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59 Reports on Computer Systems Technology 

The Information Technology Laboratory (ITL) at the National Institute of Standards and 
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, 
test methods, reference data, proof of concept implementations, and technical analyses to 
advance the development and productive use of information technology. ITL’s responsi-
bilities include the development of management, administrative, technical, and physical 
standards and guidelines for the cost-effective security and privacy of other than national 
security-related information in federal information systems. 
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68 Abstract 

69 This work evaluates the validity of the Common Vulnerability Scoring System (CVSS) 
Version 3 “base score” equation in capturing the expert opinion of its maintainers. CVSS 
is a widely used industry standard for rating the severity of information technology vulner-
abilities; it is based on human expert opinion. This study is important because the equation 
design has been questioned since it has features that are both non-intuitive and unjustifed 
by the CVSS specifcation. If one can show that the equation refects CVSS expert opinion, 
then that study justifes the equation and the security community can treat the equation as 
an opaque box that functions as described. 

This work shows that the CVSS base score equation closely though not perfectly repre-
sents the CVSS maintainers’ expert opinion. The CVSS specifcation itself provides a mea-
surement of error called “acceptable deviation” (with a value of 0.5 points). In this work, 
the distance between the CVSS base scores and the closest consistent scoring systems (ones 
that completely conform to the recorded expert opinion) is measured. The authors calcu-
late that the mean scoring distance is 0.13 points and the maximum scoring distance is 0.40 
points. The acceptable deviation was also measured to be 0.20 points (lower than claimed 
by the specifcation). These fndings validate that the CVSS base score equation represents 
the CVSS maintainers’ domain knowledge to the extent described by these measurements. 
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Executive Summary 

201 The Common Vulnerability Scoring System (CVSS) Version 3 maintained by the CVSS 
Special Interest Group (SIG) is a widely used industry standard for characterizing the 
properties of information technology vulnerabilities and measuring their severity. It is 
based on human expert opinion. Vulnerability properties are characterized through a multi-
dimensional vector. The severity is defned primarily through a multi-part “base score” 
equation, with 8 input metrics, that is not readily amenable to human comprehension. 

To develop the equation, CVSS SIG members frst described a set of real vulnerabilities 
using CVSS vectors and assigned them one of fve severity levels. This created a partial 
lookup table mapping vectors to severity levels. They then defned a target score range 
for each severity level and created an equation to attempt to map each vector to a score 
within the specifed score range. Finally, they reviewed the equation’s scoring of vectors 
not included in the partial lookup table to evaluate the effectiveness of the equation on 
the full set of possible vectors. Since the equation could not perfectly map vectors to score 
ranges, the CVSS Version 3.1 specifcation provides a measurement of error (an ‘acceptable 
deviation’ of 0.5 points). However, suffcient information is not provided to reproduce the 
experiment. 

This work measures the degree to which the CVSS base score equation refects the 
CVSS SIG expert domain knowledge while providing a reproducible justifcation for the 
measurements. It starts not from a set of real vulnerabilities, as the CVSS SIG did, but from 
a set of 66 vulnerability types (i.e., CVSS vectors) that represent 90 % of the vulnerabilities 
published by the U.S. National Vulnerability Database. CVSS SIG experts then evaluate 
these vulnerability types and encode their knowledge as constraint graphs; sets of graphs 
are then unifed using a voting algorithm. These unifed graphs represent sets of consistent 
scoring systems (mappings of vectors to scores). 

The consistent scoring system closest to the CVSS Version 3.1 scores was found, and 
the distance between the scores and the closest consistent scoring system scores was mea-
sured. These measurements represent the degree to which the CVSS v3.1 base score equa-
tion represents the CVSS SIG expert domain knowledge. 

Using this approach, the mean and maximum distance of the CVSS v3.1 scores com-
pared to the closest consistent scoring system scores was measured and the acceptable 
deviation was recalculated. Unlike acceptable deviation, the new distance metrics measure 
the score values themselves separate from the severity levels. Using all 12 CVSS SIG in-
puts, the mean scoring distance is 0.13 points, the maximum scoring distance is 0.40 points, 
and the acceptable deviation is 0.20 points. Sets of 11 out of 12 of the inputs were used to 
calculate precision measurements (i.e., standard deviation). 

These fndings validate that the CVSS base score equation functions as described (to 
the extent described by these measurements); it represents the encoded CVSS SIG domain 
knowledge. The measurements support the equation as defned. The security community 
may use it as an opaque box without understanding the internal functionality. 
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1 Introduction 

241 This work evaluates the validity of the Common Vulnerability Scoring System (CVSS) 
Version 3 (v3) “base score” equation in capturing the expert opinion of its maintainers. 
CVSS is managed under the auspices of the global Forum of Incident Response and Se-
curity Teams (FIRST) and is maintained by the CVSS Special Interest Group (SIG). It is 
a widely used industry standard for characterizing the properties of information technol-
ogy vulnerabilities and measuring their severity, and it is based on human expert opinion. 
Vulnerability properties are characterized through a multi-dimensional vector. The severity 
is primarily defned through a multi-part base score equation with 8 input metrics, that is 
not readily amenable to human comprehension. It combines sub-equations that measure 
vulnerability impact with others measuring the degree of exploitability. To understand why 
the equation is complex and not human readable, one must understand how it was created 
and its specifc objective. Therefore, understanding the specifc objective is necessary to 
measure the degree to which it meets its objective. 

To develop the CVSS v3 base score equation, CVSS SIG members frst described a set 
of real vulnerabilities using CVSS vectors and assigned them one of fve severity levels: 
Low, MedLow, MedHigh, High, and Critical. This created a partial lookup table mapping 
vectors to severity levels; it is partial because only a small number of the 2592 possible 
vectors were mapped. They then defned a target score range for each severity level and 
created an equation to attempt to map each vector to a score within the specifed score 
range. Finally, they selectively reviewed the equation’s scoring of vectors not included 
in the partial lookup table to review the effectiveness of the equation on the full set of 
possible vectors. The assumption behind this approach is that an equation developed to 
accurately map a subset of the vectors would reasonably map the rest of the vectors. The 
assumption was deemed to hold, as verifed by CVSS SIG testing. However, the equation 
could not always map vectors to the specifed score ranges. For this reason, the CVSS 
v3 specifcation provided a measurement of error called “acceptable deviation” (measured 
to be 0.5 points), which measures the maximum deviation of a vector’s score from its 
target score range. However, the underlying data is not provided that would enable one to 
reproduce the experiment. 

This work measures the degree to which the v3 base score equation refects the CVSS 
SIG expert domain knowledge while providing a reproducible justifcation for the measure-
ments. It starts not from a set of real vulnerabilities, as the CVSS SIG did, but from a set of 
66 vulnerability types (i.e., CVSS vectors) that represent 90 % of the vulnerabilities pub-
lished by the U.S. National Vulnerability Database. CVSS SIG experts then evaluate these 
vulnerability types and encode their knowledge as constraint graphs. CVSS SIG members 
who self-identifed as vulnerability experts were used because the equation is designed to 
refect their expert opinion. Twelve separate evaluations of the 66 vectors were received 
in the form of constraint graphs; the 12 graphs were then unifed using a voting algorithm 
to create a single set of constraints representing CVSS SIG domain knowledge. This uni-
fed constraint graph represents a set of consistent scoring systems (mappings of vectors to 
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281 scores). For each of these metrics, the consistent scoring system closest to the CVSS v3 
scores was found, and the distance between the scores and the closest consistent scoring 
system was measured. These measurements represent the degree to which the CVSS SIG 
expert domain knowledge is represented by the base score equation. 

Using this approach, the mean and maximum distance of the CVSS v3 scores compared 
to the closest consistent scoring system scores were measured and the acceptable deviation 
was recalculated. Unlike acceptable deviation, the new distance metrics measure the score 
values themselves separate from the severity levels. Using all 12 CVSS SIG inputs, the 
mean scoring distance is 0.13 points, and the maximum scoring distance is 0.40 points. 
The acceptable deviation is 0.20 points (i.e., maximum distance from a severity bound-
ary). Sets of 11 out of 12 of the inputs were also used to calculate the precision of these 
measurements (i.e., standard deviation). The v3 base score equation was found to have a 
mean scoring distance of 0.13 points with a standard deviation of 0.02 points and maxi-
mum scoring distance of 0.52 points with a standard deviation of 0.15. If one assumes a 
“normal” Gaussian distribution, there is then a 95 % chance that the mean scoring distance 
is between 0.11 and 0.15 points and that the maximum scoring distance is within 0.32 and 
0.82 points. 

