessing open source software that has already been written).

 42

Synopsys Cybersecurity Research Center

2019 Open Source Security and Risk Analysis https://www.synopsys.com/software-integrity.html

For over 15 years, security, development, and legal teams around the globe have relied on Black Duck®

solutions to help them manage the risks that come with the use of open source. Built on the Black Duck

KnowledgeBase™—the most comprehensive database of open source component, vulnerability, and license

information available—Black Duck software composition analysis solutions and open source audits give

organizations the insight they need to track open source in code, mitigate security and license compliance

risks, and automatically enforce open source policies using existing DevOps tools and processes.

Black Duck Audits found open source in over 96% of codebases scanned in 2018, a percentage similar to

the figures from the last two OSSRA reports. It’s worth noting that most of the codebases found to have no

open source consisted of fewer than 1,000 files. More than 99% of the codebases scanned in 2018 with over

1,000 files contained open source components.

The reality is that open source is not less secure than proprietary code. But neither is it more secure. All

software, be it proprietary or open source, has weaknesses that might become vulnerabilities, which

organizations must identify and patch.

The ubiquity of open source in both commercial and internal applications provides attackers with a target rich

environment as vulnerabilities are disclosed through sources such as the National Vulnerability Database

(NVD), mailing lists, GitHub issues, and project homepages. The widespread use of open source can lead to

another issue: Many organizations don’t keep accurate, comprehensive, and up-to-date inventories of the

open source components used in their applications.

Can our readers say with confidence that the open source components used in their public and internal

applications are up-to-date with all crucial patches applied? If you can’t answer that question and can’t

produce a full and accurate inventory of the open source used in your applications, it’s time to create a bill of

materials for your open source. It’s impossible to patch software when you don’t know you’re using it.

https://www.synopsys.com/software-integrity.html

 43

The average age of vulnerabilities identified in 2018 Black Duck Audits was 6.6 years, slightly higher than

2017—suggesting remediation efforts haven’t improved significantly. The oldest vulnerability identified in the

scans is probably older than some of our readers: CVE-2000-0388, a 28-year-old high-risk vulnerability in

FreeBSD first disclosed in 1990.

Sixty-eight percent of the 2018 audited codebases contained components with license conflicts. Most

common were GNU General Public License (GPL) license violations, with 61% of the codebases having

some form of GPL conflict. This makes sense, as GPL is one of the most common licenses and one of the

most likely to conflict.

Open source licenses generally fall into one of two categories: permissive and copyleft. Permissive licenses

are sometimes referred to as “attribution style,” and copyleft licenses are also known as reciprocal and viral

licenses.

The permissive license is the most basic type of open source license. In most cases, it allows you to do

whatever you want with the code as long as you acknowledge the authors of the code and follow other

obligations such as redistribution and documentation requirements.

Copyleft licenses add further requirements to the permissive license. For example, if you distribute binaries,

you must make the source code for those binaries available. You must make the source code available

under the same copyleft terms as the original code. You can’t place additional restrictions on the licensee’s

exercise of the license.

Many open source components in use are abandoned. In other words, they don’t have a community of

developers contributing to, patching, or improving them. If a component is inactive and no one is maintaining

it, that means no one is addressing its potential vulnerabilities. Therefore, organizations determining the risks

in a codebase must also consider the operational factors in open source components. Black Duck Audits

found that 85% of codebases contained components that were more than four years out-of-date or had no

development activity in the last two years

Use of open source itself is not risky; unmanaged use of open source is. To defend against open source

security and compliance risks, we recommend organizations take these steps:

CREATE AND ENFORCE OPEN SOURCE RISK POLICIES AND PROCESSES. Educate developers about

the need for managed use of open source. Put in place an automated process that tracks the open source

components in a codebase and their known security vulnerabilities, as well as operational risks such as

versioning and duplications, and prioritizes issues based on their severity.

PERFORM A FULL INVENTORY OF THEIR OPEN SOURCE SOFTWARE. Organizations can’t defend

against threats that they don’t know exist. It’s essential to obtain a full, accurate, and timely inventory of the

open source used in their codebases. The inventory should cover both source code and information on how

open source is used in any commercial software or binary deployed in production or used as a library in an

application.

MAP OPEN SOURCE TO KNOWN VULNERABILITIES. Public sources, such as the NVD, are a good first

stop for information on publicly disclosed vulnerabilities in open source software. Keep in mind, however,

that over 90 organizations contribute entries to the NVD. Not only does the NVD reflect their priorities, but

there can be significant lags in data reporting, scoring, and actionability of the data in a CVE entry.

