
UL MCV 1376

Methodology for Marketing Claim Verification:
Security Capabilities to Levels
Bronze/Silver/Gold/Platinum/Diamond

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



2021-09-23

UL MCV 1376

Methodology for Marketing Claim Verification: Security Capabilities to Levels
Bronze/Silver/Gold/Platinum/Diamond

Second Edition

Copyright © 2021 UL LLC

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +0200

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



1 Introduction
As the world is becoming more connected, we are seeing an enormous number of
network-connected products hitting the market. However, it has been found that a
significant amount of these products lack even basic and fundamental security
capabilities. For this reason, governments have started introducing regulations to
require connected products to be more secure, and accompanying standards and
guidelines are being introduced by the industry to help manufacturers address these
new challenges.

UL MCV 1376 is a baseline-driven security verification framework that groups sets of
industry-referenced security best practices into 5 different tiers (“levels”) based on
their necessity for implementation. Level 1 references best practices that are
considered an absolute minimum (a “baseline”) for any connected device, followed by
4 more levels of increasingly expanding sets of industry-acknowledged security
capabilities that become more advanced and comprehensive in nature. UL MCV 1376
references and/or maps to various industry-leading security frameworks, such as EN
303 645, NISTIR 8259A, the CSDE C2 Consensus Report.

UL MCV 1376 provides manufacturers/developers of IoT products a means to
measure the security maturity of their product, prioritize the implementation of device
security capabilities, and plan for product security maturity growth. Additionally, it
provides buyers/end users of IoT solutions the opportunity to formulate concise
security requirements in line with industry best practices.

The UL MCV 1376 framework serves as the inspiration and backbone of several
industry security verification solutions, such as UL's IoT Security Rating, retailers'
connected devices security test protocols, and it is accepted by the Design Lights
Consortium (DLC) as a security assessment framework for networked lighting
controls.

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



2 Scope of Applicability
This framework focuses primarily on device-centric security capabilities and can be
used by all kinds of IoT implementations, but particularly those targeting consumer
use and/or basic commercial and/or basic industrial use. Applicable product
categories include, but are not limited to, the following:

Commercial HVAC
Commercial/industrial lighting systems
Connected baby monitors
Connected children's toys
Gateways and hub devices
Home automation devices
Home entertainment devices (e.g. smart TV, smart speaker)
(Home) Security devices (e.g. smart door locks, security cameras)
Smart home appliances
Wearables

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



3 Table of Contents
1 Introduction
2 Scope of Applicability
3 Table of Contents
4 Acronyms
5 Summary of Requirements
6 List of Requirements

6.1 Software Update
6.1.1 SWU-SUPP: Remote software updates supported
6.1.2 SWU-AUTO: Automatic Software Update Tracking
6.1.3 SWU-AUTH: Software Update Authentication
6.1.4 SWU-ROT: Hardware root of trust

6.2 Data & Cryptography
6.2.1 DC-NDK: No default credentials or secret keys
6.2.2 DC-PROT: Protect sensitive data
6.2.3 DC-PWD: Passphrase complexity enforcement
6.2.4 DC-RECVR: Credential recovery
6.2.5 DC-TRNG: Cryptographically strong random number generation

6.3 Logical Security
6.3.1 LS-DBG: Disable debug interfaces
6.3.2 LS-SECDEF: Systems configured to secure defaults
6.3.3 LS-FDIS: Unwanted functionality can be disabled
6.3.4 LS-LPP: Least Privilege Principle
6.3.5 LS-MPF: Memory Protection Features
6.3.6 LS-KVUL: Software free from known vulnerabilities
6.3.7 LS-LOGS: Logs or errors do not expose sensitive data
6.3.8 LS-UVUL: Software tested for unknown vulnerabilities

6.4 System Management
6.4.1 SM-AUTH: Sensitive services require authentication
6.4.2 SM-ERASE: Permanent erasure of sensitive data
6.4.3 SM-SFTY: Manual override for safety-critical operations
6.4.4 SM-INPT: Input validation and sanitization
6.4.5 SM-SESS: Sensitive services implement session management

6.5 Communication Security
6.5.1 CS-XMIT: Cryptographically Secure Data Transmission
6.5.2 CS-RFXMIT: Wireless Communication Security

6.6 Process & Documentation
6.6.1 PD-DEVID: Product Identification
6.6.2 PD-COLL: Data Collection and Handling
6.6.3 PD-PROCS: Documented patch/update process
6.6.4 PD-EOL: End-of-life policy
6.6.5 PD-VMGMT: Vulnerability management program

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



6.6.6 PD-CLMON: Regularly monitored cloud/app environment(s)
6.6.7 PD-SBOM: Software Bill-of-Materials
6.6.8 PD-PHYIF: Physical Interface Documentation
6.6.9 PD-SDOC: All services documented

7 Component Qualification
8 Mapping to ETSI EN 303 645
A Acceptable Cipher Suites
B Acceptable Cryptography
C Acceptable Plaintext Protocols

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



4 Acronyms

0RTT Zero Round-Trip Time

AEAD Authenticated Encryption with Associated Data

AES Advanced Encryption Standard

API Application Programming Interface

ARP Address Resolution Protocol

ASCII American Standard Code for Information Interchange

CBC Cipher Block Chaining

CCM Counter with CBC-MAC

CCTV Closed-circuit Television

CRP Code Readout Protection

CSPRNG Cryptographically Secure Pseudo-Random Number Generator

CSRNG Cryptographically Secure Random Number Generator

CSV Comma Separated Values

CTR Counter Mode

CVSS Common Vulnerability Scoring System

DH Diffie-Hellman

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DSA Digital Signature Algorithm

EAX Encrypt-then-Authenticate-then-Translate

ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

EdDSA Edwards Digital Signature Algorithm

FFC Finite Field Cryptography

FIPS Federal Information Processing Standard

GCM Galois/Counter Mode

HMAC Hash-based Message Authentication Code

HMI Human-Machine Interface

HTTP Hypertext Transfer Protocol

IP Internet Protocol

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



IoT Internet of Things

JPEG Joint Photographic Experts Group

JSON JavaScript Object Notation

JTAG Joint Test Action Group

MAC Message Authentication Code

MCV Methodology of Marketing Claim Verification

MIC Message Integrity Code

MLO Minimal Loader

MQTT Message Queueing Telemetry Transport

NTP Network Time Protocol

OEM Original Equipment Manufacturer

PBKDF2 Password-Based Key Derivation Function 2

PFS Perfect Forward Secrecy

PII Personally Identifiable Information

PKI Public Key Infrastructure

RAM Random Access Memory

RSA Rivest-Shamir-Adleman

RTSP Real-time Streaming Protocol

RTSPS Real-time Streaming Protocol Secure

SHA Secure Hash Algorithm

SQL Structured Query Language

TCP Transmission Control Protocol

TDES Triple DES

TLS Transport Layer Security

TPM Trusted Platform Module

USB Universal Serial Bus

WEP Wired Equivalent Privacy

WPA2 Wi-Fi Protected Access 2

WPS Wi-Fi Protected Setup

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



5 Summary of Requirements
The following table gives a summary of the UL MCV 1376 requirements broken down
into their respective categories. For clarification, the following symbols will be used:

Symbol Meaning

✓ Implementation of base requirement mandatory

✓
+ Implementation of base requirement and one requirement enhancement

mandatory

✓
++ Implementation of base requirement and two requirement enhancements

mandatory

✓
+++ Implementation of base requirement and three requirement enhancements

mandatory

✓
++++ Implementation of base requirement and four requirement enhancements

mandatory

Topic Requirement L1 L2 L3 L4 L5

Software Update

SWU-SUPP: Remote software
updates supported

✓ ✓
+

✓
+

✓
++

✓
++

SWU-AUTO: Automatic Software
Update Tracking

✓ ✓ ✓ ✓
+

✓
+

SWU-AUTH: Software Update
Authentication

✓ ✓
+

✓
+

✓
++

✓
++

SWU-ROT: Hardware root of trust         ✓

Data &
Cryptography

DC-NDK: No default credentials or
secret keys

✓ ✓ ✓ ✓ ✓

DC-PROT: Protect sensitive data ✓ ✓ ✓
+

✓
++

✓
++

DC-PWD: Passphrase complexity
enforcement

  ✓ ✓ ✓
+

✓
+

DC-RECVR: Credential recovery   ✓ ✓ ✓
+

✓
+

DC-TRNG: Cryptographically strong
random number generation

    ✓ ✓ ✓

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



Topic Requirement L1 L2 L3 L4 L5

Logical Security

LS-DBG: Disable debug interfaces     ✓ ✓
+

✓
+

LS-SECDEF: Systems configured
to secure defaults

    ✓ ✓ ✓

LS-FDIS: Unwanted functionality
can be disabled

    ✓ ✓ ✓

LS-LPP: Least Privilege Principle     ✓ ✓ ✓

LS-MPF: Memory Protection
Features

      ✓ ✓

LS-KVUL: Software free from
known vulnerabilities

      ✓ ✓

LS-LOGS: Logs or errors do not
expose sensitive data

      ✓ ✓

LS-UVUL: Software tested for
unknown vulnerabilities

        ✓

System
Management

SM-AUTH: Sensitive services
require authentication

✓ ✓ ✓ ✓
+

✓
+

SM-ERASE: Permanent erasure of
sensitive data

✓ ✓ ✓ ✓ ✓

SM-SFTY: Manual override for
safety-critical operations

  ✓ ✓ ✓ ✓

SM-INPT: Input validation and
sanitization

    ✓ ✓ ✓

SM-SESS: Sensitive services
implement session management

      ✓ ✓

Communication
Security

CS-XMIT: Cryptographically
Secure Data Transmission

✓ ✓
+

✓
++

✓
++

✓
++

CS-RFXMIT: Wireless
Communication Security

✓ ✓
+

✓
++

✓
+++

✓
+++

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



Topic Requirement L1 L2 L3 L4 L5

Process &
Documentation

PD-DEVID: Product Identification ✓ ✓ ✓ ✓ ✓

PD-COLL: Data Collection and
Handling

✓ ✓
+

✓
++

✓
+++

✓
++++

PD-PROCS: Documented
patch/update process

✓ ✓ ✓ ✓
+

✓
+

PD-EOL: End-of-life policy ✓ ✓ ✓ ✓ ✓

PD-VMGMT: Vulnerability
management program

✓ ✓ ✓
+

✓
+

✓
++

PD-CLMON: Regularly monitored
cloud/app environment(s)

    ✓ ✓ ✓

PD-SBOM: Software Bill-of-
Materials

      ✓ ✓

PD-PHYIF: Physical Interface
Documentation

        ✓

PD-SDOC: All services
documented

        ✓

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



6 List of Requirements

6.1 Software Update

6.1.1 SWU-SUPP: Remote software updates supported

Software updates must be supported, using network or wireless interfaces where
available

Base requirement: L1–L5

No matter how well the software is designed or tested, there will always be bugs and
vulnerabilities that are missed. This is just a fact of software development and the
sheer complexity of any body of code. So, the update of the software must be
allowed in any device to ensure that it can be patched when any such bugs are found.
It is an additional requirement that the software update must be able to be performed
across a wireless or network interface, should the device provide such an interface.
Any patches need to be either automatically remotely triggered (e.g., via a cloud
backend connection) or the user itself must be able to update the firmware of the
device. An update mechanism that can only be performed by the device vendor or by
using specialized equipment is not considered fulfilling this requirement.

This way, it is ensured that security updates are possible and user-friendly,
minimizing the risk that devices become permanently vulnerable through new attack
methods that are discovered after the initial evaluation/shipping of the device.

For devices that fulfill level 1 at least, the applications must be updatable.

Requirement enhancement 1: L2–L5

For level 2 and up, additionally, the operating system and firmware must be
updatable.

Requirement enhancement 2: L4, L5

For level 4 and up, also second stage bootloader components (i.e., those that are
software-updatable as e.g., U-Boot) must be updatable. Bootloaders/MLOs that are in
hardware are excluded.

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



6.1.2 SWU-AUTO: Automatic Software Update Tracking

Automatic querying of devices for available software updates must be enabled by
default

Base requirement: L1–L5

Although software must be maintained to ensure ongoing patching of security
vulnerabilities, it is reasonable to expect that customers may not always know about
the latest vulnerability in a device. Therefore, users must be updated on such
occurrences to be able to make an informed decision so that they do not become a
blocking factor in patching a high-risk vulnerability because they are unaware of it. In
any case, even if the user declines to install a software update, there must be a
mechanism for the user to change their mind later on and trigger the installation of
the available update. Subsequently published updates should lead to new
notifications on the user side. It is expected that device vendors will need to consider
the business/operational logic of the device when implementing such updates so
that a system does not reset during operation, but such business logic is considered
outside of the scope of this assessment. Also note that while an individual package
might have a vulnerability with a high CVSS score, the relevant metric for the
following cases is the CVSS score as it applies to the overall system. For example, a
vulnerability that is critical but does not impact the system at all can be safely
disregarded. Such happens frequently in practice when a vulnerability is discovered
that might only apply to specific architectures or constellations that the affected
component is used in.

In all cases, for discovered vulnerabilities rated to CVSS 7 or higher a patch must be
made available within 30 days, for those rated between CVSS 4 to 7 a patch must be
made available within 90 days, and vulnerabilities rated to less than CVSS 4 may be
left unpatched.

When the device under test has some form of HMI (which could also be in form of a
smartphone app that controls the device or in form of a management web interface),
this requirement is considered fulfilled if the device and/or paired HMI component
automatically checks for available software updates, informs the user of such
availability of new software, and prompts the user to decide if they would like that
software update to be installed.

These timelines refer to the case in which a zero-day vulnerability is present; they
may be longer up to a period of 90 days from the day of reporting when the vendor is
informed via a responsible disclosure process.

If the vendor elects to always force-push the latest firmware version onto all devices
remotely, this requirement is also considered fulfilled.

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



Requirement enhancement 1: L4, L5

For devices that fulfill security levels 4 and 5, additionally, a method shall be available
for the vendor to force a software update regardless of user consent. This is
intended to be a last resort to force wide-scale updates of vulnerable devices in the
field if a critical vulnerability is found and exploited in the wild and would typically be
used exclusively for such high-risk vulnerabilities, with an informed consent process
used for all regular software updates.

6.1.3 SWU-AUTH: Software Update Authentication

Software updates must be cryptographically authenticated, and provide anti-rollback
features

Base requirement: L1–L5

Although it is important to support software updates to ensure that devices can be
patched and maintained in the field, such features can lead to additional
vulnerabilities – where a “bad actor” can install their own software into the device to
take control of the device or to prevent its normal operation.

To prevent this, any software update must be cryptographically authenticated. Often
this will be implemented by using a digital signature across the software image,
which can be checked by the original software (or bootloader of the device) either
before installation or at boot-up. Using a digital signature based on a public key
algorithm (such as EdDSA, ECDSA, or RSA) ensures that the devices themselves do
not need the private key that is used to generate the authentication data.

It is additionally required that the update implements “anti-rollback” features – such
as a “monotonic” version number included in each release (that is a version number
that only increases with each version) which is also checked during installation to
ensure that a bad actor cannot just install a previous version of the software; to
“reinstate” any otherwise patched vulnerabilities. This anti-rollback functionality may
be waived for patches that only offer different functionalities, but do not patch
vulnerabilities. For example, the switch back and forth between two different
software flavors is allowed, but as soon as an update incorporates a fix for a security
vulnerability, going back to the vulnerable version must be disallowed.

If the device does not computationally permit the use of public-key cryptography for
securing the integrity of the software, and device-unique symmetric software
authentication keys are also not feasible from the perspective of organizational
overhead, for level 1 devices shared symmetric keys are permissible under the
following constraints:

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



The embedded device must utilize readout protection of the program memory,
e.g., using SoC-provided fuse bits which can lock the readout of the software.
This means that an attacker will at least have to break this security feature to
retrieve the symmetric key.
The software image that is transmitted during an update does not contain the
shared symmetric key (e.g., if the bootloader contains said key and the
bootloader itself is not part of the software image) or the whole software image
is protected by strong encryption. For these purposes, the algorithms listed in
Appendix B are considered acceptable. When an AEAD cipher is used, the
authentication tag itself can be used instead of a separate MAC computation.
The encryption and/or MAC keys may never be used for any other purpose but
software update.

Requirement enhancement 1: L2–L5

Where a symmetric key system – such as an HMAC – is used for update
authentication, the secret key in each device must be unique per device. Otherwise
once the software of one device is exposed (e.g., through a physical attack on one
device), a valid software signature for all other devices of this type can be created.
Therefore, public-key cryptography is recommended to avoid the complexities of
managing unique symmetric keys across device portfolios.

Requirement enhancement 2: L4, L5

For target security level 4 and up, the software update image must not only be
authenticated but encrypted as well. Since device-individual firmware images are not
desirable, it is acceptable for this single key to be symmetric and shared across all
devices. However, it may not be exposed in any firmware update (i.e., must always be
omitted from the image or only contained in the encrypted portion of the image). The
algorithms that are considered acceptable for this purpose are listed in Appendix B.

Note that this is a measure that is controversial as it is following the security by
obscurity paradigm. Some vendors might value public auditing of their binary code
basis in the expectation of improving security; firmware encryption hampers this
goal. Therefore, if an applicant demonstrates they are deliberately opening the
firmware to public audit (e.g., by publishing it unencrypted on their website), this
requirement enhancement may be waived.