This study is important because the CVSS v3 base score equation design has been 
questioned since it has features that are both non-intuitive and not justifed by the CVSS 
specifcation. By showing the degree to which the equation refects the CVSS SIG main-
tainers’ expert opinion, the degree to which the equation meets its objective is measured. 
These fndings validate that the CVSS base score equation functions as described (to the 
extent described by the distance measurements). The measurements support the equation 
as defned. The security community may use it as an opaque box without understanding 
the internal functionality. 

Note that the base score refects the severity of a vulnerability detached from any partic-
ular deployment context. CVSS also provides “temporal” and “environmental” equations 
that address the changing severity of a vulnerability over time and a vulnerability’s severity 
in the context of a deployed system. While important to CVSS, evaluations of the temporal 
and environmental scoring equations were not within the scope of this research. 

The rest of this publication is organized as follows. Section 2 provides the background 
on CVSS, including details on its base score metrics and equation. Section 3 then describes 
the rationale for the equation, how it was developed, and the measurement of error provided 
within the CVSS v3 specifcation. Section 4 pivots to the authors’ research by describing 
the tools, metrics, and algorithms used for this study. This includes the tool for collecting 
and encoding CVSS domain knowledge, an explanation of knowledge constraint graphs, 
and the voting algorithm for unifying multiple graphs. Section 5 focuses on data collection 
and processing by describing the set of analyzed CVSS vectors, the participants included 
in the study, the produced knowledge constraint graphs, and the unifed knowledge con-
straint graph. Section 6 describes the measurement approach, defnes “consistent scoring 
systems”, and describes heuristics for identifying the closest consistent scoring system. 
These two concepts are then used to elaborate the measurement methodology to measure 
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323 the distance between CVSS scores and the closest consistent scoring system. Section 7 
presents the results with measurements of mean distance, maximum distance, and accept-
able deviation. Section 8 interprets these results and relates them to the fndings of other 
research. Section 9 is the conclusion. 
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2 Common Vulnerability Scoring System 

328 In 2003 the United States National Infrastructure Advisory Council (NIAC) [2] commis-
sioned a working group of industry and academia security experts to design a vulnerability 
scoring system. The goal was to create a single open, comprehensive, interoperable, fexi-
ble, and simple approach to promoting a common understanding of vulnerability severity. 
The resulting Common Vulnerability Scoring System (CVSS) was presented in a NIAC re-
port in 2004 [3]. In 2005, CVSS was transitioned to the Global Forum of Incident Response 
and Security Teams (FIRST) [4] for its ongoing development and maintenance. FIRST re-
leased the CVSS Version 1.0 specifcation [5] in 2005, Version 2.0 [6] in 2007, and Version 
3.0 [7] in 2015. The current Version 3.1 [1] was released in 2019 and is the one evaluated 
in this publication. 

CVSS contains three metric groups: base, temporal, and environmental. The base met-
rics defne the intrinsic severity of a vulnerability in general for the world-wide computing 
infrastructure. The temporal metrics evaluate the severity of a vulnerability over time. And 
the environmental metrics measure the severity of a vulnerability relative to a particular 
computing environment. The score produced by a metric group may be fed as input into 
another, as shown in Figure 1. 

The output of the scoring is a single score (from the base metrics and, optionally, the 
temporal and environmental) and a vector string that lists the specifc input metric values 
that produced the score. The vector strings use acronyms to represent the input metrics and 
their assigned metric values; the base score vector string acronyms are listed in Appendix 
A. 

The scope of this research is the base metric scoring, more specifcally the equation 
used to calculate the v3 base scores. This covers both v3.0 and v3.1 as the base score 
equation is identical for both. The temporal and environmental scoring are not discussed. 
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Fig. 1. Base, Temporal, and Environmental Scoring Progression (from [1]) 
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352 2.1 CVSS Base Score Metrics 

353 The CVSS base score for a vulnerability is calculated from the eight inputs shown in Figure 
2. Four of them – attack vector (AV), attack complexity (AC), privileges required (PR), and 
user interaction (UI) – are labelled “exploitability metrics.” These represent characteristics 
of the vulnerable object that refect its ease of exploitability relative to the vulnerability 
being scored. Three of them – confdentiality (C), integrity (I), and availability (A) – are 
labelled “impact metrics.” These represent the degree to which an impacted component 
may suffer due to a successful exploit of the vulnerability. The scope metric (S) evaluates 
whether successful exploitation of the vulnerability enables the attacker to cross a security 
or trust boundary when impacting components. 

354 
355 
356 
357 
358 
359 
360 
361 

Fig. 2. CVSS Base Score Metrics (from [1]) 

362 Each of the eight metrics can be assigned one of a set of metric values. The metric 
values for each of the 8 metrics are shown in Table 1 along with a short description. These 
are more thoroughly defned in [1]. 

363 
364 

365 2.2 CVSS Base Score Equations 

366 The CVSS v3 base score for a vulnerability is calculated by determining the qualitative 
metric value for each of the eight metrics, converting those qualitative values to numbers 
using the mapping in Table 2, and then inputting the eight numbers as input into the base 
score equation. Several online CVSS v3 calculators (e.g. [8] and [9]) are available to enable 
one to try out CVSS scoring. 
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CVSS Metric Metric Value Short Description 
Attack Vector Network Remotely exploitable 

Adjacent Local network exploitable 
Local Non-network attack on local host 

(e.g., through read/write/execute capabilities) 
Physical Attack requires physical presence 

Attack Complexity Low Attack can be launched at will 
High Attack requires preparation and/or additional knowledge 

to be successful 
Privileges Required None Attacker does not need prior privileges to launch the attack 

Low Attacker must already have user level privileges 
High Attacker must already have admin level privileges 

User Interaction None No user interaction is required 
Required User interaction is required 

Scope Unchanged Attack can only effect resources within 
the security authority of the vulnerable component 

Changed Attack can effect resources outside of 
the security authority of the vulnerable component 

Impact Metrics (CIA) High Total loss 
Low Some loss 
None No loss 

Table 2. Numerical Values for Base Score Metrics, CVSS v3 

CVSS Metric Metric Value Numerical Value 
Attack Vector Network 0.85 

Adjacent 
Local 

0.62 
0.55 

Attack Complexity 

Privileges Required 

User Interaction 

Physical 
Low 
High 
None 
Low 
High 
None 

0.2 
0.77 
0.44 
0.85 
0.62 (or 0.68 if Scope is changed) 
0.27 (or 0.5 if Scope is changed) 
0.85 

Impact Metrics (CIA) 
Required 
High 
Low 

0.62 
0.56 
0.22 

None 0 

6 
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Table 3. Qualitative Severity Rating Scale 

Rating 
None 

CVSS Score 
0.0 

Low 0.1 - 3.9 
Medium 4.0 - 6.9 

High 
Critical 

7.0 - 8.9 
9.0 - 10.0 

371 The v3 base score equations are shown in Figure 3. Note that the base score is con-
structed from two sub-scores, impact and exploitability, that each respectively take as input 
the numerical values for the impact and exploitability metrics. Scope is a modifer at the 
base score level (it does not appear in the sub-scores). 

372 
373 
374 

Fig. 3. CVSS v3 Base Score Equations (from [1]) 

375 The base score equations produce a score between 0.0 to 10.0. This range is historical, 
dates back to Version 1, and has been kept for consistency. The qualitative severity rating 
scale shown in Table 3 maps score ranges to qualitative labels and aids users in understand-
ing the signifcance of a particular score. This mapping is more than just a user aid as it 
was used in the development of the equations (see Section 3.1). 
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3 Rationale for the CVSS Base Score Equations 

381 Readers may fnd it challenging to understand the CVSS v3 base score equations in Figure 
3 and the CVSS specifcation gives no explicit rationale for why they have this particular 
form. There is no explanation for why the constants and coeffcients have those particular 
values, why the eight input variables have the numerical values specifed in Table 2, or why 
there is a term raised to the 15th power. 

The fact that the form of the v3 equations is not explained (or may not have an explana-
tion) does not invalidate them, but it does make validation an important task. Technology 
has often been engineered to work without knowing exactly why it works [10]. The equa-
tions then can be viewed as an opaque box – a machine – that produces an output given an 
input. 

In order to test the consistency of the v3 base score equations, it is then necessary 
to perform experiments to determine if the opaque box (i.e., the equations) produces the 
desired output given a specifc set of inputs. To do that, one needs to understand how the 
equations were developed and what the expected outputs are. 