Don’t rely solely on the NVD for vulnerability information. Instead, look to a secondary source that provides

earlier notification of vulnerabilities affecting your codebase and, ideally, delivers security insight, technical

details, and upgrade and patch guidance.

CONTINUALLY MONITOR FOR NEW SECURITY THREATS. The job of tracking vulnerabilities doesn’t end

when applications leave development. Organizations need to continuously monitor for new threats for as

long as their applications remain in service. Importantly, any continuous monitoring strategy must take into

account the composition of the software under attack, lest it become overwhelmed by the volume of

vulnerability disclosures we experienced in 2018.

 44

IDENTIFY LICENSING RISKS. Failure to comply with open source licenses can put organizations at

significant risk of litigation and compromise of IP. Educate developers on open source licenses and their

obligations. Involve your legal advisors in the education process and, of course, in reviewing licenses and

compliance with legal obligations.

MAKE SURE OPEN SOURCE IS PART OF M&A DUE DILIGENCE. If you’re engaged in an acquisition,

understand that the target company is using open source—and likely not managing it well. Don’t hesitate to

ask questions about their open source use and management. If the software assets are a significant part of

the valuation of the company, have a third party audit the code for open source

Summary: A useful summary of open source and vulnerabilities. The recommendations include:

 create and enforce open source risk policies and processes.

 perform a full inventory of their open source software.

 map open source to known vulnerabilities.

 continually monitor for new security threats.

 identify licensing risks.

 make sure open source is part of mergers & acquisition due diligence

 45

IEEE
The IEEE Center for Secure Design intends to shift some of the focus in security from finding bugs to

identifying common design flaws — all in the hope that software architects can learn from others’ mistakes.

The website has Tweets from 2020 whilst much of the rest of the site dates to 2019.

A range of articles addressing:

 Building Code for the Internet of Things

 Building Code for Medical Device Software Security

 Avoiding the Top 10 Software Security Design Flaws

 Design Flaws and Security Considerations for Telematics and Infotainment Systems

https://cybersecurity.ieee.org/
https://ieeecs-media.computer.org/media/technical-activities/CYBSI/docs/Building_Code_IoT_online.pdf
https://ieeecs-media.computer.org/media/technical-activities/CYBSI/docs/BCMDSS.pdf
https://ieeecs-media.computer.org/media/technical-activities/CYBSI/docs/Top-10-Flaws.pdf
https://ieeecs-media.computer.org/media/technical-activities/CYBSI/docs/CSD-telematics.pdf

 46

British Computer Society

Can open source be secure? By Steve Smith, Managing Director of IT security consultancy Pentura – During
an open source project’s lifetime, it usually forks off into a variety of different versions, depending on what
developers require of the new application or operating system. Commercial organisations can often get
involved in this, forking off a version of the open source application and placing some commercial backing to
the project, typically involving a more structured development approach, a licensing model and structured
support services.

This offers users the best of both worlds, where they can benefit from access to the open community of
applications whilst still having someone to turn to if they have problems.”

The truth about open source By Paul Adams BSc MBCS, chairman of the BCS Open Source Specialist
Group. …. freedom is at the heart of open source and, in fact, it comes four-fold.

Freedom 0: The freedom to run the program, for any purpose

Freedom 1: The freedom to study how the program works and adapt it to your needs

Freedom 2: The freedom to redistribute copies so you can help your neighbour

Freedom 3: The freedom to improve the program, and release your improvements to the public, so that the
whole community benefits - access to the source code is a precondition to this

Time to secure software By John Colley, Managing Director, (ISC)2 EMEA Since software, like anything
else that goes through a manufacturing process, is designed and developed to a blueprint, it is of paramount
importance that security requirements are determined alongside the functional and business requirements.

A preliminary risk assessment at this stage serves to determine the core security necessities of the software,
while a security plan should be generated as part of the design phase of the project to be revisited and
adjusted as the development progresses. In fact, we have to consider security at every point in the system’s
development life cycle:

1. Requirements

At the requirements stage, we should be considering what the security requirements are. Are there any
specific business security requirements that need to be built in? Is the data being processed particularly
sensitive? Are there any specific requirements that have to be met?

