

NIST Special Publication 1

NIST SP 800-90C 3pd 2

Recommendation for Random Bit 3

Generator (RBG) Constructions 4

Third Public Draft (3pd) 5

 6
Elaine Barker 7

John Kelsey 8
Kerry McKay 9

Allen Roginsky 10
Meltem Sönmez Turan 11

This publication is available free of charge from: 12
https://doi.org/10.6028/NIST.SP.800-90C.3pd 13

https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.SP.800-90C.3pd

NIST Special Publication 14

NIST SP 800-90C 3pd 15

Recommendation for Random Bit 16

Generator (RBG) Constructions 17

Third Public Draft (3pd) 18

 19
Elaine Barker 20

John Kelsey 21
Kerry McKay 22

Allen Roginsky 23
Meltem Sönmez Turan 24

Computer Security Division 25
Information Technology Laboratory 26

 27
This publication is available free of charge from: 28

https://doi.org/10.6028/NIST.SP.800-90C.3pd 29

September 2022 30

 31
U.S. Department of Commerce 32
Gina M. Raimondo, Secretary 33

National Institute of Standards and Technology 34
Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology 35

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 36
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 37
endorsement by the National Institute of Standards and Technology (NIST), nor is it intended to imply that the entities, 38
materials, or equipment are necessarily the best available for the purpose. 39

There may be references in this publication to other publications currently under development by NIST in accordance 40
with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, 41
may be used by federal agencies even before the completion of such companion publications. Thus, until each 42
publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For 43
planning and transition purposes, federal agencies may wish to closely follow the development of these new 44
publications by NIST. 45

Organizations are encouraged to review all draft publications during public comment periods and provide feedback to 46
NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at 47
https://csrc.nist.gov/publications. 48

Authority 49
This publication has been developed by NIST in accordance with its statutory responsibilities under the Federal 50
Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law (P.L.) 113-283. 51
NIST is responsible for developing information security standards and guidelines, including minimum requirements 52
for federal information systems, but such standards and guidelines shall not apply to national security systems without 53
the express approval of appropriate federal officials exercising policy authority over such systems. This guideline is 54
consistent with the requirements of the Office of Management and Budget (OMB) Circular A-130. 55
 56
Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and binding 57
on federal agencies by the Secretary of Commerce under statutory authority. Nor should these guidelines be interpreted 58
as altering or superseding the existing authorities of the Secretary of Commerce, Director of the OMB, or any other 59
federal official. This publication may be used by nongovernmental organizations on a voluntary basis and is not 60
subject to copyright in the United States. Attribution would, however, be appreciated by NIST. 61

NIST Technical Series Policies 62
Copyright, Fair Use, and Licensing Statements 63
NIST Technical Series Publication Identifier Syntax 64

Publication History 65
Approved by the NIST Editorial Review Board on YYYY-MM-DD [will be added in final published version] 66

How to Cite this NIST Technical Series Publication: 67
Barker EB, Kelsey JM, McKay KA, Roginsky AL, Sönmez Turan M (2022) Recommendation for Random Bit 68
Generator (RBG) Constructions. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special 69
Publication (SP) 800-90C 3pd. https://doi.org/10.6028/NIST.SP.800-90c.3pd 70

NIST Author ORCID iDs [will be added in final published version] 71
Author 1: 0000-0000-0000-0000 72
Author 2: 0000-0000-0000-0000 73
Author 3: 0000-0000-0000-0000 74
Author 4: 0000-0000-0000-0000 75

https://csrc.nist.gov/publications
https://doi.org/10.6028/NIST-TECHPUBS.CROSSMARK-POLICY
https://www.nist.gov/document/publication-identifier-syntax-nist-technical-series-publications

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

Public Comment Period 76
September 7, 2022 – December 7, 2022 77

Submit Comments 78
rbg_comments@nist.gov 79
 80
National Institute of Standards and Technology 81
Attn: Computer Security Division, Information Technology Laboratory 82
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 83

All comments are subject to release under the Freedom of Information Act (FOIA). 84

mailto:rbg_comments@nist.gov

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

i

Reports on Computer Systems Technology 85

The Information Technology Laboratory (ITL) at the National Institute of Standards and 86
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 87
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 88
methods, reference data, proof of concept implementations, and technical analyses to advance the 89
development and productive use of information technology. ITL’s responsibilities include the 90
development of management, administrative, technical, and physical standards and guidelines for 91
the cost-effective security and privacy of other than national security-related information in federal 92
information systems. The Special Publication 800-series reports on ITL’s research, guidelines, and 93
outreach efforts in information system security, and its collaborative activities with industry, 94
government, and academic organizations. 95

Abstract 96

The NIST Special Publication (SP) 800-90 series of documents supports the generation of high-97
quality random bits for cryptographic and non-cryptographic use. SP 800-90A specifies several 98
deterministic random bit generator (DRBG) mechanisms based on cryptographic algorithms. SP 99
800-90B provides guidance for the development and validation of entropy sources. This document 100
(SP 800-90C) specifies constructions for the implementation of random bit generators (RBGs) that 101
include DRBG mechanisms as specified in SP 800-90A and that use entropy sources as specified 102
in SP 800-90B. Constructions for three classes of RBGs (namely, RBG1, RBG2, and RBG3) are 103
specified in this document. 104

Keywords 105

deterministic random bit generator (DRBG); entropy; entropy source; random bit generator 106
(RBG); randomness source; RBG1 construction; RBG2 construction; RBG3 construction; 107
subordinate DRBG (sub-DRBG). 108

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

ii

Note to Reviewers 109

1. This draft of SP800-90C describes three RBG constructions. Note that in this draft, a non-110
deterministic random bit generator (NRBG) is presented as an RBG3 construction. 111
Question: In a future revision of SP 800-90C, should other constructions be included? 112
This version of SP 800-90C does not address the use of an RBG software implementation in 113
which a) a cryptographic library or an application is loaded into a system and b) the software 114
accesses entropy sources or RBGs already associated with the system for its required 115
randomness. NIST intends to address this situation in the near future. 116

2. The RBG constructions provided in this draft use NIST-approved cryptographic primitives 117
(such as block ciphers and hash functions) as underlying components. Note that non-vetted 118
conditioning components may be used within SP 800-90B entropy sources. 119
Although NIST still allows three-key TDEA as a block-cipher algorithm, Section 4 of [SP800-120
131A] indicates that its use is deprecated through 2023 and will be disallowed thereafter for 121
applying cryptographic protection. This document (i.e., SP 800-90C) does not approve the 122
use of three-key TDEA in an RBG. 123
Although SHA-1 is still approved by NIST, NIST is planning to remove SHA-1 from a future 124
revision of FIPS 180-4, so the SP 800-90 series will not be including the use of SHA-1. 125
The use of the SHA-3 hash functions are approved in SP 800-90C for Hash_DRBG and 126
HMAC_DRBG but are not currently included in [SP800-90A]. SP 800-90A will be revised to 127
exclude the use of TDEA and SHA-1 and include the use of the SHA-3 family of hash 128
functions. 129

3. Since the projected date for requiring a minimum security strength of 128 bits for U.S. 130
Government applications is 2030 (see [SP800-57Part1]), RBGs are only specified to provide 131
128, 192, and 256 bits of security strength (i.e., the 112-bit security strength has been 132
removed). Note that a consuming application may still request a lower security strength, but 133
the RBG output will be generated at the instantiated security strength. 134

4. Guidance is provided for accessing entropy sources and for obtaining full-entropy bits using 135
the output of an entropy source that does not inherently provide full-entropy output (see 136
Section 3.3). 137

5. SP 800-90A requires that when instantiating a CTR_DRBG without a derivation function, the 138
randomness source needs to provide full-entropy bits (see SP 800-90A). However, this draft 139
(SP 800-90C) relaxes this requirement in the case of an RBG1 construction, as specified in 140
Section 4. In this case, the external randomness source may be another RBG construction. An 141
addendum to SP 800-90A has been prepared as a temporary specification in SP 800-90C, but 142
SP 800-90A will be revised in the future to accommodate this change. 143

6. The DRBG used in RBG3 constructions supports a security strength of 256 bits. The RBG1 144
and RBG2 constructions may support any valid security strength (i.e., 128, 192 or 256 bits). 145