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



6.1.4 SWU-ROT: Hardware root of trust

The device uses a hardware-based root of trust for securely storing sensitive data

Base requirement: L5

A hardware root of trust (e.g., secure element, TPM) is a dedicated embedded
component/memory area that can securely store sensitive data such as
cryptographic keys. It is the foundation on which all secure operations depend on and
a source that can always be trusted by the system and is, therefore, a crucial
component for processes such as the update or boot authentication process,
providing a protected environment for encryption and signature verification keys.
Having a hardware root of trust increases overall system security as it is exceedingly
more difficult to extract or modify its stored data as compared to storing the data in
software. Hardware roots of trust provide varying degrees of protection against
different attack scenarios. The intent of this specification does not require extensive
countermeasures against hardware attacks (such as fault injection or differential
power analysis), but it needs to be ensured that the hardware dealing with sensitive
cryptographic material is properly isolated from the remaining system. For instance,
this can be achieved by a separate microcontroller that exclusively handles
cryptographic computation using an API that does not permit reading out of private
keys. To fulfill this requirement the device must store sensitive data, such as private
keys (e.g., TLS client certificate keys) in such a hardware root of trust.

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



6.2 Data & Cryptography

6.2.1 DC-NDK: No default credentials or secret keys

System defaults such as password and/or cryptographic keys must be changed on the
initial setup

Base requirement: L1–L5

Ideally, system defaults should be avoided – but realistically that is not always
possible. It may be necessary for something to be set to a default value to allow for
the “boot-strapping” of the system for the first time. However, the risk of using the
default should be clearly outlined to the people operating that system for that first
time, and this requirement outlines the need to force them to make a change from
this default as part of the overall setup.

Where system defaults are automatically changed as part of the
personalization/manufacturing process, these values must be set such that they are
unique per device and statistically uncorrelated between devices (i.e., assigned
randomly).

Ultimately, defaults for passwords and other such items should only be implemented
for values that are minimally required to be present for normal operation, but which
must be changed by the user before operation. This also covers any
debugging/backdoor accounts that may be used during development – such values
must never be left in a production system.

Shared public key material such as certificates or raw public keys may be used. For
example, it is common to have a globally shared certificate across a family of
devices to authenticate their respective software updates.

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



6.2.2 DC-PROT: Protect sensitive data

Sensitive data must be protected in transit and at rest

Base requirement: L1–L5

Bad actors will often attempt to recover sensitive data, such as passwords, secret
cryptographic keys, and customer data, as the start of an attack on a system. This
data may be easily accessed if it is not protected, and electronic protection must
always involve strong cryptography and key management to ensure that it is
providing the controls at a sufficient level. Therefore, any data that is communicated
across connections that are not physically direct (such as a direct USB or serial
connection) must be protected against disclosure through cryptographic means.

Requirement enhancement 1: L3–L5

Additionally for level 3 and up, storage of such sensitive data must also be protected
as customers are likely to re-use passwords across different devices, or even re-
purpose online passwords for home use. This includes ensuring that such data is not
easily accessible with internal access to the device (e.g., through monitoring an
internal serial bus). It is understood that sometimes such data must be displayed for
business and user interface reasons (e.g., to display and receive a user password as
it is entered), but a business justification for each exposure must be provided.
Passwords must never be stored in plain text, but instead always in hashed form.
When possible, the hashing process should include the usage of a salt, where the salt
is defined as a unique, randomly generated string that is added to each password
before hashing. Weak or broken hashing algorithms, such as MD5, must not be used.

Furthermore, industry-standard cryptographic algorithms, outlined in Appendix B,
must be used to protect sensitive data. Development of proprietary, or bespoke,
algorithms or protections weaken systems as such algorithms will not have
undergone the many years of academic review and attack that is performed on those
industry-standard methods. Therefore, protections can only be assumed when such
standard algorithms are used.

At this level, brute-force attacks via network interfaces need to be protected against,
limiting the rate of authentication attempts to a value that does not exceed twice that
of what can be reasonably be expected in a typical use scenario.

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



Requirement enhancement 2: L4, L5

For an implementation that targets security level 4 and up, the hashing process must
incorporate key stretching algorithms such as scrypt or PBKDF2 to reduce the
susceptibility against offline brute-force attacks.

6.2.3 DC-PWD: Passphrase complexity enforcement

When passphrases are used to authorize the use of services, they must fulfill
minimum strength criteria

Base requirement: L2–L5

Passphrases are often required and implemented to provide authentication of users.
If not set to a sufficiently secure value, they can be easily guessed or brute-forced to
bypass this authentication, allowing a bad actor to gain access to the services the
passphrases are supposed to protect. Many attacks on devices are based on
exploiting insecure, or default, password values. The strength of a passphrase
typically depends on two key factors: The first factor is the set of characters that
passphrase characters are chosen from, known as the alphabet. The second factor is
the length of the passphrase in characters. Strengths of passphrases are typically
given in equivalent bit lengths, i.e., the binary logarithm of the number of possible
combinations.

This requirement deals with the complexity of such passwords. Note that the
requirement does only apply to scenarios in which they are technically feasible. For
example, a numeric number verification for Bluetooth pairing would be out of scope
regarding this requirement, because in principle the underlying system prevents using
sufficiently secure passcodes. Similar situations arise where a passphrase may only
use a limited alphabet because the HMI does not allow other characters (e.g., a
device with a keypad that only has digits 0-9).

We differentiate in this requirement passphrases that are chosen by a user (i.e., a
passphrase that the user can change themselves) against those that are chosen by a
device or machine entirely at random (e.g., an API key that is chosen by software and
cannot be changed by a user). For the latter, plausibility check routines used for
human-choice passwords must not be used, since that would counterintuitively
decrease the strength of passphrases.

Users should always be allowed to at least use the 26 special characters that
correspond to ASCII codepoints 0x21 - 0x2f (!"#$%&'()*+,-./), 0x3a - 0x3f (:;<=>?), and
0x5b - 0x5f ([\]^_) if they so choose. Furthermore, the maximum length of a password
shall not be restricted below 127 characters of length, meaning that any system shall
be able to accept a password up to 127 characters (but may of course support longer
passphrases).

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



For the base requirement, these are the minimum criteria regarding passphrase
complexity:

User-chosen passphrases: length at least 10 characters, at least one uppercase,
and at least one lowercase character. Example of valid passphrases:
"Achievement", waterFaLL5". Example of invalid passphrases: "fooBar123" (too
short), "achievement" (no uppercase character), "ACHIEVEMENT" (no lowercase
character).
Machine-chosen passphrases: alphabet at least [A-Za-z], length at least 10
characters (approximately 57 bit of security)

Requirement enhancement 1: L4, L5

For level 4 and up, those rules become stricter:

User-chosen passphrases: length at least 12 characters, at least one uppercase,
at least one lowercase character, and at least one digit. Examples of valid
passphrases: "Y3ll0whamm3r", "M1croorgan1sm". Example of invalid
passphrases: "foobarF0BAR" (too short), "ucroorgan1sm" (no uppercase
character), "UCROOGRAN1SM" (no lowercase character), "FOOBARfoobar" (no
digit).
Machine-chosen passphrases: alphabet at least [A-Za-z0-9], length at least 12
characters (approximately 71 bit of security)

6.2.4 DC-RECVR: Credential recovery

Provide recovery mechanisms for credentials

Base requirement: L2–L5

It is expected that users will forget or otherwise fail to correctly enter passwords
from time to time. This should not present a complete barrier to the further use of the
device, and therefore password recovery mechanisms must be put in place to ensure
that the device can be recovered, and the user can continue to use the system.

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



Requirement enhancement 1: L4, L5

For devices that fulfill level 4 and up, such recovery mechanisms must be protected
against exploitation by confirming user intent and authenticity. For example, where
automated methods without human interaction are used, they must provide two-
factor/out-of-band authentication of the user. Alternatively, a physical “reset” button
may be implemented that requires physical interaction, preventing the exploitation of
this feature through malware and validating the customer intent and authenticity
through physical proximity to the system.

6.2.5 DC-TRNG: Cryptographically strong random number generation

Random number generation must ensure sufficient entropy

Base requirement: L3–L5

Random numbers are often used as part of security protocols and for generating
cryptographic keys and passwords. Many vulnerabilities in systems have been
caused by a lack of strong random numbers – including some attacks on standard
protocols such as TLS. Generating random numbers on an embedded system can be
difficult, as there is often little source “entropy” to be used to generate the numbers.
It is recommended that multiple sources of entropy, such as network data timing,
least significant bits on analog to digital input pins, and real-time clock data are used
as a seed for any random number generation – which should then use an industry-
standard pseudo-random bit generator. Ideally, each device should be shipped with
some random, unique values injected during the manufacturing process to start this
seed value.