382 
383 
384 

386 
387 
388 
389 

391 
392 
393 
394 

3.1 Development of the CVSS Base Score Equation 

396 Between 2014 and 2015, the CVSS SIG leveraged human expert opinion to develop the 
CVSS v3 equations, as discussed in [1]. To create the equation, the SIG frst identifed a 
set of real vulnerabilities, and the properties of each vulnerability were evaluated to create 
an associated CVSS vector. CVSS SIG members then used expert knowledge to label each 
vector (representing a real vulnerability) with its severity: Low, MedLow, MedHigh, High, 
and Critical. The target score ranges from the previously discussed ‘Qualitative Severity 
Rating Scale’ provided in Table 3 were also leveraged. This defned a desired score range 
for each labeling of severity (e.g., “High” had a defned score range of 7.0 to 8.9). This 
labeling then defned a partial lookup table that mapped a subset of possible CVSS vectors 
to a target range of scores. Next, the SIG hired a contractor team to develop an equation 
to assign a score to each CVSS vector. Each score was to fall within the target score range 
within an acceptable deviation (see Section 3.2). Note that the contractors were given 
vectors mapped to fve severity levels (i.e., Low, MedLow, MedHigh, High, and Critical) 
but only four non-zero target score ranges (i.e., Low, Medium, High, and Critical). To 
address this difference, the contractor team was given the discretion to best ft the MedLow 
vectors in either the Low or Medium bin and to place the MedHigh vectors in either the 
Medium or High bin. 

The intuition behind this approach was that the produced v3 base score equation would 
appropriately score the rest of the vectors (having been essentially trained with the set 
of hand-evaluated vectors). After the equation was developed, extensive testing was per-
formed to validate this assumption for a subset of the vectors that were not in the partial 
lookup table. 
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418 3.2 Acceptable Deviation 

419 Unfortunately, the contractor was unable to formulate a v3 base score equation that strictly 
met the mapping requirements. Thus, it was necessary to develop a metric to measure such 
discrepancies, leading to the development of the metric “acceptable deviation”. Acceptable 
deviation measures the worst case in which a hand-rated input vector deviates from its re-
quired scoring range. More precisely, it is the absolute value of the maximum difference 
between a hand-rated vector’s score generated from the base score equation and the closest 
score within its required score range. Note that it does NOT mean that the scores are accu-
rate within a range of +/- the acceptable deviation. For example, the acceptable deviation 
is 0 for a vector labeled as “High” with a score of 7.1. This is because 7.1 is within the 
score range for High of 7.0 - 8.9, per Table 3. The acceptable deviation is 0.4 for a vector 
labeled as ”High” with a score of 9.3 because its score is 0.4 points higher than the top of 
the specifed range for ”High”. 
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4 Metrology Tools, Metrics, and Algorithms 

432 This section discusses the tools, metrics, and algorithms developed to support measure-
ments of the CVSS v3 base score equation. Section 4.1 presents the NIST Knowledge 
Encoder tool which ingests and encodes human expert opinion as knowledge constraint 
graphs. Section 4.2 explains the idea of a knowledge constraint graph, and Section 5.4 
discusses a metric to measure the level of inconsistency between multiple graphs encoded 
from different experts. Lastly, Section 4.4 presents the voting algorithm for unifying multi-
ple graphs into a single unifed graph. The tool, knowledge constraint graphs, inconsistency 
metrics, and voting unifcation algorithm will be used to collect and process the CVSS hu-
man expert domain knowledge discussed in Section 5. 

433 
434 
435 
436 
437 
438 
439 
440 

441 4.1 Knowledge Encoder Tool 

Fig. 4. CVSS Analysis Screen of the NIST Knowledge Encoder Tool 

442 The NIST Knowledge Encoder tool was developed to encode the volunteers’ domain 
knowledge. It is a Python program with a Tkinter graphical user interface (GUI). It uses the 
NetworkX Python package as a graph database in which to encode the extracted knowledge. 
An image of the main CVSS analysis screen is shown in Figure 4. Each participant of the 
study was provided with a copy of the tool source code, which they executed locally. The 
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447 tool recorded their domain knowledge and then outputted the encoded knowledge as a 
graph. 448 

Fig. 5. CVSS Comparison Interface 

449 The tool uses the interface shown in Figure 5 to iteratively present to the user pairs of 
CVSS vectors to compare – a “red” vector and a “blue” vector. The boxes in red represent 
the metric values for the red vector. The boxes in blue represent the metric values for the 
blue vector. The boxes in purple represent the metric values that apply to both the red and 
blue vectors. The metric value boxes for each of the eight metrics are arranged in order of 
decreasing severity to aid visual analysis. The user evaluates the metric values for the two 
vectors and then presses a button at the bottom of the interface to indicate the relationship 
of the red to the blue vector. They can specify ‘<<’ (much less than), ‘<’ (less than), ‘=’ 
(equal to), ‘>’ (greater than), and ‘>>’ (much greater than). The red vectors are drawn 
from a pool of not yet processed input vectors; the most frequently occurring within CVEs 
are chosen frst (see Tables 9 and 10). Each blue vector is an already processed vector that 
represents 0 or more other vectors of equal severity. 
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461 Figures 4 and 5 show the four most popular CVSS vectors, per Tables 9 and 10 in Ap-
pendix B. In Figure 4, the red vector is CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N 
while the blue vector is CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H. Note that 
both share the same metric values for the frst three metrics, making those metric value 
boxes purple in the fgure. In Figure 5, the red vector is 
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H while the blue vector is 
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H. Unlike in the previous example, these 
two vectors differ in their “Attack Vector” metric value. Thus, for the red vector the box 
”Local (AV:L)” is highlighted red while for the blue vector the box ”Network (AV:N)” is 
highlighted in blue. However, these two vectors also share fve metric values resulting in 
the fve boxes highlighted purple. 

In the background the tool performs a modifed binary insertion sort. The tool uses the 
traditional algorithm with the following modifcations: 

• The human makes the comparison decisions that are normally done by the computer 

• The human can declare a vector being sorted as equal to a set of already ordered 
vectors 

• The human defnes the distance between compared vectors (e.g., greater than and 
much greater than). 

These modifcation result in an output that groups vectors into multiple sets where all 
members of a set are defned to have equal severity. It then totally orders these sets and 
provides distance constraints between each set. This output is recorded as a dot-and-line 
style graph with labelled edges, referred to as knowledge constraint graphs. 
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482 

483 4.2 Knowledge Constraint Graphs 

484 A knowledge constraint graph is a dot and line graph representation that orders a set of vec-
tors and defnes distance constraints between the vectors. Each node in the graph represents 
a vector and each labelled edge in the graph provides ordering and distance constraints for 
the connected nodes. The graphs are directed acyclic graphs (DAG). 

Edges represent the distance constraints between nodes. Edges with a label of 0 repre-
sent equality (and are shown visually using light blue edges). Edges that represent greater 
than (or ‘>’) have a label of 1 (and are shown visually using green edges). Edges that 
represent much greater than (or ‘>>’) have a label of 2 (and are shown visually using 
black edges). Note that less-than and much-less-than edges are not added because they are 
represented by changing the direction of the edge. 

Figure 6a shows an example knowledge constraint graph with 66 nodes and 166 edges 
that was produced from the encoding of human expert knowledge using the tool. 
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(a) Raw Graph 70a 

(b) Simplifed Graph 70a 

Fig. 6. Example Knowledge Constraint Graph 
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Fig. 7. Example Equivalency Set Star Sub-graph 

496 4.2.1 Equivalency Sets 

497 An important concept for constraint graphs is the idea of “equivalency sets”. An equiv-
alency set is a set of nodes that are defned to have equal signifcance (i.e., should have 
the same CVSS score). They are represented as star sub-graphs; an example is shown in 
Figure 7. The parent node (the center of the star sub-graph) is the node in the equivalency 
set whose vector has the greatest frequency among a defned set of CVEs (see Tables 9 and 
10). This node is called the “representative” node. 

In a knowledge constraint graph, the representative nodes are displayed as black nodes. 
Other vectors that participate in equivalency sets are displayed as yellow nodes. Light 
blue edges represent equality and connect parent representative nodes to their children. 
Yellow nodes always have exactly one parent (through a light blue equality edge) as they 
can participate in only one equivalency set. Black nodes with no yellow node children 
represent equivalency sets of size 1. 
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509 4.2.2 Magnitude Measurements 

510 Another important concept for constraint graphs is that of measuring the ‘magnitude’ of 
the distance between nodes. If two nodes are connected by an edge, the label on the edge 
defnes the magnitude. Thus, an edge x → y with a label of 0 indicates that x is equal to y 
(x = y) in severity. An edge x → y with a label of 1 indicates that x is greater than y (x > y) 
in severity. An edge x → y with a label of 2 indicates that x is much greater than y (x >> y) 
in severity. 