7. SP 800-90A currently allows the acquisition of a nonce (when required) for DRBG 146
instantiation from any randomness source. However, SP 800-90C does not include an explicit 147
requirement for the generation of a nonce when instantiating a DRBG. Instead, additional bits 148

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

iii

beyond those needed for the security strength are acquired from the randomness source. SP 149
800-90A will be revised to agree with this change. 150

8. SP 800-90C allows the use of both physical and non-physical entropy sources. See the 151
definitions of physical and non-physical entropy sources in Appendix E. Also, multiple 152
validated entropy sources may be used to provide entropy, and two methods are provided in 153
Section 2.3 for counting the entropy provided in a bitstring. 154

9. The CMVP is considering providing information on an entropy source validation certificate 155
that indicates whether an entropy source is physical or non-physical. 156

10. The CMVP is developing a program to validate entropy sources against SP 800-90B with the 157
intent of allowing the re-use of those entropy sources in different RBG implementations. 158
Question: Are there any issues that still need to be addressed in SP 800-90C to allow the re-159
use of validated entropy sources in different RBG implementations? Note that in many cases, 160
specific issues need to be addressed in the FIPS 140 implementation guide rather than in this 161
document. 162

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

iv

Call for Patent Claims 163

This public review includes a call for information on essential patent claims (claims whose use 164
would be required for compliance with the guidance or requirements in this Information 165
Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may be 166
directly stated in this ITL Publication or by reference to another publication. This call also includes 167
disclosure, where known, of the existence of pending U.S. or foreign patent applications relating 168
to this ITL draft publication and of any relevant unexpired U.S. or foreign patents. 169
ITL may require from the patent holder, or a party authorized to make assurances on its behalf, in 170
written or electronic form, either: 171

a) assurance in the form of a general disclaimer to the effect that such party does not hold and 172
does not currently intend holding any essential patent claim(s); or 173

b) assurance that a license to such essential patent claim(s) will be made available to 174
applicants desiring to utilize the license for the purpose of complying with the guidance or 175
requirements in this ITL draft publication either: 176

i. under reasonable terms and conditions that are demonstrably free of any unfair 177
discrimination; or 178

ii. without compensation and under reasonable terms and conditions that are 179
demonstrably free of any unfair discrimination. 180

Such assurance shall indicate that the patent holder (or third party authorized to make assurances 181
on its behalf) will include in any documents transferring ownership of patents subject to the 182
assurance, provisions sufficient to ensure that the commitments in the assurance are binding on 183
the transferee, and that the transferee will similarly include appropriate provisions in the event of 184
future transfers with the goal of binding each successor-in-interest. 185
The assurance shall also indicate that it is intended to be binding on successors-in-interest 186
regardless of whether such provisions are included in the relevant transfer documents. 187
Such statements should be addressed to: rbg_comments@nist.gov 188

mailto:rbg_comments@nist.gov

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

v

Table of Contents 189

 Introduction and Purpose .. 1 190
191
192

 General Information .. 3 193
194
195
196
197

2.4.1. DRBG Instantiations ... 6 198
2.4.2. DRBG Reseeding, Prediction Resistance, and Recovery from Compromise 7 199

200
201
202
203

2.8.1. DRBG Functions ... 13 204
2.8.2. Interfacing with Entropy Sources Using the GetEntropy and Get_ES_Bitstring 205
Functions... 16 206
2.8.3. Interfacing with an RBG3 Construction ... 18 207

 Accessing Entropy Source Output .. 20 208
209
210
211

3.3.1. Conditioning Function Calls .. 22 212
3.3.2. Using a Vetted Conditioning Function to Obtain Full-Entropy Bitstrings 24 213

 RBG1 Constructions Based on RBGs with Physical Entropy Sources 27 214
215
216

4.2.1. Instantiating the DRBG in the RBG1 Construction ... 29 217
4.2.2. Requesting Pseudorandom Bits ... 31 218

219
4.3.1. Instantiating a Sub-DRBG ... 33 220
4.3.2. Requesting Random Bits .. 33 221

222
4.4.1. RBG1 Requirements ... 33 223
4.4.2. Sub-DRBG Requirements ... 35 224

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

vi

 RBG2 Constructions Based on Physical and/or Non-Physical Entropy Sources 37 225
226
227

5.2.1. RBG2 Instantiation .. 38 228
5.2.2. Requesting Pseudorandom Bits from an RBG2 Construction 40 229
5.2.3. Reseeding an RBG2 Construction .. 40 230

231
 RBG3 Constructions Based on Physical Entropy Sources .. 43 232

233
234

6.2.1. Conceptual Interfaces ... 45 235
6.2.2. RBG3(XOR) Requirements ... 48 236

237
6.3.1. Conceptual Interfaces ... 49 238
6.3.2. Requirements for a RBG3(RS) Construction .. 53 239

 Testing ... 54 240
241

7.1.1. Testing RBG Components .. 54 242
7.1.2. Handling Failures .. 54 243

244
References ... 57 245
Appendix A. Entropy vs. Security Strength (Informative) .. 59 246

247
248
249
250

Appendix B. RBG Examples (Informative) .. 61 251
252
253

B.2.1. Instantiation of the RBG1 Construction ... 63 254
B.2.2. Generation by the RBG1 Construction ... 64 255

256
B.3.1. Instantiation of the Sub-DRBGs .. 66 257

B.3.1.1. Instantiating Sub-DRBG1 .. 66 258
B.3.1.2. Instantiating Sub-DRBG2 .. 67 259

B.3.2. Pseudorandom Bit Generation by Sub-DRBGs .. 67 260

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

vii

261
B.4.1. Instantiation of an RBG2 Construction .. 69 262
B.4.2. Generation in an RBG2 Construction ... 69 263
B.4.3. Reseeding an RBG2 Construction .. 70 264

265
B.5.1. Instantiation of an RBG3(XOR) Construction ... 71 266
B.5.2. Generation by an RBG3(XOR) Construction .. 72 267

B.5.2.1. Generation ... 73 268
B.5.2.2. Get_conditioned_full-entropy_input Function .. 74 269

B.5.3. Reseeding an RBG3(XOR) Construction .. 75 270
271

B.6.1. Instantiation of an RBG3(RS) Construction .. 77 272
B.6.2. Generation by an RBG3(RS) Construction ... 77 273
B.6.3. Generation by the Directly Accessible DRBG ... 77 274
B.6.4. Reseeding a DRBG .. 78 275

Appendix C. Addendum to SP 800-90A: Instantiating and Reseeding a CTR_DRBG 79 276
277
278
279

C.3.1. Derivation Keys and Constants ... 80 280
C.3.2. Derivation Function Using CMAC ... 80 281
C.3.3. Derivation Function Using CBC-MAC ... 80 282

Appendix D. List of Symbols, Abbreviations, and Acronyms ... 82 283
Appendix E. Glossary ... 84 284

List of Tables 285

Table 1. RBG Capabilities .. 4 286
Table 2. Key Lengths for the Hash-based Conditioning Functions .. 22 287
Table 3. Values for generating full-entropy bits by an RBG3(RS) Construction 50 288

 289

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

viii

List of Figures 290

Fig. 1. DRBG Instantiations .. 7 291
Fig. 2. Example of an RBG Security Boundary within a Cryptographic Module 9 292
Fig. 3. General Function Calls .. 13 293
Fig. 4. Instantiate_function ... 14 294
Fig. 5. Generate_function ... 15 295
Fig. 6. Reseed_function .. 16 296
Fig. 7. GetEntropy function ... 17 297
Fig. 8. Get_ES_Bitstring function ... 17 298
Fig. 9. RBG3 DRBG_Instantiate function ... 18 299
Fig. 10. RBG3(XOR)_Generate function .. 19 300
Fig. 11. RBG3(RS)_Generate function ... 19 301
Fig. 12. RBG1 Construction .. 28 302
Fig. 13. Instantiation Using an RBG2(P) Construction as a Randomness Source 29 303
Fig. 14. Instantiation using an RBG3(XOR) or RBG3(RS) Construction as a Randomness 304