Often, the simple random number generation functions provided by common
programming languages are not cryptographically sound and should not be used.
Using /dev/urandom on Unix-like systems is regarded as an acceptable solution for
random number generation. To pass this requirement, it is necessary to use a
cryptographically secure random number generator (CSPRNG or CSRNG). When a
pseudo-random number generator is used, it must be seeded by a secure source of
randomness and may not rely solely on predictable data such as a time stamp.

The use of a CSPRNG especially also is required for the generation of any key
material, such as the creation of session keys or an asymmetric keypair.

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



6.3 Logical Security

6.3.1 LS-DBG: Disable debug interfaces

Debug interfaces must be disabled or protected against misuse

Base requirement: L3–L5

Often devices will come with some interfaces that are either specifically designed or
can be used, for “debugging” purposes. For example, local JTAG ports can often be
used to extract the software from devices and start the reverse engineering process
which allows for the determination of vulnerabilities within the device. Other
examples are serial connections (e.g., via RS232) which may output sensitive
information or provide direct access to the system. Such “debug” interfaces must be
disabled in production devices. If it is not possible to do so, mitigations must be
implemented to prevent the extraction of sensitive data or exploitation of the device.
Often microcontrollers provide a feature called CRP which prevents the internal flash
readout via JTAG. Devices that support this feature must have it enabled.

To fulfill level 3, at least serial connections must be deactivated or protected.

Requirement enhancement 1: L4, L5

Additionally, for level 4 and up, JTAG connections must be deactivated or protected.

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



6.3.2 LS-SECDEF: Systems configured to secure defaults

Systems must be configured to secure defaults

Base requirement: L3–L5

The default configuration of the system must ensure that the device is secure “out of
the box”. Where deprecated or vulnerable features may be required, or desirable, for a
specific market or customer segment, these features must be disabled by default.
Examples of such features may be to allow for WPS wireless key negotiation, which
is known to be vulnerable but may be desirable in some instances, or the usage of
Modbus TCP which does not provide authenticity or confidentiality of data but is
needed for a particular network environment.

Features that are essential to the device functionality must always have a secure
alternative to an insecure optional feature. For example, a CCTV camera may offer
the optional, disabled-by-default insecure RTSP protocol, but it must always have a
secure alternative such as RTSPS.

When features that are commonly regarded as insecure are present in the device,
sufficient user guidance must be provided to the user when they opt to enable such
features. This allows users to understand the risk associated with enabling said
features of the device. The guidance must be phrased in unambiguous language,
discouraging the use of the insecure feature, and recommending a secure alternative.
Guidance must not obfuscate the security risk by using technical jargon that cannot
be understood by the device's intended target audience.

Devices must also be free from undocumented features that may allow for a
“takeover” of the device by someone other than the intended end-users. The system
must provide clear documentation of its features, and such “back-door” access or
control features must not be implemented or possible within production devices.

Whenever information the device offers is publicly accessible without authentication
– especially if this information might be security-relevant – this information must be
kept to the minimum that still retains device functionality. For example, a device may
have an API that publicly displays the progress of an ongoing firmware update or the
respective API version, but it may not contain information that is not operationally
required such as detailed version numbers of contained software packages.

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



6.3.3 LS-FDIS: Unwanted functionality can be disabled

Customer access to disable unwanted features

Base requirement: L3–L5

Many products are shipped with large feature sets to allow for the broadest appeal.
Thought should be given to allow for users to disable any features they do not want
or do not need, as this may reduce the attack surface of the product, or even allow
for easy remediation of vulnerabilities that are found in the field before those
vulnerabilities being actively patched or fixed. It is understood that not all features of
a system can be deactivated without having an impact on the usability or operation
of the device. This requirement aims at those optional features which have no or
limited impact on the operation of the device. An example may be a smart sensor
that supports multiple network protocols (such as MQTT, XMPP, or HTTP) to retrieve
measurement data where users must be able to choose their preferred protocol and
disable those which they do not require.

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



6.3.4 LS-LPP: Least Privilege Principle

Systems must implement the least privilege principle and utilize hardware-supported
features such as memory containment

Base requirement: L3–L5

All software of sufficient complexity has vulnerabilities, and “defense in depth”
measures must be used to protect against the successful exploitation of any newly
discovered flaws. The goal is to have multiple layers of defense so that if one
protection mechanism fails in practice, this does not lead to a full system
compromise. One good measure is the application of the “least privilege principle” in
systems. This means that software is assigned only the execution privilege and
access rights that are sufficient and essential for its required operation.

Modern processing and operating systems provide many different methods for this
to be achieved, and this requirement is not intended to mandate a specific
implementation, but instead ensure that the device vendor has considered what
access rights are necessary and put in place measures to ensure that additional
access is prevented, or at least mitigated. For example, “sandboxing” or virtualized
environments may be used, or access between assets and functions may be
managed through assigning lower processor and/or operating system privilege levels
to all code that does not require full access to the hardware of the device.

Typical means of implementation of this on an embedded system would include that
processes should run as unprivileged users (e.g., the “nobody” user of a Linux
system), use of chroot environments, and using file system permissions that disallow
access to any data that needs not to be read or written by the respective processes.
This requirement would be considered failed if one or more processes were running
with root privileges even though they do not require these privileges at runtime.
Another failure to meet this requirement would be world-readable (or group-readable)
data that is potentially sensitive such as cryptographic keys.

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



6.3.5 LS-MPF: Memory Protection Features

Runtime and compile-time memory protection features must be implemented

Base requirement: L4, L5

Modern processing systems and compilers provide multiple methods to assist in the
exploitation of any vulnerabilities which may exist in the source code of the device.
By correctly enabling and implementing such protections, the security posture of the
system can be increased. This requirement does not seek to mandate which
protections should be implemented, as this will depend on the specific processing
system/operating system/compiler used – for example, Address Space Layout
Randomisation may be implemented in many modern, complex operating systems,
but is often not used in smaller Real-Time Operating Systems which can have other
protection methods. However, the vendor must demonstrate an understanding of the
protections that are available and justify the use (or lack of use) of the protections
that they have chosen to implement.

6.3.6 LS-KVUL: Software free from known vulnerabilities

System software should be free of publicly disclosed vulnerabilities

Base requirement: L4, L5

It is increasingly common for systems to be composed of several types and sources
of software – from internally developed, to externally developed open-source or
commercial software. For any externally developed software component, it is
possible – and indeed likely – that there are previously disclosed vulnerabilities that
have been patched and/or mitigated in further updates to the software. Therefore, it
is an essential part of securing software to first identify what externally developed
software components exist and using this list to confirm that these components are
up to date and sufficiently mitigate any previously identified vulnerabilities.

It should be noted that – although it is desirable – it is not an absolute requirement
that the very latest version is always used if existing vulnerabilities have been
mitigated in other ways.

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



6.3.7 LS-LOGS: Logs or errors do not expose sensitive data

Logging and error messages must not expose sensitive data without authentication

Base requirement: L4, L5

It is often necessary for systems to be placed into a “debug” or “logging” mode to
facilitate the identification and remediation of problems with the device. However,
such data may be used to gain information about the system or to obtain data that
should otherwise remain confidential. Therefore, it is important that any functions
that allow for the logging of sensitive data are disabled by default and can only be
temporarily enabled after suitable authentication. Once enabled, such logging should
get deactivated automatically after a reasonable amount of time to ensure that the
logging state is not accidentally left active. As guidance, this timeout should typically
not exceed one hour, but the applicant can give written case-by-case justification if
there is good reason to use a longer timeout period.

It is also strongly recommended that any sensitive data that is logged is secured with
cryptography (e.g., through encryption using a public key on the device). Any upload
or exfiltration of user-identifiable data from the customer premises in such logs must
be covered under the privacy policy of the system and require an opt-in from the
customer to accept the transfer of this data.

Error messages may also result in the exposure of information – for example,
detailing an error with the padding in a cryptographic message can sometimes help
attackers determine the values of sensitive information. Therefore, error messages
must be carefully designed to not expose details that are too specific about the error
state, and instead simply inform the user that an error has occurred. Timing of error
messages must also be carefully managed; for example, common compare functions
will return the result as quickly as they can, and therefore if used in comparison
functions on sensitive data (e.g., passwords) could accidentally expose information
about how many characters of the sensitive data are correct. For this reason, non-
timing dependent compare functions are recommended for use with sensitive
information, and passwords must not be compared directly with stored plaintext.
Instead, they must be compared against a hashed value, such as that calculated
through the scrypt or PBKDF2 function.