2. Design

From an architectural design viewpoint, consideration must be given to how the security requirements can be
designed into the system. Design should also consider how the system might be misused or what could go
wrong, a perspective missed by developers that instinctively think about how to build rather than break
things. We should also think about what are the main threats to the design of the system - SQL injection is a
typical example of a threat to the design of the system.

3. Coding

Coding is important, and we must make sure the coding is robust and secure. There are many tools that can
be used to check coding, and code inspection can also be used in the testing phase. The approach to coding
should be to trust nothing and to be able to process anything:

 A range of short articles relevant to open source including:

https://www.bcs.org/
https://www.bcs.org/content-hub/can-open-source-be-secure/
https://www.bcs.org/content-hub/the-truth-about-open-source/
https://www.bcs.org/content-hub/time-to-secure-software/

 47

4. Testing and deployment

Testing should check the security functionality along with the other functionality, ensuring that the system is
resilient to attack. And of course testing should look for incorrect system operations, as well as correct ones.
Secure deployment ensures that the software is functionally operational and secure at the same time. It
means that software is deployed with defence-in-depth and that the attack surface area is not increased by
improper release, change, or configuration management.

Software that works without any issues in development and test environments when deployed into a more
hardened production environment often experiences hiccoughs. Post-mortem analyses in a majority of these
cases reveal that the development and test environments do not simulate the production environment.
Changes therefore made to the production environment should be retrofitted to the development and test
environments through proper change management processes.

5. Operations and maintenance.

It doesn’t matter how well the system has been designed coded and tested, if it is operated insecurely, then
all of that effort has been wasted. Maintenance presents two main problems. Firstly, any changes should be
designed, coded and tested with the same rigour as the initial implementation.

Secondly, it is important to have a good change management and source management system. Too many
upgrades are released with errors that were corrected in previous versions resurfacing in the new version.
This is because the corrections were not retrofitted back into the previous development environment or
because flawed source code was deployed within a broader program rather than a corrected version.

6. Disposal

Don’t forget the disposal of the system. We have seen losses to reputation where data has been left on hard
drives when systems have been replaced or updated. Make sure what has been left behind is considered
both from a software and a hardware viewpoint.”

 48

The Software Alliance
The Software Alliance [SA] is the leading advocate for the global software industry before governments
and in the international marketplace. Its members are among the world’s most innovative companies,
creating software solutions that spark the economy and improve modern life.

With headquarters in Washington, DC, and operations in more than 30 countries, [SA] pioneers
compliance programs that promote legal software use and advocates for public policies that foster
technology innovation and drive growth in the digital economy.

The Framework for Secure Software

The Framework identifies best practices relating to both organizational processes and product capabilities
across the entire software lifecycle. It is organized into six columns: Functions, Categories, Subcategories,
Diagnostic Statements, Implementation Notes, and Informative References. Functions organize fundamental
software security activities at their highest level, consistent with the software lifecycle. The Functions are”
Secure Development, Secure Capabilities and Secure Lifecycle.

Secure Development

 Secure Coding

 Testing & Verification

 Process & Documentation

 Supply Chain

 Tool Chain

 Identity & Access Management

Secure Capabilities

 Support for Identity Management & Authentication

 Patchability

 Encryption

 Authorization and Access Controls

 Logging

 Error & Exception Handling

Secure Lifecycle

 Vulnerability Management

 Configuration

 Vulnerability Notification & Patching

 End of life

http://www.bsa.org/
https://www.bsa.org/files/reports/bsa_software_security_framework_web_final.pdf

 49

Whitesource software

 THE COMPLETE GUIDE ON OPEN SOURCE SECURITY

While not perfectly synonymous to the term of open source management, Software Composition
Analysis is the industry tool aimed at helping organizations to get a handle on their open source usage.
When it was initially coined, it was meant to reference the process of creating inventory reports that
could provide managers visibility over the composition of the components in their software. As time
progressed, software development and security managers understood that they need much more than a
mere inventory of their open source components, including dependencies. They need to ensure that
they are using high-quality open source components without known vulnerabilities and open source
licenses that fit their organization and business model. Currently, there are three technologies of SCA
tools in the market:

• Open source code scanning
• Continuous open source components analysis
• Open source effective usage analysis (or components impact analysis)

Capabilities and accuracy differ between technologies and vendors, but the key functionalities are
considered to be the following:
• Generating open source inventory reports, including all dependencies
• Identification and alerting on vulnerable open source components
• Identification of open source licenses to ensure compliance
• Ability to enforce license and security policies

Even as shifting left helps to improve your software development process, it is not sufficient on its own
as your sole practice for managing your open source components. In many cases, a vulnerability is
found years after the impacted version was released and it may already be in deployed products. This
means that companies should not only shift their open source security, they should also “shift right” to
deal with newly discovered issues. By shifting right we mean that companies need to continuously
review their open source inventory of deployed products to ensure they have not become exploitable to
newly discovered vulnerabilities.