Source ... 30 305
Fig. 15. RBG1 Construction with Sub-DRBGs ... 32 306
Fig. 16. RBG2 Construction .. 37 307
Fig. 17. RBG3(XOR) Construction ... 45 308
Fig. 18. RBG3(RS) Construction .. 49 309
Fig. 19. DRBG Instantiations .. 61 310
Fig. 20. RBG1 Construction Example ... 63 311
Fig. 21. Sub-DRBGs Based on an RBG1 Construction .. 65 312
Fig. 22. RBG2 Example .. 68 313
Fig. 23. RBG3(XOR) Construction Example .. 71 314
Fig. 24. RBG3(RS) Construction Example ... 76 315

 316

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

ix

Acknowledgments 317

The National Institute of Standards and Technology (NIST) gratefully acknowledges and 318
appreciates contributions from Chis Celi (NIST); Darryl Buller, Aaron Kaufer, and Mike Boyle 319
(National Security Agency); Werner Schindler, Matthias Peter, Johannes Mittman (Bundesamt für 320
Sicherheit in der Informationstechnik); and the members of the Cryptographic Module User Forum 321
(CMUF) for assistance in the development of this Recommendation. NIST also thanks the many 322
contributions by the public and private sectors. 323

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

1

 Introduction and Purpose 324

Cryptography and security applications make extensive use of random bits. However, the 325
generation of random bits is challenging in many practical applications of cryptography. 326
The National Institute of Standards and Technology (NIST) developed the Special Publication 327
(SP) 800-90 series to support the generation of high-quality random bits for both cryptographic 328
and non-cryptographic purposes. The SP 800-90 series consists of three parts: 329

• SP 800-90A, Recommendation for Random Number Generation Using Deterministic 330
Random Bit Generators, specifies several approved deterministic random bit generator 331
(DRBG) mechanisms based on approved cryptographic algorithms that – once provided 332
with seed material that contains sufficient entropy – can be used to generate random bits 333
suitable for cryptographic applications. 334

• SP 800-90B, Recommendation for the Entropy Sources Used for Random Bit Generation, 335
provides guidance for the development and validation of entropy sources − mechanisms 336
that generate entropy from physical or non-physical noise sources and that can be used to 337
generate the input for the seed material needed by a DRBG or for input to an RBG. 338

• SP 800-90C, Recommendation for Random Bit Generator (RBG) Constructions, specifies 339
constructions for random bit generators (RBGs) using entropy sources that comply with 340
SP 800-90B and DRBGs that comply with SP 800-90A. Three classes of RBGs are 341
specified in this document (see Sections 5, 6, and 7). SP 800-90C also provides high-level 342
guidance for testing RBGs for conformance to this Recommendation. 343

The RBG constructions defined in this Recommendation consist of two main components: the 344
entropy sources that generate true random variables (variables that may be biased, i.e., each 345
possible outcome does not need to have the same chance of occurring) and the DRBGs that ensure 346
that the outputs of the RBG are indistinguishable from the ideal distribution to a computationally 347
bounded adversary. 348
Throughout this document, the phrase “this Recommendation” refers to the aggregate of SP 800-349
90A, SP 800-90B, and SP 800-90C, while the phrase “this document” refers only to SP 800-90C. 350
SP 800-90C has been developed in coordination with NIST’s Cryptographic Algorithm Validation 351
Program (CAVP) and Cryptographic Module Validation Program (CMVP). The document uses 352
“shall” and “must” to indicate requirements and uses “should” to indicate an important 353
recommendation. The term “shall” is used when a requirement is testable by a testing lab during 354
implementation validation using operational tests or a code review. The term “must” is used for 355
requirements that may not be testable by the CAVP or CMVP. An example of such a requirement 356
is one that demands certain actions and/or considerations from a system administrator. Meeting 357
these requirements can be verified by a CMVP review of the cryptographic module’s 358
documentation. If the requirement is determined to be testable at a later time (e.g., after SP 800-359
90C is published and before it is revised), the CMVP will so indicate in the Implementation 360
Guidance for FIPS 140, Security Requirements for Cryptographic Modules. 361

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

2

 Audience 362

The intended audience for this Recommendation includes 1) developers who want to design and 363
implement RBGs that can be validated by NIST’s CMVP and CAVP, 2) testing labs that are 364
accredited to perform the validation tests and the evaluation of the RBG constructions, and 3) users 365
who install RBGs in systems. 366

 Document Organization 367

This document is organized as follows: 368

• Section 2 provides background and preliminary information for understanding the 369
remainder of the document. 370

• Section 3 provides guidance on accessing and handling entropy sources, including the 371
external conditioning of entropy-source output. 372

• Sections 4, 5, and 6 specify the RBG constructions. 373

• Section 7 discusses health and implementation-validation testing. 374

• References contains a list of papers and publications cited in this document. 375
The following informational appendices are also provided: 376

• Appendix A provides discussions on entropy versus security strength. 377

• Appendix B provides examples of each RBG construction. 378

• Appendix C is an addendum to SP 800-90A that includes two additional derivation 379
functions that may be used with the CTR_DRBG. These functions will be moved into SP 380
800-90A as part of the next revision of that document. 381

• Appendix D provides a list of abbreviations, symbols, functions, and notations used in this 382
document. 383

• Appendix E provides a glossary with definitions for terms used in this document. 384

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

3

 General Information 385

 RBG Security 386

Ideal randomness sources generate identically distributed and independent uniform random bits 387
that provide full-entropy outputs (i.e., one bit of entropy per output bit). Real-world RBGs are 388
designed with a security goal of indistinguishability from the output of an ideal randomness source. 389
That is, given some limits on an adversary’s data and computing power, it is expected that there is 390
no adversary that can reliably distinguish between RBG outputs and outputs from an ideal 391
randomness source. 392
Consider an adversary that can perform 2w computations (typically, these are guesses of the RBG’s 393
internal state) and is given an output sequence from either an RBG with a security strength of s 394
bits (where s ≥ w) or an ideal randomness source. It is expected that an adversary has no better 395
probability of determining which source was used for its random bits than 396

1/2 + 2w−s−1 + ε, 397

where ε is negligible. In this Recommendation, the size of the output is limited to 264 output bits 398
and ε ≤ 2−32. 399

An RBG that has been designed to support a security strength of s bits is suitable for any 400
application with a targeted security strength that does not exceed s. An RBG that is compliant with 401
this Recommendation can support requests for output with a security strength of 128, 192, or 256 402
bits, except for an RBG3 construction (as described in Section 6), which can provide full-entropy 403
output. 404
A bitstring with full entropy has an amount of entropy equal to its length. Full-entropy bitstrings 405
are important for cryptographic applications, as these bitstrings have ideal randomness properties 406
and may be used for any cryptographic purpose. They may be truncated to any length such that the 407
amount of entropy in the truncated bitstring is equal to its length. However, due to the difficulty 408
of generating and testing full-entropy bitstrings, this Recommendation assumes that a bitstring has 409
full entropy if the amount of entropy per bit is at least 1 − ε, where ε is at most 2−32. NISTIR 84271 410
provides a justification for the selection of ε. 411

 RBG Constructions 412

A construction is a method of designing an RBG or some component of an RBG to accomplish a 413
specific goal. Three classes of RBG constructions are defined in this document: RBG1, RBG2, 414
and RBG3 (see Table 1). Each RBG includes a DRBG from [SP800-90A] and is based on the use 415
of a randomness source that is validated for compliance with [SP800-90B] or SP 800-90C. Once 416
instantiated, a DRBG can generate output at a security strength that does not exceed the DRBG’s 417
instantiated security strength. 418

1 See NISTIR 8427, Discussion on the Full Entropy Assumption of SP 800-90 series.

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

4

Table 1. RBG Capabilities 419

Construction Internal
Entropy Source

Prediction
Resistance Full Entropy Type of

randomness source
RBG1 No No No Physical
RBG2 Yes Yesa No Physical or

Non-physical
RBG3 Yes Yesa Yes Physical

a If sufficient entropy is available or can be obtained when reseeding the RBG’s DRBG. 420
1. An RBG1 construction (see Section 4) does not have access to a randomness source after 421

instantiation. It is instantiated once in its lifetime over a secure channel from an external 422
RBG with appropriate security properties. An RBG1 construction does not support 423
reseeding and cannot provide prediction resistance as described in Section 2.4.2 and 424
[SP800-90A]. The construction can be used to initialize subordinate DRBGs. 425