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



6.3.8 LS-UVUL: Software tested for unknown vulnerabilities

System software must be tested to check for undisclosed vulnerabilities

Base requirement: L5

Although much software may be re-used from other sources, a device will likely
contain some applicant-developed code. In addition, the combination of different
software components can open new threat vectors and potential vulnerabilities.
Therefore, it is important that some checking is performed against the software of a
device to identify such vulnerabilities. The intent of this testing is not to perform an
exhaustive penetration test against all features and code of the device, as this would
be expensive in terms of both time and direct costs – but to confirm that simple
attacks are not possible on the system.

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



6.4 System Management

6.4.1 SM-AUTH: Sensitive services require authentication

Sensitive services must require authentication and ensure the confidentiality and
integrity of data

Base requirement: L1–L5

Sensitive services within a device are services that allow for the allocation or
changing of security settings, or which allow for access to customer personal
information (such as authentication data, email addresses, etc.). Such access is
inherently security-sensitive and therefore requires authentication to be performed to
ensure that any changes are being correctly performed by the customer and are not
being accessed or altered by a bad actor. This includes ensuring that access, once
authenticated, ensures the integrity of data as it is passed into the device, as well as
ensuring the confidentiality of any customer data during transport.

Likely, many systems will rely on standard protocols such as TLS to provide these
features, and testing will include validating that such protocols are correctly
configured and used, along with ensuring that weak modes of operation – such as
insecure cipher suites – are disabled by default.

Requirement enhancement 1: L4, L5

For devices that target security levels 4 and up, sensitive services must be protected
against brute force attacks by providing limits for authentication attempts.

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



6.4.2 SM-ERASE: Permanent erasure of sensitive data

Permanent erasure of sensitive data must be supported

Base requirement: L1–L5

Devices must protect sensitive data even during decommissioning (e.g., to prevent
the exposure of customer Wi-Fi passwords after disposal or resale), and therefore
implement either a “factory reset” which permanently erases all data and
configuration from the device or provide strong protections to the data even given
unrestricted physical access to the device. Where the device supports a network
interface, it must be possible to “remotely decommission” the device. At all times, a
local decommission procedure must always be provided – this may be passive. For
instance, erasure of RAM storage after disconnection from power, but where passive
mechanisms are implemented, they must operate within less than 8 hours and be
shown to ensure permanent erasure.

6.4.3 SM-SFTY: Manual override for safety-critical operations

Manual backup/override must be provided for safety-related services

Base requirement: L2–L5

Safety-related services, such as those performed by door locks, are increasingly
being automated and enabled through digital systems. This requirement outlines the
need for such systems to provide is a safety mechanism that ensures any failure of
the device – either through malware, lack of power, or coding flaw – does not result
in a safety issue that could lead to a risk to life. For example, door locks should
provide a manual method for locking and unlocking (such as a “standard” key).

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



6.4.4 SM-INPT: Input validation and sanitization

External inputs must be validated and sanitized before evaluation or execution

Base requirement: L3–L5

Functionality that allows for the direct execution of code or commands by the device
or system can often be exploited by a malicious party. Such functionality should not
be natively supported, and any method which passes user-supplied inputs to a
system shell or parses and evaluates it directly with its native interpreter must
validate and sanitize it beforehand. This not only covers direct inputs such as form
fields or file uploads but also any other input data the method receives (HTTP
headers, cookies, query strings, SQL queries, formatted payload data such as JSON,
XML, CSV, JPEG, etc.). In this context, input validation ensures that inputs conform to
requirements such as length and data type of the receiving method, whereas input
sanitization ensures that inputs conform to requirements of the underlying system to
which the inputs are passed. This may include the elimination of unwanted
characters through removing, replacing, encoding, or escaping characters. If
possible, it is preferred to use the command interpreters or parsers provided
functionalities for input validation and sanitization over custom implementations.

This requirement covers all interfaces and services which receive and handle device
external inputs.

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



6.4.5 SM-SESS: Sensitive services implement session management

System management services accessible over wireless and IP interfaces must
implement session management to limit multiple sessions, and ensure ongoing
authentication

Base requirement: L4, L5

Authentication controls over system services may often be bypassed if the
authentication is not correctly managed so that it provides “session management”.
This ensures not only that there is not a process of “staying authenticated forever”,
but also that the communications process is secured once the authentication is
performed so that bad actors cannot interpose their data, or change data being
transferred by the correctly authenticated user.

To ensure that users do not accidentally leave a security-sensitive interface
open/accessible, there must be an inactivity timer that disconnects/de-authenticates
the user on that interface after a reasonable time of inactivity. As guidance, this
timeout should typically not exceed 15 minutes, but the applicant can give written
case-by-case justification if there is good reason to use a longer timeout period.

This requirement covers system management services that may affect the security
of the system – such as changing customer data storage and tracking preferences,
or installing certificates, etc. General user interface functions (such as altering the
level of light output from a bulb, or changing the temperature on a thermostat), and
functions which are only accessible through manual interfaces, where that interface
is contained within the customer premises (e.g., not on an external door lock), are not
in the scope of this requirement.

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



6.5 Communication Security

6.5.1 CS-XMIT: Cryptographically Secure Data Transmission

Communication channels need to be protected via cryptographic means to achieve
various security properties

Base requirement: L1–L5

Any communication channel through which unintended actions can be triggered
must be secured in a way that achieves secure communication even when the
medium used for transmission cannot be considered secure. For instance,
communication over the Internet could potentially be read and modified by anyone on
the routing path. An end-to-end security implementation would ensure that the
communication still retains important security properties, namely:

Confidentiality of data: An eavesdropper on the connection is unable to make
sense of the transmitted information
Integrity of data: It is possible to determine with exceeding likelihood if received
data was modified in transit
Peer validation: The respective peer on the other end of the connection can be
verified to be the correct party with whom communication is intended
Downgrade protection: The protocol, if it supports multiple versions, must
always use a version both peers agree on and may not be artificially
downgraded by an adversary
Replay protection: Data that has previously been recorded by an adversary and
that is repeated by that adversary is detected as a duplicate and properly
rejected

Typically, this is achieved by using TLS as the foundational transport protocol, which,
in a correct configuration, fulfills all these security properties. Note, however, that
even a TLS configuration can be susceptible to attacks on these security goals; most
notably if poor choices in the protocol parameterization are used (e.g., weak cipher
suites), specific security mechanisms are disabled (e.g., peer validation). Replay
protection may be deliberately sacrificed in specific scenarios as well. One example
of this would be the use of the 0RTT feature of TLSv1.3. This is permissible if and
only if the concerned software has other means of ensuring the replay of messages
does not impact the overall security of the system.

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



For details on TLS parameterization and acceptable cipher suites, refer to
Appendix A.

Specific resource constraints lead to a situation in which deeply embedded devices
may not have the resources to fulfill a full TLS handshake; they still need to make
sure that the desired security properties are met.

Requirement enhancement 1: L2–L5

For devices that target security level 2 and up, the implementation must either follow
an industry-standard security protocol (such as TLS) or proof of the security
properties must be provided that has been vetted by experts in the field. The protocol
must be described in a verbose and unambiguous manner and it must include test
vectors of at least one complete message exchange. Note that precisely describing
and vetting a custom cryptographic protocol is generally difficult because of the
required expertise in the field of theoretical cryptography and cryptanalysis.

Requirement enhancement 2: L3–L5

For devices that target security level 3 and up, custom cryptographic constructions
are allowed only if a formal security proof is given and has been reviewed by a FIPS-
accredited testing laboratory. Otherwise, industry-standard protocols must be used.
Furthermore, for these devices, it is required that all secured communication that
falls under this clause also achieves Perfect Forward Secrecy (PFS).

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



6.5.2 CS-RFXMIT: Wireless Communication Security

The device must support industry-accepted security defaults for any wireless
connection

Base requirement: L1–L5

Where devices implement Wi-Fi connections, these devices must not force a
reduction in the security of the customer's Wi-Fi implementation. For example, a
poorly designed system may force the customer to change from WPA2 security to
using WEP, which is considered insecure.

Where devices implement Bluetooth connections, it is required that these devices
implement pairing before sensitive data is exchanged. As a pairing mechanism
“Secure Simple Pairing” shall be supported. “Secure Simple Pairing” provides four
different pairing methods: “JustWorks”, “Passkey Entry”, “Out of band” and “Numeric
Comparison”. For devices that have no input nor output capabilities, the “JustWorks”
pairing method is acceptable. In any other case, the device shall support one of the
other three pairing methods which provide authenticated connections.

In use cases where the implementation of Bluetooth pairing is not feasible the
communication must be protected by other means (e.g., custom cryptographic
constructions).

For any level, it is permissible for the radio frequency communication to provide no
security at all if the requirements of CS-XMIT are fulfilled at least to level 3.

Requirement enhancement 1: L2–L5

For devices that fulfill level 2 and up, the Bluetooth implementation must either use
the industry-standard Bluetooth pairing mechanism or proof of the security
properties protecting the communication by other means must be provided that has
been vetted by experts in the field. Note that this is typically a task that is
exceedingly difficult to achieve because of the required expertise in the field of
theoretical cryptography and cryptanalysis.