 The Importance of open source security – Describes the 2 pillars of open source security:

Vulnerability Detection (Prioritizing effective vulnerabilities, The end to false positives,

Comprehensive Database) and Vulnerability Remediation (Pinpointing the path, Suggested

Fixes, Automated workflows)

 Use DevOps to Minimize Application Security Risks

 A series open software security-related whitepapers including:

https://www.whitesourcesoftware.com/
https://resources.whitesourcesoftware.com/white-papers-datasheets

 50

Building Security In Maturity Model (BSIMM)

The Building Security In Maturity Model (BSIMM, pronounced “bee simm”) is a study of existing software
security initiatives. By quantifying the practices of many different organizations, we can describe the common
ground shared by many as well as the variations that make each unique.

The most important use of the BSIMM is as a measuring stick to determine where your approach currently
stands relative to other firms. You can simply note which activities you already have in place, find them in the
SSF, and then build your scorecard. A direct comparison of all 119 activities is perhaps the most obvious use
of the BSIMM. This can be accomplished by building your own scorecard and comparing it to the BSIMM10
Scorecard. As a summary, the BSIMM SSF comprises four domains—Governance, Intelligence, SSDL
Touchpoints, and Deployment. In turn, those four domains include 12 practices, which contain the 119
BSIMM activities. A BSIMM scorecard indicates which activities were observed in an organization.

There are descriptions of each activity such as [CP2.4: 44] Include software security SLAs in all vendor
contracts. Vendor contracts include an SLA to ensure that a vendor won’t jeopardize the organization’s
compliance story or SSI. Each new or renewed contract contains provisions requiring the vendor to address
software security and deliver a product or service compatible with the organization’s security policy (see
[SR2.5 Create SLA boilerplate]). In some cases, open source licensing concerns initiate the vendor
management process, which can open the door for additional software security language in the SLA.
Traditional IT security requirements and a simple agreement to allow penetration testing aren’t sufficient
here.

Illustrates the relative frequency of security activities surveyed across a range of industries. The model is at
version 10 and illustrates the changing nature of activities over time.

https://www.bsimm.com/

 51

Financial Services Information Sharing and Analysis Center (FS-ISAC)

The FS-ISAC published a report showing the application of a few of the techniques outlined previously
including a derived version of BSIMM. The report is called Appropriate Software Security Control Types for
Third Party Service and Product Providers.

https://www.fsisac.com/
http://docs.ismgcorp.com/files/external/WP_FSISAC_Third_Party_Software_Security_Working_Group.pdf

 52

Cloud Native Compute Foundation
The Cloud Native Computing Foundation (CNCF) hosts critical components of the global technology
infrastructure. CNCF brings together the world’s top developers, end users, and vendors and runs the largest
open source developer conferences. CNCF is part of the nonprofit Linux Foundation

From 2019 Annual Report; In 2018, the CNCF began performing and open sourcing security audits for
its projects to improve the security of our ecosystem. The goal was to audit several projects and gather
feedback from the CNCF community as to whether the pilot program was useful. The first projects to
undergo this process were Kubernetes, CoreDNS, and Envoy. In 2019, CNCF invested in security
audits for Vitess, Jaeger, Fluentd, Linkerd, Falco, Harbor, gRPC, Helm, and Kubernetes, totaling
approximately half a million dollars. These first public audits identified a variety of security issues,
ranging from general weaknesses to critical vulnerabilities. Project maintainers for CoreDNS, Envoy,
and Prometheus have addressed the identified vulnerabilities and added documentation to help users,
thus improving the security of these projects.

With funds provided by the CNCF community to conduct the Kubernetes security audit, the Security
Audit Working Group was formed to lead the process of finding a reputable third-party vendor. The
group created an open request for proposals. The group took responsibility for evaluating the
proposals and recommending the vendor best suited to complete a security assessment against
Kubernetes, bearing in mind the project’s high complexity and broad scope.