2. An RBG2 construction (see Section 5) includes one or more entropy sources that are used 426
to instantiate and reseed the DRBG within the construction. This construction can provide 427
prediction resistance (see Section 2.4.2 and [SP800-90A]) when sufficient entropy is 428
available or can be obtained from the RBG’s entropy source(s) at the time that prediction 429
resistance is requested. The construction has two variants that depend on the type of 430
entropy source(s) employed (i.e., physical and non-physical). 431

3. An RBG3 construction is designed to provide output with a security strength equal to the 432
requested length of its output by producing outputs that have full entropy (i.e., an RBG 433
designed as an RBG3 construction can, in effect, support all security strengths) (see Section 434
2.1). This construction provides prediction resistance and has two types, namely 435
RBG3(XOR) and RBG3(RS). 436
a. An RBG3(XOR) construction (see Section 6.2) combines the output of one or more 437

validated entropy sources with the output of an instantiated, approved DRBG using an 438
exclusive-or (XOR) operation. 439

b. An RBG3(RS) construction (see Section 6.3) uses one or more validated entropy 440
sources to provide randomness input for the DRBG by continuously reseeding. 441

This document also provides constructions for 1) subordinate DRBGs (sub-DRBGs) that are 442
instantiated and possibly reseeded by an RBG1 construction (see Section 4.3) and 2) acquiring 443
entropy from an entropy source and conditioning the output to provide a bitstring with full entropy 444
(see Section 3.3). SP 800 90A provides constructions for instantiating and reseeding DRBGs and 445
requesting the generation of pseudorandom bitstrings. 446
All constructions in SP 800-90C are described in pseudocode. These pseudocode conventions are 447
not intended to constrain real-world implementations but to provide a consistent notation to 448
describe the constructions. By convention, unless otherwise specified, integers are unsigned 32-449
bit values, and when used as bitstrings, they are represented in the big-endian format. 450

 Sources of Randomness for an RBG 451

The RBG constructions specified in this document are based on the use of validated entropy 452
sources. Some RBG constructions (e.g., the RBG3 construction) access these entropy sources 453

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

5

directly to obtain entropy. Other constructions (e.g., the RBG1 construction) fulfill their entropy 454
requirements by accessing another RBG as a randomness source. In this case, the source RBG may 455
include its own entropy source. 456

SP 800 90B provides guidance for the development and validation of entropy sources − 457
mechanisms that provide entropy for an RBG. Validated entropy sources (i.e., entropy sources that 458
have been successfully validated by the CMVP as complying with SP 800-90B) provide fixed-459
length outputs and have been validated as reliably providing a specified minimum amount of 460
entropy for each output (e.g., each eight-bit output has been validated as providing at least five bits 461
of entropy).2 462
An entropy source is a physical entropy source if the primary noise source of the entropy source 463
is physical – that is, it uses dedicated hardware to provide entropy (e.g., from ring oscillators, 464
thermal noise, shot noise, jitter, or metastability). Similarly, a validated entropy source is a non-465
physical entropy source if the primary noise source of the entropy source is non-physical – that is, 466
entropy is provided by system data (e.g., the entropy present in the RAM data or system time). 467
The entropy-source type is certified during SP 800-90B validation. 468
One or more validated entropy sources are used to provide entropy for instantiating and reseeding 469
the DRBGs in RBG2 or RBG3 constructions or used by an RBG3 construction to generate output 470
upon request by a consuming application. 471
An implementation could be designed to use a combination of physical and non-physical entropy 472
sources. When requests are made to the sources, bitstring outputs are concatenated until the amount 473
of entropy in the concatenated bitstring meets or exceeds the request. Two methods are provided 474
for counting the entropy provided in the concatenated bitstring. 475

Method 1: The RBG implementation includes one or more physical entropy sources, and one 476
or more non-physical entropy sources may also be included in the implementation. However, 477
only the entropy in a bitstring that is provided from physical entropy sources is counted toward 478
fulfilling the amount of entropy requested in an entropy request. Any entropy in a bitstring that 479
is provided by a non-physical entropy source is not counted, even if bitstrings produced by the 480
non-physical entropy source are included in the concatenated bitstring that is used by the RBG. 481
Method 2: The RBG implementation includes one or more non-physical entropy sources, and 482
one or more physical entropy sources may also be included in the implementation. The entropy 483
from both non-physical entropy sources and (if present) physical entropy sources is counted 484
when fulfilling an entropy request. 485
Example: Let pesi be the ith output of a physical entropy source, and npesi be the jh output of a 486
non-physical entropy source. If an implementation consists of one physical and one non-487
physical entropy source, and a request has been made for 128 bits of entropy, the concatenated 488
bitstring might be something like: 489

pes1 || pes2 || npes1 || pes3 || ... || npesm ||pesn, 490
which is the concatenated output of the physical and non-physical entropy sources. 491

2 Note that this document also discusses the use of non-validated entropy sources. When discussing such entropy sources, “non-validated” will
always precede “entropy sources.” The use of the term “validated entropy source” may be shortened to just “entropy source” to avoid repetition.

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

6

According to Method 1, only the entropy in pes1, pes2, ..., pesn would be counted toward fulfilling 492
the 128-bit request. Any entropy in npes1, ... npesm is not counted. 493
According to Method 2, all of the entropy in pes1, pes2, ... pesn and in npes1, npes2, ..., npesm is 494
counted. Since the entropy from both non-physical and physical entropy sources is counted in 495
Method 2, the concatenated output string is expected to be shorter compared to that credited using 496
Method 1. 497
When multiple entropy sources are used, there is no requirement on the order in which the entropy 498
sources are accessed or the number of times that each entropy source is accessed to fulfill an 499
entropy request (e.g., if two physical entropy sources are used, it is possible that a request would 500
be fulfilled by only one of the entropy sources because entropy is not available at the time of the 501
request from the other entropy source). However, the Method 1 or Method 2 criteria for counting 502
entropy still applies. 503
This Recommendation assumes that the entropy produced by a validated physical entropy source 504
is generally more reliable than the entropy produced by a validated non-physical entropy source 505
since non-physical entropy sources are typically influenced by human actions or network events, 506
the unpredictability of which is difficult to accurately quantify. Therefore, Method 1 is considered 507
to provide more assurance that the concatenated bitstring actually contains at least the requested 508
amount of entropy (128 bits for the example). Note that RBG2(P) and RBG3 constructions only 509
count the entropy using Method 1 (see Sections 5 and 6). 510

 DRBGs 511

Approved DRBG designs are specified in [SP800-90A]. A DRBG includes instantiate, generate, 512
and health-testing functions and may include reseed and uninstantiate functions. The instantiation 513
of a DRBG involves acquiring sufficient randomness to initialize the DRBG to support a targeted 514
security strength and establish the internal state, which includes the secret information for 515
operating the DRBG. The generate function produces output upon request and updates the internal 516
state. Health testing is used to determine that the DRBG continues to operate correctly. Reseeding 517
introduces fresh entropy into the DRBG’s internal state and is used to recover from a potential (or 518
actual) compromise (see Section 2.4.2 for additional discussion). An uninstantiate function is used 519
to terminate a DRBG instantiation and destroy the information in its internal state. 520

2.4.1. DRBG Instantiations 521

A DRBG implementation consists of software code, hardware, or both hardware and software that 522
is used to implement a DRBG design. The same implementation can be used to create multiple 523
“copies” of the same DRBG (e.g., for different purposes) without replicating the software code or 524
hardware. Each “copy” is a separate instantiation of the DRBG with its own internal state that is 525
accessed via a state handle that is unique to that instantiation (see Figure 1). Each instantiation 526
may be considered a different DRBG, even though it uses the same software code or hardware. 527

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

7

 528
Fig. 1. DRBG Instantiations 529

Each DRBG instantiation is initialized with input from some randomness source that establishes 530
the security strengths that can be supported by the DRBG. During this process, an optional but 531
recommended personalization string may also be used to differentiate between instantiations in 532
addition to the output of the randomness source. The personalization string could, for example, 533
include information particular to the instantiation or contain entropy collected during system 534
activity (e.g., from a non-validated entropy source). An implementation should allow the use of a 535
personalization string. More information on personalization strings is provided in [SP800-90A]. 536
A DRBG may be implemented to accept further input during operation from the randomness 537
source (e.g., to reseed the DRBG) and/or additional input from inside or outside of the 538
cryptographic module that contains the DRBG. This additional input could, for example, include 539
information particular to a request for generation or reseeding or could contain entropy collected 540
during system activity (e.g., from a validated or non-validated entropy source).3 541

2.4.2. DRBG Reseeding, Prediction Resistance, and Recovery from Compromise 542

Under some circumstances, the internal state of an RBG (containing the RBG’s secret information) 543
could be leaked to an adversary. This would typically happen as the result of a side-channel attack 544
or tampering with a hardware device, and it may not be detectable by the RBG or any consuming 545
application. 546
All DRBGs in [SP800-90A] are designed with backtracking resistance − that is, learning the 547
DRBG’s current internal state does not provide knowledge of previous outputs. Since all RBGs in 548
SP 800-90C are based on the use of SP 800-90A DRBGs, they also inherit this property. However, 549

3 Entropy provided in additional input does not affect the instantiated security strength of the DRBG instantiation. However, it is good practice to
include any additional entropy when available to provide more security.