If two nodes x and y are not directly connected by an edge, then the magnitude is defned 
as the maximum magnitude of all edges on all paths between x and y. If there is no path 
between x and y, then the magnitude is undefned. 
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519 4.2.3 Simplifed Graphs 

520 Figure 6b is a simplifed version of Figure 6a. All out-edges from the yellow nodes were 
changed to originate from their parent representative black node (found by traversing the 
one-per-node light blue edge backwards to fnd the parent). All in-edges coming into yel-
low nodes were changed to make their destination be their black node representative parent. 
Given that each parent black node represents an equivalency set where the black node is 
equal in signifcance to all of its child yellow nodes, this simplifcation does not change the 
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526 logic represented by the graph. Lastly, all redundant edges are removed; if an existing path 
can represent the logic conveyed by a single edge, then the edge is removed. 

Note how in Figure 6b there exists a single longest path that connects all of the equiv-
alency sets by their representative black nodes. This feature is guaranteed to exist by the 
construction of the graphs. The frst node on this path is the most signifcant vector (the 
one that should have the highest score). It is depicted in the upper right in all of the visu-
alizations. Likewise, the least signifcant node is always on the upper left. Note also how 
each black edge is a shortcut for a longer path of green edges. This indicates that a path of 
‘>’ relationships may result in a ‘>>’ relationship (which is intuitive). 

527 
528 
529 

531 
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534 

4.3 Inconsistency Metrics for Knowledge Constraint Graphs 

536 When multiple human experts use the tool, the produced constraint graphs can be evaluated 
to determine their level of inconsistency with each other. The purpose of performing such 
measurements is to identify possible outliers that might indicate either 1) a inexperienced 
participant that should not have participated in the study or 2) a valid but very divergent 
view on vector severity. 

To measure inconsistencies, a pairwise approach was taken to compare all pairs of 
produced graphs. For each pair of graphs, the encoded relationships for all pairs of vectors 
were evaluated. In doing this, only the direction of the relationships was evaluated not their 
magnitudes. Thus, greater than and much greater than were treated equally. If the graphs 
agreed on the relationship for a pair of vectors, that pair was marked as “consistent”. If 
the graphs disagreed on the relationship for a pair of vectors, that pair was marked as 
“inconsistent”. If a pair of graphs disagreed on the direction of an inequality (i.e., one 
said greater than and the other less than), then that vector pair relationship was marked as 
‘opposite inconsistent’ (a more severe form). 

For each pair of graphs the number of “inconsistent” and ‘opposite inconsistent’ rela-
tionships was obtained (note that the set of opposite inconsistent pairs is a subset of the 
inconsistent pairs). Dividing those numbers by the total number of relationships results in 
ratios for each metric. This gave ‘inconsistent’ and ‘opposite inconsistent’ ratios for each 
pair of graphs. From this, the mean ‘inconsistent’ and ‘opposite inconsistent’ ratios for 
each graph could then be computed by taking the mean of the measurements in which a 
particular graph participated (since each measurement is for a pair of graphs). 
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557 4.4 Voting Unifcation Algorithm 

558 This section discusses the algorithm for taking multiple knowledge representation graphs 
as input and unifying them into a single graph representing a consensus of the inputs. 559 

4.4.1 Analysis of Votes 

561 The voting algorithm will evaluate all ordered pairs (x,y) where the node number of x is 
less than y. Thus, for every pair (x,y), (y,x) is excluded because that would be redundant. 562 
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563 For each pair, votes will be tallied using a simple array [a,b,c] to represent the number of 
input graphs for which x < y (represented by a in the array), x = y (represented by b in the 
array), and x > y (represented by c in the array). Note that at this stage of the analysis, >> 
is treated the same as > and << is treated the same as < (at this point, only the direction 
needs to be known, not the magnitude). 

A transformation is then made to more accurately represent the x = y votes. To see the 
need for this, consider the following example. A pair (x,y) may have a set of votes [4,2,4] (4 
less than votes, 2 equal votes, and 4 greater-than votes). We want this to result in a decision 
for equal even though equal has the lowest number of votes. Each of the two votes that 
confict (one greater than and one less than) are interpreted as really a vote for equal. Since 
the experts can’t agree, the vectors are likely so close in signifcance that they should be 
marked as equal. To make this adjustment, anytime there exists a pair of opposing votes, 
one less than and one greater than, they are converted into a single vote for equal because 
that changes the difference between the less-than votes and equal votes by 1 and between 
the greater-than votes and the equal votes by 1. The transformation may be applied multiple 
times. In this example, [4,2,4] is transformed into [0,6,0] by applying the transformation 
four times. Consider another example where the transformation is applied to a vector pair 
with a set of votes [2,1,3]; this will also result in a decision for equal. The instances of 
both greater-than and less-than votes get transformed into equal votes that result in a fnal 
transformed vote tally of [0,3,1]. If in the fnal set of transformed votes there is a tie (e.g., 
[0,3,3]), the non-equal one is awarded the decision (either less than or greater than). These 
transformed vectors along with the ones that did not require any transformation are then 
fed into the prioritization stage of the algorithm. 
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586 4.4.2 Priority Ordering 

587 The algorithm next orders all pairs of vectors by priority order (to be defned by three 
sorting approaches) such that the frst pairs are those in which there is the most confdence 
in the experts’ opinion and the last pairs are those in which we there is the least confdence. 

The pairs are sorted frst in descending order by the maximum number of votes received 
for the winning category (less than, equal, or greater than). For example, for a pair with 
votes [0,6,2] the maximum number of votes is 6 (for equal in this case). The intuition is 
that if a pair has a higher number of maximum votes then its decision is stronger (supported 
by more human experts) than a pair with a lower maximum number of votes. Thus, [6,4,0] 
is stronger than [0,5,5]. 

The authors considered applying this sort using the vector values prior to the equality 
transformation of conficting votes (presented in Section 4.4.1). They decided against that 
approach because conficting votes for ¿ and ¡ are not a sign of human certainty. This 
decision has a byproduct of increasing the certainty measurement for = votes, but this effect 
is limited (capped at half of the total number of possible votes) because a pair of opposing 
votes gets transformed into a single equal vote in the transformation. 

For pairs with the same maximum value, there is a secondary sort in ascending order 
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603 by the number of opposite votes in the original voting (prior to the transformation). The 
intuition is that pairs that have few opposite votes (votes for both less than and greater than) 
are considered to be supported more strongly by the experts than pairs with many opposite 
votes. 

Finally, for pairs that have values that tie in both the frst and secondary sort, there is 
a third sort added to guarantee a total ordering of the pairs. It gives priority to processing 
vector pairs that are most often seen in the wild. More specifcally, each vector pair is 
sorted in descending order by the frequency of the vector in the pair that most frequently 
occurs within CVE in the NVD. Note that this third sort is rarely used and is not strictly 
necessary, but it conveniently removes non-determinism so that the algorithm will always 
produce exactly the same answer. 
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614 4.4.3 Unifed Graph Construction 

The unifed knowledge constraint graph is constructed by iterating over the pairs in prior-
ity order and attempting to add edges based on the pair voting information. The unifed 
graph is initially empty; nodes and edges are added as the algorithm evaluates each pair. 
Occasionally, the addition of an edge will violate the directed acyclic nature of the graph 
by creating a cycle. Those edges are not added; they represent lower priority (less certain) 
relationships that contradict higher priority (more certain) relationships. Cycles are not 
allowed because they would represent logical inconsistencies (e.g., x > y > z > x). 

For each pair (x,y) the algorithm attempts to add an edge to the, initially empty, unifed 
constraint graph based on the maximum vote calculation (i.e., for less than, equal, or greater 
than). If x = y, it adds an edge x → y with the label 0 (to represent equality). If x > y, one 
determines the magnitude of the relationship (see above) and adds an edge x → y with 
a label of 1 for greater than and 2 for much greater than. If x < y, one determines the 
magnitude of the relationship (see above) and add an edge y → x (note the reversal of the 
order of x and y) with a label of 1 for greater than and 2 for much greater than. 