Requirement enhancement 2: L3–L5

For devices that target security level 3 and up, custom cryptographic constructions
are disallowed and the industry-standard Bluetooth pairing mechanism must be
used.

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



Requirement enhancement 3: L4, L5

For devices that fulfill levels 4 and 5, for Bluetooth connections additionally the
“Secure Connections” feature, which upgrades “Secure Simple Pairing” algorithms,
shall be enabled.

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



6.6 Process & Documentation

6.6.1 PD-DEVID: Product Identification

The model designation of the device must be available to the end-user

Base requirement: L1–L5

The device must have an identifier that uniquely identifies it. Additionally, the device
must have the capability to show the currently running firmware version to the end-
user. The purpose of making this information available to the end-user is to enable
them to determine:

Published security vulnerabilities affecting the device.
The most recent firmware version the vendor offers for a particular device.
If the device is currently running this latest published firmware version.

A device identifier may be put on the device itself in physical form (such as a printed
or etched label) or it may be accessible through a network API (such as a web
interface or companion app). Due to the nature of the firmware version and its
volatility, it needs to be available through some form of HMI (e.g., an app or a
display), and having it printed on the device itself is not sufficient.

6.6.2 PD-COLL: Data Collection and Handling

Data collection by the device must be documented

Base requirement: L1–L5

Many devices and systems allow for the collection, processing, and storage of user
personally identifiable information (PII). Such data includes address/contact details
and biometric data (e.g., audio or video), and must be securely managed to ensure
that the use of digital applications by the user does not lead to physical safety issues
or identify theft.

Where the system collects/processes/stores user-identifiable data, the user must be
provided with a complete list of this data and a description of how this data is used,
by whom it is being used, and for what specific purposes it is being used. This
requirement also extends to parties handling data on behalf of the applicant.

This requirement also covers any data that may be logged through special “debug”
modes.

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



Requirement enhancement 1: L2–L5

For level 2 and up, methods must be available to the user which allows to opt-in/opt-
out of user-identifiable data collection. When deciding to opt-out, already collected
user identifiable data must be erased if requested by the user.

Where the collection of user data is stored externally, the user must be provided with
an opt-in to accept the external transfer of this data. This opt-in must outline exactly
what data is being collected and how this data is used.

Requirement enhancement 2: L3–L5

For level 3 and up, all sensing capabilities must be described in user-facing
documentation (e.g., presence of microphones, sensory equipment, network
equipment, radio equipment).

Requirement enhancement 3: L4, L5

For level 4 and up, users must be kept up to date on the uses made of their user-
identifiable data, so that they can make informed decisions about their opt-in
behavior. Privacy policy changes must be clearly communicated to the customer.

Requirement enhancement 4: L5

For level 5, any user identifiable data that is remotely collected or stored outside of
user-specific accounts must be anonymized so that it cannot be linked back to an
individual.

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



6.6.3 PD-PROCS: Documented patch/update process

A documented process for the distribution of patches/updates must be maintained

Base requirement: L1–L5

The final step to fixing a known vulnerability is to issue the patch to the
customer/device. This must follow a clear process – which need not be complex but
must clearly outline the steps involved in approving, signing, and distributing the new
code.

This is required because it is often when there is a “rush” to fix a problem that
important security steps are missed, resulting in an even worse situation and more
potential exposure of the systems which were being patched.

Requirement enhancement 1: L4, L5

For devices that fulfill levels 4 and 5, additionally, a process step shall be included
which ensures that any debug functionality or any other unnecessary feature is
removed before release.

6.6.4 PD-EOL: End-of-life policy

Information on the minimum support period must be available to end-users

Base requirement: L1–L5

End-users shall be able to obtain information on the minimum support period where
the manufacturer of the product shall continue to provide software updates to the
product. This period is expected to be appropriate to the device, where e.g., devices
with a long product lifecycle will continue to receive updates for several years after
purchase.

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



6.6.5 PD-VMGMT: Vulnerability management program

A vulnerability management and disclosure program must be maintained

Base requirement: L1–L5

It can be expected that new issues will become apparent in systems after evaluation
and shipping to the customer. Therefore, system vendors must ensure that they have
a vulnerability management and disclosure program to maintain the security of their
products once shipped. This program must include processes for:

Monitoring for new vulnerabilities in all code that is contained in the software
composition list.
Testing if vulnerabilities affect the vendor systems, and how they can be
mitigated if the system is affected
Triaging the vulnerability following a commonly accepted methodology such as
CVSS to judge their impact.
The creation and testing of a patch for the vulnerability, if required.
Informing customers of an already published vulnerability, and any mitigating
steps they can take whilst a patch is being created. As long as the vulnerability
has not become public knowledge yet, it is acceptable to delay informing
customers until after the patch has been created.

Additionally, contact information and details about the vulnerability disclosure
process for external security researchers should be published on a publicly available
website.

Requirement enhancement 1: L3–L5

For level 3 and up, the vendor needs to demonstrate evidence they are performing
vulnerability monitoring of all system components at least biannually. Such
monitoring can be done manually by the vendor, deferred to tools that perform such
scans, or passed to a third-party vendor.

Requirement enhancement 2: L5

For level 5, the vendor must have a system in place that performs continuous and
proactive anomaly detection to catch vulnerabilities early on. Such a feature can be
provided by the vendor or by a third party.

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



6.6.6 PD-CLMON: Regularly monitored cloud/app environment(s)

Cloud and App environments are regularly monitored for vulnerabilities

Base requirement: L3–L5

It is expected that many systems that integrate with IoT systems will have their own
proprietary back end, or “cloud” systems as well as App interfaces and that these will
be an important part of the overall security posture of a device. It is a requirement
that the vendor implements vulnerability scanning at least every quarter for these
environments – and remediate any high severity issues that are found. During the
assessment, the vendor must submit evidence of their scanning results, such that it
can be confirmed that there is a clear “find and fix” process for online vulnerabilities
that is being maintained.

6.6.7 PD-SBOM: Software Bill-of-Materials

A Software Composition List must be maintained

Base requirement: L4, L5

Any software of sufficient complexity contains bugs. It is not possible for any
amount of testing to find and allow for the remediation of, all bugs in any nontrivial
code basis – which is why ongoing maintenance of such code is so important.
However, it is increasingly common today for the software in a device to be created
from various “software components” – open-source code, third-party libraries, and
external binary files. Therefore, to maintain code, it is not sufficient to simply
maintain the code that has been created directly by the product vendor; it is
necessary to ensure that all additional “software components” are maintained and
updated as well.

To achieve this, it is necessary to create and keep up to date a “software composition
list” (sometimes called a “software bill of materials”) which indicates all the different
software components used in a particular build, as well as their versions. This list
must be exhaustive; think of it as an ingredient list for your software: if not all
ingredients are listed, the recipe will not turn out correctly. In this instance, if not all
software is listed, you will not be able to securely maintain your device.

Using this software composition list is a prerequisite for the establishment of a
vulnerability management program. Using such a program, it is possible to ensure
that when there is a new vulnerability found in some third-party or open-source code
that is used in the device, it can be noted, investigated, and patched where necessary.

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



6.6.8 PD-PHYIF: Physical Interface Documentation

All physical interfaces present in the device hardware must be documented and
justified

Base requirement: L5

The security posture of a system is often described as its “attack surface” – the
amount of code that can be interacted with is generally directly related to the
potential vulnerabilities a system may have. The more code, the more potential
vulnerabilities. However, access to this code is of course also important, and the
interfaces of a device are the “front line” of the device security, and by definition
attacks on devices generally start with these interfaces. Indeed, any device can be
summarized by the totality of its inputs, outputs, and internal processing (where the
inputs and outputs are the interfaces).

Therefore, all interfaces of the devices need to be clearly understood and justified as
to their purpose, as an unnecessary interface may be the one that is used to
compromise the system. This list of interfaces must include both physical ports
(USB, Serial, Ethernet, etc.) and protocols that are supported over these interfaces.

It is recognized that documenting all protocols supported can be quite complex; for
example, a USB interface may support many different protocols, classes, and types
of devices. However, the goal is to ensure that the totality of the interfaces is well
understood.

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



6.6.9 PD-SDOC: All services documented

All services present in the device must be documented and justified

Base requirement: L5

For this standard, a service is considered a super-set of a protocol, in that it actively
“listens” for connections across switched or wireless connections. Direct physical
interfaces, such as serial or JTAG, are generally considered not to be a “service”.

As with protocols, listening services are often the first point of attack on a device,
and therefore can be the first line of defense to prevent such attacks. Justification of
enabled services is vital to understand the security posture of the system and ensure
that sufficient security measures are put in place to protect these interfaces.