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

8

once the secret information within the DRBG’s internal state is compromised, all future DRBG 550
outputs are known to the adversary unless the DRBG is reseeded − a process that returns the DRBG 551
to a non-compromised state. 552
A DRBG is reseeded when at least s bits of fresh entropy are used to update the internal state 553
(where s is the security strength of the DRBG) so that the updated internal state is unknown and 554
extremely unlikely to be correctly guessed. A DRBG that has been reseeded has prediction 555
resistance against an adversary who knows its previous internal state. Reseeding may be 556
performed upon request from a consuming application (either an explicit request for reseeding or 557
a request for the generation of bits with prediction resistance); on a fixed schedule based on time, 558
number of outputs, or events; or as sufficient entropy becomes available. 559
Although reseeding provides fresh entropy bits that are incorporated into an already instantiated 560
DRBG at a security strength of s bits, this Recommendation does not consider the reseed process 561
as increasing the DRBG’s security strength. For example, a reseed of a DRBG that has been 562
instantiated to support a security strength of 128 bits does not increase the DRBG’s security 563
strength to 256 bits when reseeding with 128 bits of fresh entropy. 564
An RBG1 construction has no access to a randomness source after instantiation and so cannot be 565
reseeded or recover from a compromise (see Section 4). Thus, it can never provide prediction 566
resistance. 567
An RBG2 construction contains an entropy source that is used to reseed the DRBG within the 568
construction (see Section 5) and recover from a possible compromise of the RBG’s internal state. 569
Prediction resistance may be requested by a consuming application during a request for the 570
generation of (pseudo) random bits. If sufficient entropy can be obtained from the entropy 571
source(s) at that time, the DRBG is reseeded before the requested bits are generated. If sufficient 572
entropy is not available, an error indication is returned, and no bits are generated for output. 573
Therefore, it is recommended that prediction resistance not be claimed for an RBG implementation 574
unless sufficient entropy is reliably available upon request. 575
An RBG3 construction is provided with fresh entropy for every RBG output (see Section 6). As a 576
result, every output from an RBG3 construction has prediction resistance. 577
For a more complete discussion of backtracking and prediction resistance, see [SP800-90A]. 578

 RBG Security Boundaries 579

An RBG exists within a conceptual RBG security boundary that should be defined with respect to 580
one or more threat models that include an assessment of the applicability of an attack and the 581
potential harm caused by the attack. The RBG security boundary must be designed to assist in the 582
mitigation of these threats using physical or logical mechanisms or both. 583
The primary components of an RBG are a randomness source (i.e., an entropy source or an RBG 584
construction), a DRBG, and health tests for the RBG. RBG input (e.g., entropy bits and a 585
personalization string) shall enter an RBG only as specified in the functions described in Section 586
2.8. The security boundary of a DRBG is discussed in [SP800-90A]. The security boundary for an 587
entropy source is discussed in [SP800-90B]. Both the entropy source and the DRBG contain their 588
own health tests within their respective security boundaries. 589

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

9

Figure 2 shows an RBG implemented within a [FIPS 140]-validated cryptographic module. The 590
RBG security boundary shall either be the same as the cryptographic module boundary or be 591
completely contained within that boundary. The data input may be a personalization string or 592
additional input (see Section 2.4.1). The data output is status information and possibly random bits 593
or a state handle. Within the RBG security boundary of the figure are an entropy source and a 594
DRBG − each with its own (conceptual) security boundary. An entropy-source security boundary 595
includes a noise source, health tests, and (optionally) a conditioning component. A DRBG security 596
boundary contains the chosen DRBG, memory for the internal state, and health tests. An RBG 597
security boundary contains health tests and may also contain an (optional) external conditioning 598
function. The RBG2 and RBG3 constructions in Sections 5 and 6, respectively, use this model. 599

 600
Fig. 2. Example of an RBG Security Boundary within a Cryptographic Module 601

Note that in the case of the RBG1 construction in Section 4, the security boundary containing the 602
DRBG does not include a randomness source (shown as an entropy source in Figure 2). 603
A cryptographic primitive (e.g., an approved hash function) used by an RBG may be used by 604
other applications within the same cryptographic module. However, these other applications shall 605
not modify or reveal the RBG’s output, intermediate values, or internal state. 606

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

10

 Assumptions and Assertions 607

The RBG constructions in SP 800-90C are based on the use of validated entropy sources and the 608
following assumptions and assertions for properly functioning entropy sources: 609

1. An entropy source is independent of another entropy source if a) their security boundaries 610
do not overlap (e.g., they reside in separate cryptographic modules, or one is a physical 611
entropy source and the other is a non-physical entropy source), b) there are no common 612
noise sources,4 and c) statistical tests provide evidence of the independence of the entropy 613
sources. 614

2. The use of both validated and non-validated entropy sources is permitted in an 615
implementation, but only entropy sources that have been validated for compliance with 616
[SP800-90B] are used to provide the randomness input for seeding and reseeding a DRBG 617
or providing entropy for an RBG3 construction. 618

The following assumptions and assertions pertain to the use of validated entropy sources for 619
providing entropy bits: 620

3. For the purpose of analysis, it is assumed that a) the number of bits that are output by an 621
entropy source is never more than 264, and b) the number of output bits from the RBG is 622
never more than 264 bits for a DRBG instantiation. In the case of an RBG1 construction 623
with one or more subordinate DRBGs, the output limit applies to the total output provided 624
by the RBG1 construction and all of its subordinate DRBGs. 625

4. Each entropy-source output has a fixed length, ES_len (in bits). 626
5. Each entropy-source output is assumed to contain a fixed amount of entropy, denoted as 627

ES_entropy, that was assessed during entropy-source implementation validation. (See 628
[SP800-90B] for entropy estimation.) ES-entropy is assumed to be at least 0.1 bits per bit 629
of output. 630

6. Each entropy source has been characterized as either a physical entropy source or a non-631
physical entropy source upon successful validation. 632

7. The outputs from a single entropy source can be concatenated. The entropy of the resultant 633
bitstring is the sum of the entropy from each entropy-source output. For example, if m 634
outputs are concatenated, then the length of the bitstring is m × ES_len bits, and the entropy 635
for that bitstring is assumed to be m × ES_entropy bits. (This is a consequence of the model 636
of entropy used in [SP800-90B].) 637

8. The output of multiple independent entropy sources can be concatenated in an RBG. The 638
entropy in the resultant bitstring is the sum of the entropy in the output of each independent 639
entropy-source output that is considered to be contributing to the entropy in the bitstring 640
(see Methods 1 and 2 in Section 2.3). For example, suppose that the output from 641
independent physical entropy sources A and B and non-physical entropy source C are 642
concatenated. The length of the concatenated bitstring is the sum of the lengths of the 643
component bitstrings (i.e., ES_lenA + ES_lenB + ES_lenC). 644

4 They may, however, use the same type of noise source (e.g., both entropy sources could use ring oscillators but not the same ones).