In some circumstances the graph construction algorithm may rearrange edges in order 
to simplify the graph but the encoded logic is always preserved. For example, if a set of 
vectors are all equal, the algorithm will form a star sub-graph of edges representing equality 
as opposed to creating a path of edges representing equality (this is for simplicity of the 
visualization, but it also helps in writing the graph algorithms that assume certain graph 
structures). 
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4.4.4 Description of Constructed Graph 

636 Constructed unifed graphs have the same form as simplifed raw graphs; in other words, 
they look the same (see Figure 6b as an example). A constructed unifed graph usually 
totally orders the input vectors but is not guaranteed to do so, especially in the presence of 
contradictory and/or inconsistent expert opinion. However, the unifed graph will have a 
longest path of edges labelled with either 1 or 2 (greater than or much greater than). Each 
node on this longest path will represent an equivalency set – a set of nodes that were defned 
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642 to be of equal signifcance. To represent the equivalency sets, each node on the longest path 
is at the center of a star sub-graph, constructed with edges labelled 0 where each child node 
is equal to the representative parent (the center of the star). If a node on the longest path is 
not equal with any other node, its star graph will be size 1 (containing just itself). 
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5 Data Collection and Processing 

647 This section discusses how human expert opinion was collected and processed in order to 
create unifed knowledge constraint graphs. Sub-section 5.1 discusses the dataset of ana-
lyzed vectors while Sub-section 5.2 describes the pool of volunteer analysts. Sub-section 
5.3 presents the produced individual analyst knowledge constraint graphs. Sub-section 
5.4 provides the measurements of inconsistency taken on analyst data. Sub-section 5.5 
presents the unifed knowledge constraint graph built from all analyst data. Sub-section 5.6 
concludes the section by discussing how the number of equivalency sets identifed in the 
unifed graph does not represent the discovery of some optimal number. 

While this section focuses on the unifed knowledge constraint graph using all inputs, 
many such unifed graphs will be created using differing subsets of the input data for sta-
tistical reasons (i.e., differing subsets of input knowledge constraint graphs). 
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658 5.1 Data Set of Analyzed Vectors 

659 For this research human experts were asked to analyze 66 of the 2496 CVSS v3 vectors 
that had a non-zero impact (2.64 % of them). Note that there are 2592 vectors in total 
but only 2496 have a score other than 0.0. The vectors chosen were those that the NVD 
mapped the CVE vulnerabilities to most frequently, using the NVD CVSS data available 
on 2021-01-08. This set of 66 vectors covered 90 % of the CVEs. The 66 vectors chosen 
are shown in Appendix B, in Tables 9 and 10, along with their respective frequencies. 
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665 5.2 Volunteer Participants 

666 The CVSS v3 equations were designed to represent human expert knowledge, in particular 
CVSS SIG knowledge. Thus, to measure how well the equations refect current CVSS SIG 
domain knowledge, the domain knowledge of a group of 12 volunteers from the CVSS SIG 
membership of 2021 was leveraged. The 12 volunteers are the domain expert co-authors as 
well as the second author. The frst author was the principle investigator. 

To support this research, the CVSS SIG domain experts each represented their domain 
knowledge of computer vulnerability types as a mathematical graph structure. In doing 
so, the domain experts compared vulnerabilities using the CVSS philosophy of evaluating 
a vulnerability’s severity in general to the world apart from any particular installation en-
vironment. This was an attempt to mitigate the possibility that the domain experts would 
be infuenced by their particular security domain or specialty. Additionally, the volunteers 
were instructed to compare vulnerabilities based on their own personal expert opinions (not 
based on the existing CVSS scoring). This was an attempt to eliminate bias based on the 
expert’s knowledge of the CVSS scores for certain vectors and/or use of CVSS calculators. 

The human studies portion of this research was conducted with the approval of the 
NIST Research Protections offce under the study entitled “Metrics Generation with the 
NIST Human Knowledge Encoder Toolkit” (Study #: ITL-2020-0227). 
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Table 4. Statistics on CVSS SIG Produced Knowledge Constraint Graphs 

Graph 

02c 

Nodes 

66 

Raw Graph 
Edges 
194 

Simplifed Graph 
Edges 

67 

Analysis Time 
(hrs) 
3.8 

3d6 66 242 72 6.3 
5fd 66 236 69 1.9 
6e5 66 256 69 5.5 
70a 66 166 72 2.1 
88d 66 228 70 8.1 
908 66 247 72 1.4 
977 66 142 67 0.7 
98a 66 284 68 6.5 
d3d 66 186 69 1.7 
f00 66 187 70 1.5 
f59 66 224 69 2.5 
Overall Mean 66 216 69.5 3.5 

683 5.3 Produced Knowledge Constraint Graphs 

684 
685 
686 
687 
688 
689 
690 
691 
692 
693 
694 

The 12 domain experts each produced a knowledge constraint graph that represented their 
CVSS domain knowledge using the NIST Knowledge Encoder tool. These graphs are 
provided in Appendix C. Table 11 contains the raw graphs and Table 12 contains the cor-
responding simplifed graphs where the redundant edges have been removed. 

The mean creation time for the set of graphs was 3.5 hours with a minimum of 0.7 and 
a maximum of 8.1. The number of nodes for all graphs is 66 because there were 66 vectors 
analyzed. The number of edges varies because the humans ordered the nodes differently as 
they made decisions for the human-directed binary search algorithm. The mean number of 
edges for the raw graphs is 216 with a minimum of 142 and a maximum of 284. The mean 
number of edges for the simplifed graphs is 69.5 with a minimum of 67 and a maximum 
of 72. The statistics for each graph are provided in Table 4. 

695 5.4 Knowledge Constraint Graph Inconsistency Measurements 

696 
697 
698 
699 
700 

The inconsistency and opposite inconsistency of the 12 knowledge constraint graphs were 
analyzed. These metrics were defned in Section 5.4. The results are shown in Table 5. The 
overall mean inconsistency was 22.5 % and the opposite inconsistency was 14.4 %. Thus, 
the human experts were in general agreement, although there were certainly differences for 
certain pairs of vectors. 
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Table 5. Mean Inconsistency and Opposite Inconsistency Results 

Graph Mean Inconsistency Mean Opposite Inconsistency 
Percent Percent 

02c 20.8 11.5 
3d6 17.1 10.3 
5fd 20.8 13.8 
6e5 19.1 13.0 
70a 25.1 13.5 
88d 20.7 13.8 
908 20.9 14.2 
977 35.2 22.7 
98a 21.1 14.7 
d3d 25.2 16.2 
f00 25.8 17.5 
f59 19.7 11.2 
Overall Mean 22.5 14.4 

Table 6. Vectors Initially Assigned the Highest Severity in the Unmodifed Graph f00 

CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:N/A:N 
CVSS:3.1/AV:N/AC:L/PR:H/UI:R/S:C/C:L/I:L/A:N 
CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:N/I:N/A:H 

Table 7. Vectors Initially Assigned the Lowest Severity in the Unmodifed Graph f00 

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H 
CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H 
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H 
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701 5.4.1 Graph f00 

702 Graph f00 (Figure 11k) was an extreme outlier that was discovered to have a signifcant 
but correctable error. Its initial mean inconsistency was 82.1 % and opposite inconsistency 
was 73.8 %. Upon inspection, it was discovered that the analyst creating f00 with the tool 
did all of their ratings backwards. To fx this, the edges in their graph were simply reversed 
(and checked with the participant); the resulting mean inconsistency metric then dropped 
to 25.8 % and opposite inconsistency to 17.5 %. The opposite ratings became obvious 
by looking at the vectors that they rated the most severe and those that they rated as least 
severe (see Tables 6 and 7. 

703 
704 

706 
707 
708 
709 

5.4.2 Graph 977 

711 After fxing graph f00, graph 977 (Figure 11h) was the most signifcant outlier. Its mean 
inconsistency and opposite inconsistency was 35.2 % and 22.7 %; this was the greatest 
among the graphs (see Table 5). While these ratios were not as excessively high as the 
original graph f00, they – combined with the fact that the participant spent only 43 min-
utes on the analysis – induced concerns about data quality (the mean analysis time for all 
analysts was 3.5 hours). To address this, the participant offered to perform their analy-
sis again, this time with greater care. The analyst spent 48 minutes the second time and 
produced graph 382 (not shown). Supporting the validity of the original graph 977, graph 
382 had mean inconsistency metrics that were very similar to 977 (32.7 % and 21.2 %). 
Unfortunately however, graphs 977 and 382 were inconsistent between themselves (27.9 % 
inconsistent and 13.3 % opposite inconsistent). 

Uncertain of how to proceed with this, a complete set of evaluation metrics was run 
three times and the fnal overall results were compared (using all analyst input). For the 
three trials, graph 977 was used frst, followed by graph 382, and then a graph generated 
by unifying graphs 977 and 382 using the voting algorithm. Fortunately, the fnal results 
varied little for the three trials (the variation in the primary measurement statistics were 
at most .04); this is attributed to the voting algorithm smoothing out discrepancies since 
there were a total of 12 graphs voting. Since it did not matter which of the three graphs 
was used and to avoid any possible perception of inappropriately manipulation of the input 
data, the originally submitted graph 977 was used in the experiments. Graph 382 as well 
as the generated unifed graph (that had combined graphs 977 and 382) were discarded. 