It is understood that additional services may be included in a device as a product
differentiator, or to provide value-added services to specific market segments. It is
recommended that consideration be given to limiting the functionality of the system
“out of the box” and instead providing options for users to enable features where they
see a need.

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



7 Component Qualification
UL MCV 1376 is intended to be a device-centric assessment. Vendors may apply for a
specific level of their device and, if all the requirements for that level are fulfilled, the
claim is accepted as verified. Service providers or sub-component manufacturers may
however choose to have their service or component evaluated. In this case, a subset
of requirements would be evaluated that applies to the service or sub-component.
Examples of a service could be a platform that provides continuous vulnerability
scanning (vulnerability management as a service); an example of a sub-component
could be a TLS library or IoT platform.

For component qualification, the applicant receives a Delta Document after evaluation
of the component under test. This record describes which clauses are fulfilled by the
component and describes how the component or service needs to be integrated by an
OEM to fulfill the respective requirement with their end products. Note that it could
also be possible for a component to violate specific requirements, which would mean
it cannot be integrated into a product that wants to meet a UL MCV 1376 level.
Therefore, during component qualification, it is checked:

That the component or service is not in direct conflict with any requirements of
UL MCV 1376.
Which requirements the component fulfills for the end product when it is
integrated in the way intended by the component manufacturer or service
provider.

Concretely, when reviewing a UL MCV 1376 component, the pass/fail criterion
therefore always is whether the end product would be able to fulfill the respective
requirements when the component is integrated as described. For such a component
qualification, the applicant needs to provide a sample application (e.g., a
demonstrator that uses the component) so that it can be validated as if it were an end
product. Examples of what could be assessed as a component in respect to UL MCV
1376 are:

Services
Third-party service that scans/tracks packages and regularly informs
customers of recently discovered vulnerabilities.
Third-party service that provides PKI services, such as X.509 enrollment,
device provisioning, and secure certificate update.
Third-party service that provides firmware updates in a secure (encrypted
and authenticated) manner over the Internet.

Platform or Library
TLS library that ensures secure communication over untrusted channels.
RTOS that provides secure storage mechanisms and/or secure erasure of
data when requested.

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



Chipset that provides specific functionality (e.g., custom microcontroller
with an embedded Wi-Fi stack).

Solution
Complete IoT device that runs the actual customer application merely as a
payload (“App”) and which handles firmware upgrade, or backend
communication for the OEM.

When such a component is integrated into a final product, the OEM can submit their
device under test along with the Delta Document of the integrated (and previously
qualified) component or components so that the assessment does not have to cover
the nature of the component or service, but only validates its proper integration as laid
out in the Delta Document.

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



8 Mapping to ETSI EN 303 645
UL MCV 1376 serves as the guiding document to aid ETSI EN 303 645 testing and
makes it more concrete and transparent what UL is looking for when evaluating
ETSI EN 303 645. Note that not all ETSI EN 303 645 provisions might apply to a given
device because the applicability of provisions is conditional. As such, it needs to be
determined first which conditions a device satisfies to be able to tell which provisions
(and their mapped UL MCV 1376 requirements) apply.

Name Text MCV1376

Provision
5.1-1

Where passwords are used and in
any state other than the factory
default, all consumer IoT device
passwords shall be unique per
device or defined by the user.

6.2.1 Data & Cryptography: No
default credentials or secret keys
(L1)

Provision
5.1-2

Where pre-installed unique per
device passwords are used, these
shall be generated with a
mechanism that reduces the risk of
automated attacks against a class
or type of device.

6.2.3 Data & Cryptography:
Passphrase complexity enforcement
(L2)

Provision
5.1-3

Authentication mechanisms used to
authenticate users against a device
shall use best practice
cryptography, appropriate to the
properties of the technology, risk
and usage.

6.2.2 Data & Cryptography: Protect
sensitive data (L1)

Provision
5.1-4

Where a user can authenticate
against a device, the device shall
provide to the user or an
administrator a simple mechanism
to change the authentication value
used.

6.2.1 Data & Cryptography: No
default credentials or secret keys
(L1)

Provision
5.1-5

When the device is not a
constrained device, it shall have a
mechanism available which makes
brute-force attacks on
authentication mechanisms via
network interfaces impracticable.

6.2.2 Data & Cryptography: Protect
sensitive data + (L3)

Provision
5.2-1

The manufacturer shall make a
vulnerability disclosure policy

6.6.5 Process & Documentation:
Vulnerability management program

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



publicly available. (L1)

Provision
5.3-2

When the device is not a
constrained device, it shall have an
update mechanism for the secure
installation of updates.

6.1.3 Software Update: Software
Update Authentication (L1)

Provision
5.3-3

An update shall be simple for the
user to apply.

6.1.2 Software Update: Automatic
Software Update Tracking (L1)

Provision
5.3-7

The device shall use best practice
cryptography to facilitate secure
update mechanisms.

6.1.3 Software Update: Software
Update Authentication (L1)

Provision
5.3-8

Security updates shall be timely. 6.1.2 Software Update: Automatic
Software Update Tracking (L1)

Provision
5.3-10

Where updates are delivered over a
network interface, the device shall
verify the authenticity and integrity
of each update via a trust
relationship.

6.1.3 Software Update: Software
Update Authentication (L1)

Provision
5.3-13

The manufacturer shall publish, in
an accessible way that is clear and
transparent to the user, the defined
support period.

6.6.4 Process & Documentation:
End-of-life policy (L1)

Provision
5.3-16

The model designation of the
consumer IoT device shall be clearly
recognizable, either by labelling on
the device or via a physical
interface.

6.6.1 Process & Documentation:
Product Identification (L1)

Provision
5.4-1

Sensitive security parameters in
persistent storage shall be stored
securely by the device.

6.2.2 Data & Cryptography: Protect
sensitive data (L1)

Provision
5.4-2

Where a hard-coded unique per
device identity is used in a device
for security purposes, it shall be
implemented in such a way that it
resists tampering by means such as
physical, electrical or software.

6.2.2 Data & Cryptography: Protect
sensitive data (L1)

Provision
5.4-3

Hard-coded critical security
parameters in device software
source code shall not be used.

6.2.1 Data & Cryptography: No
default credentials or secret keys
(L1)

Provision
5.4-4

Any critical security parameters
used for integrity and authenticity
checks of software updates and for
protection of communication with

6.1.3 Software Update: Software
Update Authentication (L1)

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



associated services in device
software shall be unique per device
and shall be produced with a
mechanism that reduces the risk of
automated attacks against classes
of devices.

Provision
5.5-1

The consumer IoT device shall use
best practice cryptography to
communicate securely.

6.5.1 Communication Security:
Cryptographically Secure Data
Transmission (L1)

Provision
5.5-5

Device functionality that allows
security-relevant changes in
configuration via a network
interface shall only be accessible
after authentication. The exception
is for network service protocols that
are relied upon by the device and
where the manufacturer cannot
guarantee what configuration will be
required for the device to operate.

6.4.1 System Management:
Sensitive services require
authentication (L1)

Provision
5.5-7

The consumer IoT device shall
protect the confidentiality of critical
security parameters that are
communicated via remotely
accessible network interfaces.

6.5.1 Communication Security:
Cryptographically Secure Data
Transmission (L1)

Provision
5.5-8

The manufacturer shall follow
secure management processes for
critical security parameters that
relate to the device.

6.2.1 Data & Cryptography: No
default credentials or secret
keys (L1)
6.2.5 Data & Cryptography:
Cryptographically strong
random number generation
(L3)

Provision
5.6-1

All unused network and logical
interfaces shall be disabled.

6.3.2 Logical Security: Systems
configured to secure defaults (L3)

Provision
5.6-2

In the initialized state, the network
interfaces of the device shall
minimize the unauthenticated
disclosure of security-relevant
information.

6.3.2 Logical Security: Systems
configured to secure defaults (L3)

Provision
5.6-4

Where a debug interface is
physically accessible, it shall be
disabled in software.

6.3.1 Logical Security: Disable debug
interfaces (L3)

Provision The confidentiality of sensitive 6.5.1 Communication Security:

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



5.8-2 personal data communicated
between the device and associated
services shall be protected, with
cryptography appropriate to the
properties of the technology and
usage.

Cryptographically Secure Data
Transmission (L1)

Provision
5.8-3

All external sensing capabilities of
the device shall be documented in
an accessible way that is clear and
transparent for the user.

6.6.2 Process & Documentation:
Data Collection and Handling ++ (L3)

Provision
5.11-1

The user shall be provided with
functionality such that user data
can be erased from the device in a
simple manner.

6.4.2 System Management:
Permanent erasure of sensitive data
(L1)

Provision
5.13-1

The consumer IoT device software
shall validate data input via user
interfaces or transferred via
Application Programming Interfaces
(APIs) or between networks in
services and devices.