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

11

• Using Method 1 in Section 2.3, the amount of entropy in the concatenated bitstring 645
is ES_entropyA + ES_entropyB. 646

• Using Method 2 in Section 2.3, the amount of entropy in the concatenated bitstring 647
is the sum of the entropies in the bitstrings (i.e., ES_entropyA + ES_entropyB + 648
ES_entropyC). 649

9. Under certain conditions, the output of one or more entropy sources can be externally 650
conditioned to provide full-entropy output. See Section 3.3.2 and Section 6.3.1 for the use 651
of this assumption and [NISTIR8427] for rationale. 652

Furthermore, 653
10. The amount of entropy in a subset bitstring that is “extracted” from the output block of an 654

approved hash function or block cipher is a proportion of the entropy in that block, such 655
that 656

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = �
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑙𝑙𝑙𝑙𝑙𝑙
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑙𝑙𝑙𝑙𝑙𝑙�

𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 657

where subset_len is the length of the subset bitstring, output_len is the length of the output 658
block, entropyoutput_block is the amount of entropy in the output block, and entropysubset is the 659
amount of entropy in the subset bitstring. 660

11. Full entropy bits can be extracted from the output block of a hash function or block cipher 661
when the amount of fresh entropy inserted into the algorithm exceeds the number of bits to 662
be extracted by at least 64 bits. For example, if output_len is the length of the output block, 663
all bits of the output block can be assumed to have full entropy if at least output_len + 64 664
bits of entropy are inserted into the algorithm. As another example, if a DRBG is reseeded 665
at its security strength s, (s − 64) bits with full entropy can be extracted from the DRBG’s 666
output block. 667

12. To instantiate a DRBG at a security strength of s bits, a bitstring of at least 3s/2 bits long 668
is needed from a randomness source for an RBG1 construction, and a bitstring with at least 669
3s/2 bits of entropy is needed from an entropy source for an RBG2 or RBG3 construction. 670

13. One or more of the constructions provided herein are used in the design of an RBG. 671
14. All components of an RBG2 and RBG3 construction (as specified in Sections 5 and 6) 672

reside within the physical boundary of a single [FIPS140]-validated cryptographic module. 673
15. The DRBGs specified in [SP800-90A] are assumed to meet their explicit security claims 674

(e.g., backtracking resistance, prediction resistance, claimed security strength, etc.). 675
The following assumptions and assertions have been made for the subordinate DRBGs (sub-676
DRBGs) that are seeded (i.e., initialized) using an RBG1 construction: 677

16. A sub-DRBG is considered to be part of the RBG1 construction that initializes it. 678
17. The assumptions and assertions in items 3, 10, and 14 (above) apply to sub-DRBGs. 679

 General Implementation and Use Requirements and Recommendations 680

When implementing the RBGs specified in this Recommendation, an implementation: 681

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

12

1. Shall destroy intermediate values before exiting the function or routine in which they are 682
used, 683

2. Shall employ an “atomic” generate operation whereby a generate request is completed 684
before using any of the requested bits, 685

3. Should consider the threats posed by quantum computers in the future, and 686
4. Should be implemented with the capability to support a security strength of 256 bits or to 687

provide full-entropy output. 688
When using RBGs, the user or application requesting the generation of random or pseudorandom 689
bits should request only the number of bits required for a specific immediate purpose rather than 690
generating bits to be stored for future use. Since, in most cases, the bits are intended to be secret, 691
the stored bits (if not properly protected) are potentially vulnerable to exposure, thus defeating the 692
requirement for secrecy. 693

 General Function Calls 694

Functions used within this document for accessing the DRBGs in [SP800-90A], the entropy 695
sources in [SP800-90B], and the RBG3 constructions specified in SP 800-90C are provided below. 696
Each function shall return a status code that shall be checked (e.g., a status of success or failure 697
by the function). 698
If the status code indicates a success, then additional information may also be returned, such as a 699
state handle from an instantiate function or the bits that were requested to be generated during a 700
generate function. 701
If the status code indicates a failure of an RBG component, then see Section 7.1.2 for error-702
handling guidance. Note that if the status code does not indicate a success, an invalid output (e.g., 703
a null bitstring) shall be returned with the status code if information other than the status code 704
could be returned. 705

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

13

 706
Fig. 3. General Function Calls 707

2.8.1. DRBG Functions 708

SP 800-90A specifies several functions for use within a DRBG, indicating the input and output 709
parameters and other implementation details. Note that, in some cases, some input parameters may 710
be omitted, and some output information may not be returned. 711
At least two functions are required in a DRBG: 712

1. An instantiate function that seeds the DRBG using the output of a randomness source and 713
other input (see Section 2.8.1.1) and 714

2. A generate function that produces output for use by a consuming application (see Section 715
2.8.1.2). 716

A DRBG may also support a reseed function (see Section 2.8.1.3). A Get_randomness-717
source_input function is used in SP 800-90A to request output from a randomness source during 718
instantiation and reseeding (see Section 2.8.1.4). 719
The use of the Uninstantiate_function specified in SP 800-90A is not explicitly discussed in SP 720
800-90C but may be required by an implementation. 721

2.8.1.1. DRBG Instantiation 722

A DRBG shall be instantiated prior to the generation of pseudorandom bits at the highest security 723
strength to be supported by the DRBG instantiation using the following call: 724

(status, state_handle) = Instantiate_function(requested_instantiation_security_strength, 725
prediction_resistance_flag, personalization_string). 726

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

14

 727
Fig. 4. Instantiate_function 728

The Instantiate_function (shown in Figure 4) is used to instantiate a DRBG at the 729
requested_instantiation_security_strength using the output of a randomness source5 and an 730
optional personalization_string to create seed material. A prediction_resistance flag may be used 731
to indicate whether subsequent Generate_function calls may request prediction resistance. As 732
stated in Section 2.4.1, a personalization_string is optional but strongly recommended. (Details 733
about the Instantiate_function are provided in [SP800-90A].) 734
If the returned status code for the Instantiate_function indicates a success (i.e., the DRBG has 735
been instantiated at the requested security strength), a state handle may6 be returned to indicate the 736
particular DRBG instance. When provided, the state handle will be used in subsequent calls to the 737
DRBG (e.g., during a Generate_function call) to identify the internal state information for the 738
instantiation. The information in the internal state includes the security strength of the instantiation, 739
the number of times that the instantiation has produced output, and other information that changes 740
during DRBG execution (see [SP800-90A] for each DRBG design). 741
When the DRBG has been instantiated at the requested_instantiation_security_strength, the 742
DRBG will operate at that security strength even if the requested_security_strength in subsequent 743
Generate_function calls (see Section 2.8.1.2) is less than the instantiated security strength. 744
If the status code indicates an error and an implementation is designed to return a state handle, an 745
invalid (e.g., Null) state handle shall be returned. 746

2.8.1.2. DRBG Generation Request 747

Pseudorandom bits are generated after DRBG instantiation using the following call: 748
(status, returned_bits) = Generate_function(state_handle, requested_number_of_bits, 749

requested_security_strength, prediction_resistance_request, additional_input). 750

5 The randomness source provides the randomness input required to instantiate the security strength of the DRBG.
6 In cases where only one instantiation of a DRBG will ever exist, a state handle need not be returned since only one internal state will be created.

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

15

 751
Fig. 5. Generate_function 752

The Generate_function (shown in Figure 5) requests that a DRBG generate a specified number 753
of bits. The request may indicate the DRBG instance to be used (using the state handle returned 754
by an Instantiate_function call; see Section 2.8.1.1), the number of bits to be returned, the security 755
strength that the DRBG needs to support for generating the bitstring, and whether or not prediction 756
resistance is to be obtained during this execution of the Generate_function. Optional additional 757
input may also be incorporated into the function call. As stated in Section 2.4.1, the ability to 758
handle and use additional input is recommended. 759
The Generate_function returns status information – either an indication of success or an error. If 760
the returned status code indicates a success, the requested number of bits is returned. 761

• If requested_number_of_bits is equal to or greater than the instantiated security strength, 762
the security strength that the returned_bits can support (if used as a key) is: 763

ss_key = the instantiated security strength, 764
where ss_key is the security strength of the key. 765

• If the requested_number of bits is less than the instantiated security strength, and the 766
returned_bits are to be used as a key, the key is capable of supporting a security strength 767
of: 768

ss_key = requested_number_of_bits. 769
If the status code indicates an error, the returned_bits shall consist of an invalid (e.g., Null) 770
bitstring that must not be used. Examples of conditions in which an error indication shall be 771
returned include the following: 772

• The requested_security_strength exceeds the instantiated security strength for the DRBG 773
(i.e., the security strength recorded in the DRBG’s internal state during instantiation). 774