712 
713 
714 

716 
717 
718 
719 

721 
722 
723 
724 

726 
727 
728 
729 

731 

732 5.5 Unifed Knowledge Constraint Graph 

733 The 12 CVSS SIG knowledge constraint graphs, created using with the tool from Section 
4.1, were combined into a single unifed constraint graph using our voting algorithm from 
Section 4.4. This unifed graph is shown in Figure 8. It has 66 nodes, each refecting the 66 
analyzed vectors. It has 71 edges that order the equivalency sets, defne members within 
equivalency sets, and provide distance constraints. There are 16 equivalency sets; the small-
est is 1 vector and the largest is 12 vectors. The longest path is 16 which traverses the 
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Fig. 8. Unifed Knowledge Constraint Graph 

739 representative nodes for each equivalency set. The 7 black edges represent much-greater-
than relationships; the 14 green edges represent greater-than relationships, and the 50 light 
blue edges represent equality. While not guaranteed by the voting algorithm, this graph 
totally ordered the equivalency sets. In creating this graph, 130 of the 2145 proposed edges 
(6.1 %) were discarded due to lower confdence relationships that contradicted previously 
added higher confdence relationships. This is explained in Section 4.4.3. 

740 
741 
742 
743 
744 

745 5.6 Optimal Number of Equivalency Sets 

746 One may ask if the 16 equivalency sets in the unifed graph indicate the discovery of some 
optimal number of equivalency sets for CVSS, but this is not the case. The number of 
equivalency sets grows with the number of vectors analyzed. It might plateau at some 
optimal number but this research effort does not have suffcient data to evaluate that. What 
it can show is that for up to 66 vectors, an increasing number of vectors analyzed results 
in an increasing number of equivalency sets generated. This can be seen in Figure 9. The 
small dots of different colors represent the individual knowledge constraint graphs created 
from the tool from each human expert with a specifc number of input vectors. The lines 
of small dots higher up show analysts that rarely used the equal button. The larger black 
dots toward the bottom represent the unifed knowledge constraint graphs generated using 
all input graphs and an increasing number of input vectors (from 1 to 66). For comparison 
with CVSS v3, note that CVSS was designed using just fve equivalency sets (i.e., the 
qualitative severity levels: None, Low, Medium, High, and Critical). 
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Fig. 9. Equivalency Sets Produced per Number of Vectors Analyzed (legend: large black dots are 
for the unifed graph, and small colored dots are for individual analysts graphs) 

6 Measurement Approach 

760 This section discusses a general metric-agnostic approach to measuring the inconsistencies 
between the scores in CVSS v3 relative to the encoded CVSS SIG domain knowledge. This 
approach will be applied to three different metrics and the results provided in Section 7. 

761 
762 

763 6.1 Consistent Scoring Systems 

764 This subsection defnes the terms “scoring system” and “consistent scoring system”. 

765 6.1.1 Scoring System Defnition 

766 For the purposes of this work, a “scoring system” is defned as a mapping of vectors to 
scores. Given any CVSS vector, a scoring system produces a score for that vector. CVSS 
v3 is an important example of one of many possible scoring systems. 

767 
768 

769 6.1.2 Consistent Scoring System Defnition 

770 This work defnes a ‘consistent scoring system’ as a scoring system that conforms to a 
particular knowledge constraint graph. Scoring systems may or may not be consistent 
with a constraint graph. For a scoring system to be consistent with a graph, the scores 
assigned to each vector must satisfy the constraints defned by the edges in the graph (both 
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774 the direction and magnitude of the edges in a path between vectors). Each edge defnes a 
direction between two vectors x and y and a relationship (>, >>, or =). 

If an edge x → y is labelled >, then the scoring system must map x to a score that is 
greater than y. If an edge x → y is labelled with >> (much greater than), then the value 
of x must be greater than the value of y by some constant associated with the graph. If an 
edge x → y is labelled with =, then the scoring system must map x and y to the same score. 
Note that the label < never appears on an edge because it is not necessary; the direction of 
the edge represents the direction of the inequality. 

If there is no direct edge between vectors x and y in a constraint graph, the relationship 
is the greatest from the set of relationships on the path of edges between x and y. For 
example, if there is a path of four edges from x to y with relationships >, >, >>, and = 
then the defned relationship from x to y will be >> (the greatest on the path). If there is 
no path from x to y then the relationship is undefned (this does not happen in this study as 
all graphs are totally ordered). 
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788 6.2 Generation of a Closest Consistent Scoring System 

789 To generate a consistent scoring system for a particular graph, a greedy algorithm was 
developed. The algorithm takes a constraint graph and the CVSS v3 scores for the 66 
analyzed vectors as input. It iteratively operates on individual equivalency sets (sets of 
nodes required by the constraint graph to have equal values) in order of decreasing size. 
Thus, for the unifed constraint graph representing all 12 expert inputs (see Figure 8), it 
operates on the following 16 equivalency sets of varying sizes (in descending order): 12, 
10, 8, 8, 5, 4, 4, 3, 3, 2, 2, 1, 1, 1, 1, 1. For each equivalency set, it calculates the mapped 
score for the vectors in the set to be the median of the CVSS v3 scores for those vectors. 
If the computed value is higher than the maximum allowed per the constraint graph given 
the scores already assigned for the vectors in the graph, the computed value is reduced 
to the nearest value that is consistent with the graph. An analogous operation is done to 
increase scores that are below the minimum allowed value. The output of the algorithm is a 
scoring system – an assignment of each vector with a score that is consistent with the input 
constraint graph. 

Note that the greedy algorithm is designed to minimize the mean distance between the 
chosen score and the CVSS v3 scores for vectors within an equivalency set. Unintuitively, 
it uses the median (not mean) of a set of CVSS v3 scores because the median can be proven 
to minimize the sum of the differences (i.e., using median in the algorithm minimizes the 
mean of the sum of scoring differences) [11]. 

The code also uses another heuristic that minimizes the maximum distance between 
the chosen score and the CVSS v3 scores for vectors within an equivalency set. For this, 
instead of choosing the median value for the set of CVSS v3 scores in an equivalency set, 
it chooses the mean of the maximum and minimum value. This reduces the maximum 
distance because it minimizes the distance to the greatest outliers. 

Note that in generating a closest consistent scoring system, the heuristic that will pro-

791 
792 
793 
794 

796 
797 
798 
799 

801 
802 
803 
804 

806 
807 
808 
809 

811 
812 
813 

25 



815

820

825

830

835

NIST IR 8409 ipd MEASURING THE CVSS BASE SCORE EQUATION 

INITIAL PUBLIC DRAFT 

814 vide the best results given the metric currently being measured is used. This decision is 
discussed more in Section 6.3 and Section 7. 

816 6.3 Measurement Methodology 

817 Given some measurement metric (three are evaluated in Section 7), all 12 input constraint 
graphs are taken from our 12 CVSS SIG domain experts and are used to create a unifed 
knowledge constraint graph. With this graph, a closest consistent scoring system using the 
algorithm described in Section 6.2 is generated. That closest consistent scoring system is 
then used as input to the measurement metric along with the CVSS v3 scores in order to 
calculate the result. 

Note that the heuristic chosen will be the one that minimizes the metric being evaluated. 
A large number of consistent scoring systems usually exist, and we want to fnd the one 
(using whatever methodology) that is closest to CVSS v3 for the particular metric being 
measured. One could use any consistent scoring system, but such a measurement would be 
an upper bound that could be lowered by fnding a closer consistent scoring system. 

A source of error in performing measurements this way is the possibility that the par-
ticular unifed knowledge constraint graph used just happens to allow for a scoring system 
close to CVSS v3. It could be possible that a slightly different set of inputs into the voting 
algorithm could have resulted in a worse measurement. Since it is not possible to obtain 
multiple sets of 12 inputs to test this for each metric, this issue is addressed by performing 
additional measurements using all combinations of 11 of the 12 inputs to create 12 uni-
fed knowledge constraint graphs. Each metric is then independently evaluated on all 12 
unifed graphs. From these 12 measurements, a mean result and standard deviation can be 
calculated. This gives the ability to calculate the precision of the measurements. 
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7 Measurement Results 

838 This section measures the inconsistency of the CVSS v3 base score equation relative to 
the encoded CVSS SIG domain knowledge. The approach presented in Section 6 is used 
to perform three measurements: mean scoring distance, maximum scoring distance, and 
acceptable deviation. Table 8 contains all measurement results. These results are explained 
in Sections 7.1, 7.2, and 7.3. Section 8 interprets these results. 