This audit process was partially inspired by the Core Infrastructure Initiative (CII) Best Practices Badge
program that all CNCF projects are required to complete. Provided by the Linux Foundation, this badge
offers a clear and easy-to-understand way for open source projects to show that they follow security
best practices. Adopters of open source software can use the badge to quickly assess which open
source projects are following best practices, and as a result, are more likely to produce higher -quality,
secure software.

Findings from the Kubernetes audit conducted over a few months revealed:

1. Key security policies may not be applied, leading to a false sense of security.

2. Insecure TLS is in use by default.

3. Credentials are exposed in environment variables and command-line arguments.

4. Names of secrets are leaked in logs.

5. Kubernetes lacked certificate revocation.

6. seccomp is not enabled by default.

By open sourcing security audits and processes, the working group hopes to insp ire other projects to
undertake similar efforts in their respective open source communities. Full findings and
recommendations from the audits are listed here.

CNCF also provide an overview of the cloud native landscape.

CNCF have an interesting tool – FOSSA. FOSSA claims to manage ‘Visibility of 3rd party code’, ‘prioritise

problematic dependencies’, automatically compile compliance reports’ (e.g. Bill of Materials) and ‘Streamline

license & vulnerability remediation’.

https://www.cncf.io/
https://www.cncf.io/cncf-annual-report-2019/
https://github.com/kubernetes/community/blob/master/wg-security-audit/findings/Kubernetes%20Final%20Report.pdf
https://coredns.io/2018/03/15/cure53-security-assessment/
https://github.com/envoyproxy/envoy/blob/master/docs/SECURITY_AUDIT.pdf
https://github.com/kubernetes/community/tree/master/wg-security-audit
https://github.com/kubernetes/community/tree/master/wg-security-audit
https://bestpractices.coreinfrastructure.org/en
https://bestpractices.coreinfrastructure.org/en
https://www.cncf.io/blog/2019/08/06/open-sourcing-the-kubernetes-security-audit/
https://landscape.cncf.io/images/landscape.pdf
https://fossa.com/

 53

Center for Internet Security (CIS Controls v7.1)

The CIS Controls Implementation Groups (IGs) are self-assessed categories for organizations based on

relevant cybersecurity attributes. Each IG identifies a subset of the CIS Controls that the community has

broadly assessed to be reasonable for an organization with a similar risk profile and resources to strive to

implement. A large corporation with thousands of employees may be labeled IG3. There a range of

recommended security controls and of particular interest is: CIS Control 18: Application Software Security

Manage the security life cycle of all in-house developed and acquired software in order to prevent, detect,

and correct security weaknesses. This presumes a full life cycle involvement that may not be possible for

open source code but nonetheless has a set of useful controls.

https://learn.cisecurity.org/cis-controls-download

 54

DARPA

DARPA have begun (in 2020) a 4 year project called OPS-5G. DARPA created the Open, Programmable,

Secure 5G (OPS-5G) program to tackle many of the security challenges facing future wireless networks.

OPS-5G will explore the development of a portable, standards-compliant network stack for 5G mobile

networks that is open source, and secure by design. The program seeks to enable a “plug-and-play”

approach to various network software and hardware components, which reduces reliance on untrusted

technology sources. The goal of OPS-5G is to develop open source software and systems that can enable

more secure 5G as well as future generations of networks beyond 5G.

https://www.darpa.mil/
https://www.darpa.mil/news-events/2020-02-05

 55

Alliance for Telecommunications Industry Solutions

ATIS is developing an overall industry cybersecurity framework focused on the needs of the ICT industry.
The work started by documenting the baseline of the current cybersecurity landscape, including existing
ATIS initiatives and NIST/U.S. government cybersecurity frameworks and guidelines. From there it analyzed
the expected threat landscape over the next three years.

Two reports have been published: 1) an Architectural Risk Analysis (ARA) Process for Security; and 2) an
overview of IoT/M2M Cybersecurity activities and progress.

An interesting (more telco-focused) risk assessment methodology called Architectural Risk Analysis.

https://www.atis.org/initiatives/cybersecurity/
https://access.atis.org/apps/group_public/download.php/35401/ATIS-I-0000057/
https://access.atis.org/apps/group_public/download.php/34714/ATIS-I-0000056/

 56

Cloud iNfrastructure Telco Task Force (CNTT)

CNTT was incubated in early 2019 through a partnership between GSMA and the Linux Foundation as a
global open source taskforce comprised of industry-leading CSPs and NFVI/VNF suppliers. CNTT provides
standardized infrastructures for both virtual machine-based and cloud native network functions, making it
possible to deploy multiple network functions without having to create new infrastructures for each. This
standardization enables providers to shorten deployment and onboarding from weeks and months to hours
and days, reducing costs and accelerating digital transformation. Verification makes it possible to
immediately determine whether a vendor’s infrastructure is compatible with target network functions. This
ability to “mix and match” components in a single infrastructure increases interoperability and enables more
complex functionality.