• Prediction resistance has been requested but cannot be obtained at this time. 775
Details about the Generate_function are provided in Section 9.3 of [SP800-90A]. 776

2.8.1.3. DRBG Reseed Request 777

The reseeding of a DRBG instantiation is intended to insert additional entropy into that DRBG 778
instantiation (e.g., to recover from a possible compromise or to provide prediction resistance). This 779
is accomplished using the following call (note that this does not increase the security strength of 780
the DRBG): 781

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

16

status = Reseed_function(state_handle, additional_input). 782

 783
Fig. 6. Reseed_function 784

A Reseed_function (shown in Figure 6) is used to acquire at least s bits of fresh entropy for the 785
DRBG instance indicated by the state handle (or the only instance if no state handle has been 786
provided), where s is the security strength of the DRBG.7 In addition to the randomness input 787
provided from the randomness source(s) during reseeding, optional additional input may be 788
incorporated into the reseed process. As discussed in Section 2.4.1, the capability for handling 789
and using additional input is recommended. (Details about the Reseed_function are provided in 790
[SP800-90A].) 791
An indication of the status is returned. 792
The Reseed_function is not permitted in an RBG1 construction (see Section 4) but is permitted 793
in the RBG2 and RBG3 constructions (see Sections 5 and 6, respectively). 794

2.8.1.4. The Get_randomness-source_input Call 795

A Get_randomness-source_input call is used in the Instantiate_function and Reseed_function 796
in [SP800-90A] to indicate when a randomness source (i.e., an entropy source or RBG) needs to 797
be accessed to obtain randomness input. Details are not provided in SP 800-90A about how the 798
Get_randomness-source_input call needs to be implemented. SP 800-90C provides guidance on 799
how the call should actually be implemented based on various situations. Sections 4, 5, and 6 800
provide instructions for obtaining input from a randomness source when the Get_randomness-801
source_input call is encountered in SP 800-90A.8 802

2.8.2. Interfacing with Entropy Sources Using the GetEntropy and 803
Get_ES_Bitstring Functions 804

2.8.2.1. The GetEntropy Call 805

An entropy source, as discussed in [SP800-90B], is a mechanism for producing bitstrings that 806
cannot be predicted and whose unpredictability can be quantified in terms of min-entropy. SP 800-807
90B uses the following call for accessing an entropy source: 808

(status, ES_output) = GetEntropy (bits_of_entropy), 809

7 The value of s is available in the DRBG’s internal state.
8 Note that, at this time, modifications to the Instantiate_function and Reseed_function specification in SP 800-90A and to the appropriate
algorithms in Section 10 of that document may be required to accommodate the specific requests for entropy for each RBG construction.

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

17

where bits_of_entropy is the amount of entropy requested, ES_output is a bitstring containing the 810
requested amount of entropy, and status indicates whether or not the request has been satisfied. 811
See Figure 7. 812

 813
Fig. 7. GetEntropy function 814

If the status indicates a success, a bitstring of at least bits_of_entropy long is returned as the 815
ES_output. ES_output must contain at least the requested amount of entropy indicated by the 816
bits_of_entropy input parameter. If the status does not indicate a success, an invalid ES_output 817
bitstring is returned (e.g., ES_output could be a null bitstring). 818

2.8.2.2. The Get_ES_Bitstring Function 819

A single GetEntropy call may not be sufficient to obtain the entropy required for seeding and 820
reseeding a DRBG and for providing input for the exclusive-or operation in an RBG3(XOR) 821
construction (see Section 6.2). Therefore, SP 800-90C uses a Get_ES_Bitstring function (see 822
Figure 8) to obtain the required entropy from one or more GetEntropy calls. The 823
Get_ES_Bitstring function is invoked as follows: 824

(status, entropy_bitstring) = Get_ES_Bitstring(bits_of_entropy), 825
where bits_of_entropy is the amount of entropy requested in the returned entropy_ bitstring, and 826
status indicates whether or not the request has been satisfied. 827

 828
Fig. 8. Get_ES_Bitstring function 829

Note that if non-validated entropy sources are used (e.g., to provide entropy to be used as additional 830
input), they shall be accessed using a different function than is used to access validated entropy 831
sources (i.e., the Get_ES_Bitstring function). 832
If the returned status from the Get_ES_Bitstring function indicates a success, the requested 833
amount of entropy (i.e., indicated by bits_of_entropy) shall be returned in the entropy_bitstring, 834
whose length is equal to or greater than bits_of_entropy. If the status does not indicate a success, 835
an invalid entropy_bitstring shall be returned (e.g., entropy_bitstring is a null bitstring). 836
The Get_ES_Bitstring function will be used in this document to access validated entropy sources 837
to obtain one or more bitstrings with entropy using GetEntropy calls. 838

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

18

See Section 3.1 for additional discussion about the Get_ES_Bitstring function. 839

2.8.3. Interfacing with an RBG3 Construction 840

An RBG3 construction requires interface functions to instantiate its DRBG (see Section 2.8.3.1) 841
and to request the generation of full-entropy bits (see Section 2.8.3.2). 842

2.8.3.1. Instantiating a DRBG within an RBG3 Construction 843

The RBG3_DRBG_Instantiate function is used to instantiate the DRBG within the RBG3 844
construction using the following call: 845

(status, state_handle) = RBG3_DRBG_Instantiate(prediction_resistance_flag, 846
personalization_string). 847

 848
Fig. 9. RBG3 DRBG_Instantiate function 849

The RBG3’s instantiate function (shown in Figure 9) will result in a call to the DRBG’s 850
Instantiate_function (provided in Section 2.8.1.1). An optional but recommended 851
personalization_string (see Section 2.4.1) may be provided as an input parameter. If included, the 852
personalization_string shall be passed to the DRBG that is instantiated in the 853
Instantiate_function request. See Sections 6.2.1.1 and 6.3.1.1 for more specificity. 854
If the returned status code indicates a success, a state handle may be returned to indicate the 855
particular DRBG instance that is to be used by the construction. Note that if multiple instances of 856
the DRBG are used, a separate state handle shall be returned for each instance. When provided, 857
the state handle shall be used in subsequent calls to that RBG (e.g., during a call to the generate 858
function) when multiple instances of the DRBG have been instantiated. If the status code indicates 859
an error (e.g., entropy is not currently available, or the entropy source has failed), an invalid (e.g., 860
Null) state handle shall be returned. 861

2.8.3.2. Generation Using an RBG3 Construction 862

The RBG3(XOR) and RBG3(RS) generate functions are different because of the difference in their 863
designs (see Sections 6.2.1.2 and 6.3.1.2). 864
For the RBG3(XOR) construction, the generate function is invoked using the following call: 865

(status, returned_bits) = RBG3(XOR)_Generate(state_handle, requested_number_of_bits, 866
prediction_resistance_request, additional_input). 867

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

19

 868
Fig. 10. RBG3(XOR)_Generate function 869

For the RBG3(RS) construction, the generate function is invoked using the following call: 870
(status, returned_bits) = RBG3(RS)_Generate(state_handle, 871

requested_number_of_bits, additional_input). 872

 873
Fig. 11. RBG3(RS)_Generate function 874

The RBG3(XOR)_Generate function (shown in Figure 10) includes a 875
prediction_resistance_request parameter to request a reseed of the RBG3(XOR)’s DRBG 876
instantiation, when desired. This parameter is not included as a parameter for the 877
RBG3(RS)_Generate function (shown in Figure 11) since this design always reseeds itself during 878
execution. 879
The generate functions result in calls to the entropy sources and the DRBG instantiation used by 880
the RBG3 construction. This call accesses the DRBG using the Generate_function call provided 881
in Section 2.8.1.2. The input parameters to the two generate functions are used when calling the 882
DRBG instantiation used by that RBG3 construction. 883
If the returned status code indicates a success, a bitstring that contains the newly generated bits is 884
returned. The RBG then uses the resulting bitstring as specified for each RBG3 construction (see 885
Section 6). 886
If the status code indicates an error (e.g., the entropy source has failed), an invalid (e.g., Null) 887
bitstring shall be returned as the returned_bits. 888

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

20

 Accessing Entropy Source Output 889

The security provided by an RBG is based on the use of validated entropy sources. Section 3.1 890
discusses the use of the Get_ES_Bitstring function to request entropy from one or more entropy 891
sources. Section 3.2 discusses the behavior required by an entropy source. Section 3.3 discusses 892
the conditioning of the output of one or more entropy sources to obtain a bitstring with full entropy 893
before further use by an RBG. 894