Table 8 provides the results for both heuristics presented in Section 6.2 for all three 
evaluated metrics. As discussed in Section 6.3, the “Mean” heuristic compares the CVSS 
v3 scoring system with the consistent scoring system whose scores minimize the mean 
differences between the scores of the two systems. The “Max” heuristic compares the 
CVSS v3 scoring system with the consistent scoring system whose scores minimize the 
maximum differences between the scores of the two systems. Both approaches provide 
upper bound measurements, so either could have been chosen for this work. Both are 
presented because the bounds for the three metrics can be slightly optimized by optimizing 
on the mean scoring distance for the mean scoring distance measurement and optimizing on 
the maximum scoring distance for the maximum scoring distance and acceptable deviation 
measurements. These optimized results are shown in bold in Table 8. 

It is important for the reader to understand that these bolded results came from com-
paring CVSS v3 with two different consistent scoring systems (two that were closer to 
CVSS in different ways). While the authors defend this approach as being correct, this may 
cause discomfort with some readers due to the complexities involved; these are not simple 
measurements despite their surface simplicity. Readers who are uncomfortable with this 
measurement approach should simply use the results for the heuristic that minimizes the 
maximum scoring distance (labelled “Max”). Doing so compares CVSS v3 with a single 
consistent scoring system and provides a usable upper bound very close to what is achieved 
with this approach. Roughly the same results are obtained and the same conclusions are 
drawn using either metrology approach. 
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864 7.1 Mean Scoring Distance 

Mean scoring distance measures on average how far off each CVSS v3 score is from the 
closest score consistent with the encoded domain knowledge. More precisely, for each 
vector evaluated by the CVSS SIG analysts, calculate the absolute value of the difference 
between the CVSS v3 score and the score assigned by the closest consistent scoring system 
(using the heuristic to minimize mean distance). The mean scoring distance is the mean of 
these values. 

Using the unifed knowledge constraint graph (i.e., using all 12 CVSS SIG domain 
knowledge graphs as input), CVSS v3 was found to have a mean distance of 0.13. Per-
forming the calculation on a set of 12 knowledge constraint graphs, each formed from 11 
of the 12 input graphs, CVSS v3 has a mean distance of 0.13 points with a standard devia-
tion of 0.02 points. If one assumes a ‘normal’ Gaussian distribution,there is a 95 % chance 
that the actual distance is between 0.11 and 0.15 points. 
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Table 8. Measurement Results for Mean Scoring Distance, Maximum Scoring Distance, and 
Acceptable Deviation 

Metric Heuristic # Inputs # Trials Result Std Dev 
Mean scoring distance Mean 11 12 0.13 0.02 
Mean scoring distance Mean 12 1 0.13 0 
Mean scoring distance Max 11 12 0.18 0.02 
Mean scoring distance Max 12 1 0.17 0 
Max scoring distance Mean 11 12 0.70 0 
Max scoring distance Mean 12 1 0.70 0 
Max scoring distance Max 11 12 0.52 0.15 
Max scoring distance Max 12 1 0.40 0 
Acceptable deviation Mean 11 12 0.18 0.06 
Acceptable deviation Mean 12 1 0.20 0 
Acceptable deviation Max 11 12 0.17 0.06 
Acceptable deviation Max 12 1 0.20 0 

877 7.2 Maximum Scoring Distance 

878 Maximum scoring distance measures the maximum distance that any CVSS v3 score is 
from its closest score consistent with the encoded domain knowledge. More precisely, 
for each vector evaluated by the CVSS SIG analysts, calculate the absolute value of the 
difference between the CVSS v3 score and the score assigned by the closest consistent 
scoring system (using the heuristic to minimize maximum distance). The maximum scoring 
distance is the maximum of these values. 

Using the unifed knowledge constraint graph (i.e., using all 12 CVSS SIG domain 
knowledge graphs as input), CVSS v3 was found to have a maximum distance of 0.40. 
Performing the calculation on a set of 12 knowledge constraint graphs, each formed from 
11 of the 12 input graphs, CVSS v3 has a maximum distance of 0.52 points with a standard 
deviation of 0.15 points. If one assumes a ‘normal’ Gaussian distribution,there is a 95 % 
chance that the actual distance is between 0.32 and 0.82 points. 
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890 7.3 Acceptable Deviation 

891 The CVSS Version 3.1 specifcation contains a measurement of scoring error called accept-
able deviation. It asserts that the acceptable deviation for the CVSS v3 scoring system is 
0.5 points (maximum distance from a severity boundary). 

Acceptable deviation is defned in Section 3.2. To measure it, the method in Section 6.3 
was used as with the previous two measurements. It required not just a mapping of vectors 
to scores but also of scores to bins using the mapping from the CVSS v3.1 specifcation 
(shown in Table 3). To obtain the measurement for each vector evaluated by the CVSS 
SIG analysts, the deviation was calculated as the distance that a CVSS v3 score is from its 
vector’s specifed bin. The acceptable deviation is the maximum of these deviations. 
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900 Using the unifed knowledge constraint graph (i.e., using all 12 CVSS SIG domain 
knowledge graphs as input) and using the heuristic to minimize maximum distance (in 
this case, both heuristics worked equally well), CVSS v3 was found to have an acceptable 
deviation of 0.20 points (i.e., distance from a severity level boundary). 

Note that in doing this calculation, any vector whose scores (for both the generated 
consistent scoring system and the CVSS v3 scoring system) map to the same bin have no 
deviation associated with them. Of the 66 vectors, 65 had no deviation. This means that, 
according to the encoded domain knowledge, they were assigned scores that mapped the 
vector to the correct bin. The one vector with a deviation was 
AV:A/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:H. Its closest consistent scoring system score was 
7.2 which mapped it to the “High” bin (per Table 3). The CVSS v3 score is 6.8, which 
is in the “Medium” bin. Since the score range for “High” is 7.0-8.9, the CVSS v3 score 
is a 0.2 distance from the “High” bin (resulting in a deviation of 0.2 points). Thus, the 
CVSS v3 scoring of vector AV:A/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:H was responsible for 
the acceptable deviation of 0.2 points (otherwise, it would have been 0). 

Next, using the 12 knowledge constraint graphs, each formed from 11 of the 12 input 
graphs, CVSS v3 was calculated to have an acceptable deviation of 0.17 points with a 
standard deviation of 0.06 points. If one assumes a ‘normal’ Gaussian distribution, there is 
a 95 % chance that the actual acceptable deviation is between 0.05 and 0.29 points. 
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919 7.4 Increasing Accuracy with More Data 

Fig. 10. Decreasing Error with an Increasing Number of Inputs 
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920 In performing these three measurements, it was empirically discovered that greater ac-
curacy is achieved through having a greater number of expert participants inputting data 
into the voting algorithm. This can be seen in Figure 10. To create this fgure, for each 
x-axis value 12 combination x experiments were performed using all combinations of the 
available inputs. Thus, for the x-axis value of 5, 792 experiments were performed (12 
combination 5). 

The measured mean metrics tend lower as the number of inputs into the unifed con-
straint graphs used to perform the measurements increases. This follows “wisdom of the 
crowds” research that shows that human error in making group decisions often decreases 
when using a larger set of humans [12] [13]. More analysts should then produce more 
accurate results (enabling the voting algorithm to better eliminate rating mistakes made by 
particular individuals). 

The curves eventually level off indicating a diminishing beneft to using additional an-
alysts. This makes sense because even if all human error is eliminated in performing the 
measurement, what will remain is the actual measurement of the CVSS v3 scoring system. 
From the fgure, it appears that the y-axis plateau value for both the mean mean-distance 
and mean acceptable deviation were achieved as the curves end in almost a horizontal line. 
For the mean max-distance, additional analysts would likely lower the measurement of 
distance somewhat. Unfortunately, additional qualifed CVSS SIG analysts could not be 
obtained. 
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8 Interpretation of Results and Related Work 

941 A variety of related work has explored perceived faws in CVSS and recommended im-
provements. A subset of these enumerated faws relate to the v3 base score equation itself. 
The results here address many of these concerns. 