6.4.4 System Management: Input
validation and sanitization (L3)

Provision
6-1

The manufacturer shall provide
consumers with clear and
transparent information about what
personal data is processed, how it is
being used, by whom, and for what
purposes, for each device and
service. This also applies to third
parties that can be involved,
including advertisers.

6.6.2 Process & Documentation:
Data Collection and Handling (L1)

Provision
6-2

Where personal data is processed
on the basis of consumers' consent,
this consent shall be obtained in a
valid way.

6.6.2 Process & Documentation:
Data Collection and Handling + (L2)

Provision
6-3

Consumers who gave consent for
the processing of their personal
data shall have the capability to
withdraw it at any time.

6.6.2 Process & Documentation:
Data Collection and Handling + (L2)

Provision
6-5

If telemetry data is collected from
consumer IoT devices and services,
consumers shall be provided with
information on what telemetry data
is collected, how it is being used, by
whom, and for what purposes.

6.6.2 Process & Documentation:
Data Collection and Handling (L1)

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



A Acceptable Cipher Suites
TLS implementations for levels L1 and L2 must use TLS version 1.1 or above, for L3
and up the TLS version must be version 1.2 or above.

Cipher suites that truncate authentication tags can be viewed as equivalent to their
non-truncated counterparts if the implementation can demonstrate that the TLS
session is fully severed upon reception of a single wrong MIC (meaning that session
resumption is prohibited). For example, TLS_AES_128_CCM_8_SHA256 can be
considered in the same category as TLS_AES_128_CCM_SHA256 if the implementation
performs aforementioned session abort.

The following non-TLSv1.3 cipher suites are considered acceptable for all levels:

TLS_DHE_PSK_WITH_AES_128_GCM_SHA256

TLS_DHE_PSK_WITH_AES_256_GCM_SHA384

TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256

TLS_DHE_RSA_WITH_AES_128_GCM_SHA256

TLS_DHE_RSA_WITH_AES_256_GCM_SHA384

TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256

TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256

TLS_ECHDE_RSA_WITH_AES_128_GCM_SHA256

Additionally, cipher suites below are considered acceptable for levels L1 and L2:

TLS_DHE_DSS_WITH_AES_128_CBC_SHA256

TLS_DHE_DSS_WITH_AES_128_CBC_SHA

TLS_DHE_DSS_WITH_AES_128_GCM_SHA256

TLS_DHE_DSS_WITH_AES_256_CBC_SHA256

TLS_DHE_DSS_WITH_AES_256_CBC_SHA

TLS_DHE_DSS_WITH_AES_256_GCM_SHA384

TLS_DHE_PSK_WITH_AES_128_CBC_SHA256

TLS_DHE_PSK_WITH_AES_128_CBC_SHA

TLS_DHE_PSK_WITH_AES_256_CBC_SHA384

TLS_DHE_PSK_WITH_AES_256_CBC_SHA

TLS_DHE_RSA_WITH_AES_128_CBC_SHA256

TLS_DHE_RSA_WITH_AES_128_CBC_SHA

TLS_DHE_RSA_WITH_AES_256_CBC_SHA256

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



TLS_DHE_RSA_WITH_AES_256_CBC_SHA

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA

TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256

TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA

TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA384

TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

TLS_PSK_WITH_AES_128_CBC_SHA256

TLS_PSK_WITH_AES_128_CBC_SHA

TLS_PSK_WITH_AES_128_GCM_SHA256

TLS_PSK_WITH_AES_256_CBC_SHA384

TLS_PSK_WITH_AES_256_CBC_SHA

TLS_PSK_WITH_AES_256_GCM_SHA384

TLS_PSK_WITH_CHACHA20_POLY1305_SHA256

TLS_RSA_PSK_WITH_AES_128_CBC_SHA256

TLS_RSA_PSK_WITH_AES_128_CBC_SHA

TLS_RSA_PSK_WITH_AES_128_GCM_SHA256

TLS_RSA_PSK_WITH_AES_256_CBC_SHA384

TLS_RSA_PSK_WITH_AES_256_CBC_SHA

TLS_RSA_PSK_WITH_AES_256_GCM_SHA384

TLS_RSA_PSK_WITH_CHACHA20_POLY1305_SHA256

TLS_RSA_WITH_AES_128_CBC_SHA256

TLS_RSA_WITH_AES_128_CBC_SHA

TLS_RSA_WITH_AES_128_CCM

TLS_RSA_WITH_AES_128_GCM_SHA256

TLS_RSA_WITH_AES_256_CBC_SHA256

TLS_RSA_WITH_AES_256_CBC_SHA

TLS_RSA_WITH_AES_256_CCM

TLS_RSA_WITH_AES_256_GCM_SHA384

TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA

TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA

TLS_SRP_SHA_WITH_AES_128_CBC_SHA

TLS_SRP_SHA_WITH_AES_256_CBC_SHA

For any level, use of the following cipher suites is disallowed:

TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA

TLS_DH_DSS_WITH_AES_128_CBC_SHA256

TLS_DH_DSS_WITH_AES_128_CBC_SHA

TLS_DH_DSS_WITH_AES_128_GCM_SHA256

TLS_DH_DSS_WITH_AES_256_CBC_SHA256

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



TLS_DH_DSS_WITH_AES_256_CBC_SHA

TLS_DH_DSS_WITH_AES_256_GCM_SHA384

TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA

TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA

TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256

TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA

TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256

TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384

TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA

TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA

TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA

TLS_RSA_WITH_3DES_EDE_CBC_SHA

For TLSv1.3, the following cipher suites are permissible for all levels:

TLS_AES_128_CCM_SHA256

TLS_AES_128_GCM_SHA256

TLS_AES_256_GCM_SHA384

TLS_CHACHA20_POLY1305_SHA256

For TLSv1.3, the following cipher suites are permissible only for levels L1 and L2:

TLS_AES_128_CCM_8_SHA256

For ephemeral TLS key agreements on elliptic curves, the curves listed in Appendix B
are considered acceptable for all levels.

Cipher suites which are not included in this enumeration can be permissible but need
to be rationalized on a case-by-case basis. In particular, the requirements for inclusion
in all levels are:

Cipher suite must provide PFS.
Cipher suite must not use any cryptographically weak or broken algorithm or
operation mode (such as SHA-1, CBC, or MD5).
No truncation of authentication tags is performed unless it can be demonstrated
any TLS session is fully terminated upon reception of a single wrong MIC.
Key agreement must be cryptographically strong (e.g., using randomly generated
DH parameters or 2048 bits or more or using an elliptic curve of field size
roughly equivalent to 256 bits such as X25519 or secp256r1).

For L1 and L2, additional some weak primitives are permissible for legacy purposes
(in particular, SHA-1 and the CBC operation mode). PFS does not necessarily have to
be provided but is highly encouraged.

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



B Acceptable Cryptography
Where cryptography is relied upon as a security feature within the device, for example,
to encrypt communication or to authenticate firmware images, it shall implement a
combination of the following cryptographic algorithms. Deviations of these choices
are acceptable if and only if it can be conclusively proven that the security of the
chosen algorithm is equivalent to the level of the shown algorithms.

Block Ciphers
AES: at least 128 bit key size
TDES: 168 bit key size

Stream Ciphers
ChaCha20: at least 128 bit key size

Hash Functions
SHA-2 family: 256 bit output (SHA-256, SHA-384, SHA-512)
SHA-3 family: 256 bit output
BLAKE family: at least 256 bit output

KDF
scrypt
Argon2
PBKDF2

Asymmetric Algorithms
RSA: at least modulus size of 2048 bit
FFC/DH: at least modulus size of 2048 bit
FFC/DSA: at least L = 2048, N = 224
ECC with one of the following domain parameters:

Curve25519
Curve448
secp256r1
secp384r1
secp521r1
Brainpool curves of 256, 320, 384, or 512 bits and their respective
twists (8 curves total)

Modes of Operation
CBC only if authentication is added in EtM fashion
CTR, GCM
CCM
EAX

Authentication
AEAD (e.g., GCM, CCM, etc.)
Poly1305 (typically in combination with ChaCha20)
HMAC with an approved hash function

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200



C Acceptable Plaintext Protocols
It is a requirement that an industry-standard security protocol is implemented where
possible. Some standard protocols do not allow for use of encryption, and the
following is a non-exhaustive list of these.

ARP,
DNS,
DHCP,
NTP,
Initial browser connections (before immediate redirection to a TLS encrypted
page)

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

DRAFT DRAFT DRAFTCONFIDENTIAL
not for public dissemination

CONFIDENTIAL
not for public dissemination

git: d661b9771623cf9f2982f45ff21d7c0212c68517 / 2021-09-23 09:41:46 +
0200