All of this had led to a growing awareness of the need to develop more open models and validation
mechanisms to bring the most value to telco operators as well as vendors, by agreeing on a standard set of
infrastructure profiles to use for the underlying infrastructure to support VNF applications across the industry
and telecom community at large. To achieve this goal, the cloud environment needs to be fully abstracted via
APIs and other mechanisms to the VNFs so that both developers of the VNF applications and the operators
managing the environments can benefit from the flexibility that the disaggregation of the underlying
infrastructure offers.

The next step after the Reference Model has been identified and developed is to take the general model,
which is purposely designed to be able to be applied to a number of technologies, and apply it to a discrete
number of concrete and ultimately deployable Reference Architecture platforms. The intention is to choose
the reference architectures carefully so that there will only be a small set of architectures that meets the
specific requirements for supporting NFV and Telecom specific applications. Per the principles laid out in the
Reference Model documentation, the Reference Architectures need to meet the following criteria as much as
is practical:

Initially should be based on widely established technology and systems used in the Telecom Industry. This
will help ensure a faster adoption rate because the operators are already familiar with the technology and
might even have systems in production. Another advantage to this approach is a project faster development
cycle.

Subsequent architectures should be based on either additional established or promising emerging
technologies that are chosen by the community members.

Functional Scope

In terms of the functional scope of the CNTT documentation, in order to target the project goals as described
above, we are focused on:

 Functional capabilities of the cloud infrastructure and the infrastructure management

 Functional interfaces between infrastructure and infrastructure management

 Functional interfaces between workloads and workload management

Due to the close alignment with ETSI GS NFV 002, those ETSI interfaces that are considered relevant (with
notes where required) are included in the figure below.

https://github.com/cntt-n/CNTT/tree/master/doc/tech
https://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.02.01_60/gs_NFV002v010201p.pdf

 57

Figure 2: Functional Scope of CNTT

 58

Conclusion & Next Steps

This initial GSMA report has summarised research undertaken for the open source software security project

as part of the broader open networking initiative. The security concepts identified in the report and

summarised in the table below are likely to form the basis of any set of good security controls especially

within an open source software environment.

There is good overall coverage across the range of sources, however, many are written as if there is full

influence over the development lifecycle (which may not be the case for open source software where some

of the early stages (including Coding) may be delivered by others). This aspect may warrant further focus to

identify, understand and manage the residual associated security risks.

The next stage of activity will seek to combine these security considerations with the output from a parallel

project seeking mobile network operator feedback on their considerations for open source software security

to identify deployment scenarios and associated security considerations. A later stage of activity will

consider broader system security considerations particularly in the infrastructure area. This work has

potential to identify a set of ‘proof points’ of testing and compliance against these security requirements. The

longer-term aim is to build a set of best practice considerations for operators to consider when dealing with

open source software. It is intended to complete this sequence of activity, however, it is recognised that this

cycle may need further development as deployment scenarios and security controls evolve.

This report and Open Source Software Security project is undertaken as part of the broader GSMA Open

Networking initiative where work is ongoing to define Minimum Viable Products and Use Cases. The Open

Source Software Security project informs these models and provides high level considerations for security.

Concept / Organisation NIST NTIA Safecode OWASP OASIS LNF NCSC (UK) SSA SynOpSys BCS BSA Whitesource BSIMM ENISA CNCF DARPA ATIS CNTT

Zero Trust

SBOM / Configuration Management

Source Code Analysis

Lifecycle approach

Threat / Risk Model

System and Component Approach

Approved' Code / Re-use

Secure Coding / Avoid vulnerabilities

Security Requirements (&Test)

Open source licensing

Cyber secure design

Cloud / Virtualisation Security

Secure by Default

Toolchain

Dev(Sec)Ops

GSMA HEAD OFFICE

Floor 2
The Walbrook Building
25 Walbrook
London
EC4N 8AF
United Kingdom
www.gsma.com