One of the best listings of perceived faws in CVSS is [14], which also contains sug-
gestions that could be used to improve and/or revise CVSS or to create alternate scoring 
systems. One concern is that in CVSS v3, the metric values are ordinals (ordered cate-
gories) but they are converted into ratio data (allowing numerical differences with a zero 
value) within the v3 base score equation. The CVSS specifcation provides no justifcation 
for the assigning of numerical values to these ordinal values (e.g., Attack Vector Adjacent = 
0.62). It also provides no justifcation for how the particular numerical values were chosen. 
By assigning numbers, difference relationships are established not only between ordinal 
values of a particular CVSS metric (e.g., privileges required), but between ordinal values 
of different unrelated metrics (e.g., confdentiality and attack complexity). Additionally, 
[14] points out that it provides no justifcation for the equation that then takes these numer-
ical values as input. Although not mentioned in [14], many have questioned the complexity 
of the equation and why, for example, it has a term raised to the 15th power. Combining 
these concerns, [14] points out that the CVSS specifcation makes claims like “faster + 
fastest = 6” for which there is no empirical or theoretical justifcation. In summary, [14] 
says that the CVSS specifcation provides “little transparency on the formula creation pro-
cess”. Other critiques of CVSS expressing concern about the equations include [15], [16], 
[17], [18], [19], [20], and [21]. 

The authors agree that such math is invalid in most cases. The formula creation process 
was opaque; the specifc form of the v3 base score equation is not justifed; and the equation 
is not human understandable. The improvement proposals in [14] and in the other critiques 
represent laudable goals. This said, the unjustifed ratio math is acceptable if the use of 
the CVSS v3 scores is limited to creating an ordinal ranking of the vectors. This works 
in most cases as IT security organizations want to know how a particular vector ranks in 
severity compared to other vectors. The equation then becomes a black box that does not 
need to be justifed or explainable. It simply needs to be tested to make sure that it produces 
the desired output ordinal rankings. This should not discourage its use as many effective 
computations are opaque boxes. 

If one takes a step back to ask, “does the v3 base score equation do what it claims to 
do?”, this research demonstrates that it does capture expert opinion within the “acceptable 
deviation” stated by the specifcation (measured at .2 versus the .5 advertised in the speci-
fcation). However, the authors note that the acceptable deviation metric is not ideal due to 
its unintuitive defnition and its focus on the optional binning from Table 3. For this reason, 
the metrics of mean and maximum scoring distance were added. The results for these two 
metrics enable a better understanding of the accuracy of the CVSS scores in representing 
the CVSS expert domain knowledge. As shown in the results from Table 8, CVSS v3 has 
a mean scoring distance of .13 and a maximum scoring distance of .4 using the full input 
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981 dataset. The CVSS v3 scores are very close to a set of scores completely consistent with 
the encoded human expert opinion (at least relative to the expected differences represented 
by the acceptable deviation of 0.5 in the specifcation). 

While the CVSS v3 equation represents the CVSS SIG expert domain knowledge very 
closely, it still does not represent it perfectly. The reason for this is the use of the generated 
equation. As stated previously, the goal of the equation is to approximate a partial lookup 
table. It achieves this goal to a measurable level for the set of 66 analyzed vectors (as 
seen by the measurements of mean and maximum scoring distance). One might ask why 
CVSS does not simply use a lookup table instead of a confusing equation. The answer 
is that the equation enables the scoring of all CVSS vectors, not just the ones that were 
human-evaluated. The equation strives to project CVSS SIG domain knowledge from a 
small analyzed set to the complete set. This said, the accuracy of this projection to the 
applicable 2430 non-analyzed vectors has not been formally evaluated either in the CVSS 
v3 specifcation nor in this work. 
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9 Conclusion 

996 This work evaluated the CVSS v3 base score equation and determined that its scores con-
form to the acceptable deviation stated in the specifcation relative to the encoded CVSS 
SIG domain knowledge. Furthermore, the authors added the metrics of mean and maximum 
scoring distance to fnd that the scores themselves (apart from any binning) are very close 
to a set of scores completely consistent with the encoded human expert opinion. The base 
score equation effectively refects CVSS SIG human expert opinion (to the extent shown 
by these measurements). 
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1057 Appendix A—Acronyms 

1058 Selected acronyms and abbreviations used in this paper are defned below. 

AI Artifcial Intelligence 
CERT/CC Computer Emergency Response Team Coordination Center 
CVE Common Vulnerabilities and Exposures 
CVSS Common Vulnerability Scoring System 
DAG Directed Acyclic Graph 
FIRST Forum for Incident Response and Security Teams 
GUI Graphical User Interface 
NIST National Institute of Standards and Technology 
IR Interagency or Internal Report 
NVD National Vulnerability Database 
SIG Special Interest Group 
US United States 

1059 CVSS base score vector string metrics and associated metric values: 
(e.g., AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H): 1060 

AV (Attack Vector) (N: Network, A: Adjacent, L: Local, P: Physical) 
AC (Attack Complexity) (L: Low, H: High) 
PR (Privileges Required) (N: None, L: Low, H: High) 
UI (User Interaction) (N: None, R: Required) 
S (Scope) (U: Unchanged, C: Changed) 
C (Confdentiality) (H: High, L: Low, N: None) 
I (Integrity) (H: High, L: Low, N: None) 
A (Availability) (H: High, L: Low, N: None) 
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1061 Appendix B- Set of Evaluated CVSS vectors 

1062 On January 8 of 2021, NVD contained 73446 CVEs scored with CVSS version 3.1. The 
66 most frequent CVSS vectors for these CVEs covers 90% of them. These top 66 CVSS 
vectors are listed in Tables 9 and 10 using the ‘CVSS Vector String’ format [1] along with 
their respective frequency counts. Appendix A contains expansions for the vector string 
acronyms. 
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Table 9. Top 66 Most Frequent CVSS Vectors per Mappings from NVD (higher frequency vectors) 

CVSS Vector CVE Frequency 
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H 9979 
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N 5572 
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H 4434 
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H 4378 
CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H 3978 
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H 3834 
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N 3228 
CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H 2847 
CVSS:3.1/AV:N/AC:L/PR:L/UI:R/S:C/C:L/I:L/A:N 2501 
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:N 1626 
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N 1375 
CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:N/I:N/A:H 1371 
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:N/I:N/A:H 1243 
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N 1119 
CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N 1000 
CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:H 966 
CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H 895 
CVSS:3.1/AV:N/AC:L/PR:H/UI:R/S:C/C:L/I:L/A:N 877 
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H 770 
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:N/A:N 763 
CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:H/I:H/A:H 748 
CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:N/A:N 700 
CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:N/A:N 606 
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:N/I:H/A:N 567 
CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H 553 
CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:N/A:N 549 
CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:H 497 
CVSS:3.1/AV:A/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H 440 
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:N 432 
CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:N 407 
CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H 370 
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:L/A:N 358 
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:N/I:L/A:N 335 
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Table 10. Top 66 Most Frequent CVSS Vectors per Mappings from NVD (lower frequency 
vectors) 

CVSS Vector CVE Frequency 
CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H 334 
CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H 307 
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:N 295 
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L 290 
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:N 288 
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:L/I:N/A:N 286 
CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:N 285 
CVSS:3.1/AV:L/AC:H/PR:N/UI:R/S:U/C:H/I:H/A:H 268 
CVSS:3.1/AV:P/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H 251 
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:N/A:N 249 
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:H 228 
CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:N 215 
CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:H/A:N 214 
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:L 205 
CVSS:3.1/AV:A/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H 194 
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H 188 
CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:N 184 
CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:H/I:N/A:N 179 
CVSS:3.1/AV:N/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H 163 
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H 162 
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:N 156 
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:N/I:N/A:H 151 
CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:N/A:N 147 
CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:N 143 
CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:N/A:N 140 
CVSS:3.1/AV:L/AC:L/PR:L/UI:R/S:U/C:H/I:H/A:H 138 
CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:N/I:H/A:N 132 
CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N 128 
CVSS:3.1/AV:A/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:H 125 
CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H 124 
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:H 118 
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:L/I:L/A:N 112 
CVSS:3.1/AV:A/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N 110 
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1067 Appendix C- Encoded Knowledge Constraint Graphs 

1068 This appendix provides the graphs produced by the 12 CVSS SIG experts using the NIST 
Knowledge Encoding Tool. Figure 11 provides the raw graphs created by the tool. Figure 
12 provides the simplifed graphs where the redundant edges have been removed. Addi-
tionally, all edges have been updated to originate from and terminate to the representative 
nodes (the ones with the greatest frequency) for each equivalency set. This does not change 
the logic represented by the graph. 
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(a) 02c (b) 3d6 (c) 5fd 

(d) 6e5 (e) 70a (f) 88d 

(g) 908 (h) 977 (i) 98a 

(j) d3d (k) f00 (l) f59 

Fig. 11. Raw Graphs Produced by the Knowledge Encoding Tool for the 12 CVSS SIG Experts 
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(a) 02c (b) 3d6 (c) 5fd 

(d) 6e5 (e) 70a (f) 88d 

(g) 908 (h) 977 (i) 98a 

(j) d3d (k) f00 (l) f59 

Fig. 12. Simplifed Graphs with Redundant Edges Removed 
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