 The Get_ES_Bitstring Function 895

The Get_ES_Bitstring function specified in Section 2.8.2.2 is used within an RBG to obtain 896
entropy from one or more validated entropy sources using one or more GetEntropy calls (see 897
Sections 2.8.2.1 and 3.2) in whatever manner is required (e.g., by polling the entropy sources or 898
by extracting bits containing entropy from a pool of collected bits). The Get_ES_Bitstring 899
function shall only be used to access validated entropy sources to obtain the entropy for seeding 900
and reseeding a DRBG and for providing input for the exclusive-or operation of an RBG3(XOR) 901
construction (see Section 6.2). 902
In many cases, the Get_ES_Bitstring function will need to query an entropy source (or a set of 903
entropy sources) multiple times to obtain the amount of entropy requested. For the most part, the 904
construction of the Get_ES_Bitstring function itself is not specified in this document but is left 905
to the developer to implement appropriately for the selected entropy sources. 906
The behavior of the Get_ES_Bitstring function shall be as follows: 907

1. A Get_ES_Bitstring function shall only be used to access one or more validated entropy 908
sources. 909

2. The entropy bitstrings produced from multiple entropy-source calls to a single validated 910
entropy source or by calls to multiple validated entropy sources shall be concatenated into 911
a single bitstring. The entropy in the bitstring is computed as the sum of the entropy 912
produced by each call to a validated entropy source that is to be counted as contributing 913
entropy to the bitstring (see Section 2.3).9 914

3. If a failure is reported during an invocation of the Get_ES_Bitstring function by any 915
physical or non-physical entropy source whose entropy is counted toward fulfilling an 916
entropy request, the failure shall be handled as discussed in Section 7.1.2. 917

4. If a non-physical entropy source whose entropy is not counted reports a failure, the failure 918
shall be reported to the RBG or the consuming application. 919

5. The Get_ES_Bitstring function shall not return an entropy_bitstring unless the bitstring 920
contains sufficient entropy to fulfill the entropy request. The returned status shall indicate 921
a success only when this condition is met. 922

9 For Method 1 in Section 3.3, only entropy contributed by one or more validated physical entropy sources is counted. For Method 2, the entropy
from all validated entropy sources is counted.

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

21

 Entropy Source Requirements 923

This Recommendation requires the use of one or more validated entropy sources to provide 924
entropy for seeding and reseeding a DRBG and for input to the XOR operation in the RBG3(XOR) 925
construction specified in Section 6.2. In addition to the assumptions and assertions concerning 926
entropy sources in Section 2.6, the following conditions shall be met when using these entropy 927
sources: 928

1. Only validated entropy sources shall be used to provide the entropy bitstring for seeding 929
and reseeding a DRBG and for providing input to the XOR operation in the RBG3(XOR) 930
construction. 931
Non-validated entropy sources may be used by an RBG to provide input for personalization 932
strings and/or the additional input in DRBG function calls (see Section 2.4.1). 933

2. Each validated entropy source shall be independent of all other validated or non-validated 934
entropy sources used by the RBG. 935

3. The outputs from an entropy source shall not be reused (e.g., the value in the entropy 936
source is erased after being output). 937

4. When queried for entropy, the validated entropy sources must respond as follows: 938
a. The requested output must be returned only if the returned status indicates a 939

success. In this case, the ES-output bitstring must contain the requested amount of 940
entropy. (Note that the ES-output bitstring may be longer than the amount of 941
entropy requested, i.e., the bitstring may not have full entropy.) 942

b. If an indication of a failure is returned by a validated entropy source as the status, 943
an invalid (e.g., Null) bitstring shall be returned as ES_output. 944

5. If the validated entropy-source components operate continuously regardless of whether 945
requests are received and a failure is determined, the entropy source shall immediately 946
report the failure to the RBG (see Section 7.1.2). 947

6. If a validated entropy source reports a failure (e.g., because of a failed health test), the 948
entropy source shall not produce output (except possibly for a failure status indication) 949
until the failure is corrected. The entropy source shall immediately report the failure to the 950
Get_ES_Bitstring function (see Section 3.1). If multiple validated entropy sources are 951
used, the report shall identify the entropy source that reported the failure. 952

7. A detected failure of any entropy source shall cause the RBG to report the failure to the 953
consuming application and terminate the RBG operation. The RBG must not be returned 954
to normal operation until the conditions that caused the failure have been corrected and 955
tested for successful operation. 956

 External Conditioning to Obtain Full-Entropy Bitstrings 957

An RBG3(XOR) construction (see Section 6.2) and a CTR_DRBG without a derivation function 958
in an RBG2 or RBG3 construction (see Sections 5 and 6) require bitstrings with full entropy from 959
an entropy source. If the validated entropy source does not provide full-entropy output, a method 960

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

22

for conditioning the output to obtain a bitstring with full entropy is needed. Since this conditioning 961
is performed outside an entropy source, the output is said to be externally conditioned. 962
When external conditioning is performed, the vetted conditioning function listed in [SP800-90B] 963
shall be used. 964

3.3.1. Conditioning Function Calls 965

The conditioning functions operate on bitstrings obtained from one or more calls to the entropy 966
source(s). 967
The following format is used in Section 3.3.2 for a conditioning-function call: 968

conditioned_output = Conditioning_function(input_parameters), 969
where the input_parameters for the selected conditioning function are discussed in Sections 3.3.1.2 970
and 3.3.1.3, and conditioned_output is the output returned by the conditioning function. 971

3.3.1.1. Keys Used in External Conditioning Functions 972

The HMAC, CMAC, and CBC-MAC vetted conditioning functions require the input of a Key of 973
a specific length (keylen). Unlike other cryptographic applications, keys used in these external 974
conditioning functions do not require secrecy to accomplish their purpose so may be hard-coded, 975
fixed, or all zeros. 976
For the CMAC and CBC-MAC conditioning functions, the length of the key shall be an 977
approved key length for the block cipher used (e.g., keylen = 128, 192, or 256 bits for AES). 978
For the HMAC conditioning function, the length of the key shall be equal to the length of the hash 979
function’s output block (i.e., output_len). 980

Table 2. Key Lengths for the Hash-based Conditioning Functions 981

Hash Function Length of the output block
(output_len) and key (keylen)

SHA-224, SHA-512/224, SHA3-224 224
SHA-256, SHA-512/256, SHA3-256 256
SHA-384, SHA3-384 384
SHA-512, SHA3-512 512

Using random keys may provide some additional security in case the input is more predictable 982
than expected. Thus, these keys should be chosen randomly in some way (e.g., by drawing bits 983
directly from the entropy source and inserting them into the key or by providing entropy-source 984
bits to a conditioning function with a fixed key to derive the new key). Note that any entropy used 985
to randomize the key shall not be used for any other purpose (e.g., as input to the conditioning 986
function). 987

3.3.1.2. Hash Function-based Conditioning Functions 988

Conditioning functions may be based on approved hash functions. 989

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

23

One of the following calls shall be used for external conditioning when the conditioning function 990
is based on a hash function: 991

1. Using an approved hash function directly: 992
conditioned_output = Hash(entropy_bitstring), 993

where the hash function operates on the entropy_bitstring provided as input. 994
2. Using HMAC with an approved hash function: 995

conditioned_output = HMAC(Key, entropy_bitstring), 996
where HMAC operates on the entropy_bitstring using a Key determined as specified in 997
Section 3.3.1.1. 998

3. Using Hash_df as specified in SP 800-90A: 999
conditioned_output = Hash_df(entropy_bitstring, output_len), 1000

where the derivation function operates on the entropy_bitstring provided as input to 1001
produce a bitstring of output_len bits. 1002

In all three cases, the length of the conditioned output is equal to the length of the output block of 1003
the selected hash function (i.e., output_len). 1004

3.3.1.3. Block Cipher-based Conditioning Functions 1005

Conditioning functions may be based on approved block ciphers.10 TDEA shall not be used as 1006
the block cipher (see Section 2.6). 1007
For block cipher-based conditioning functions, one of the following calls shall be used for external 1008
conditioning: 1009

1. Using CMAC (as specified in [SP800-38B]) with an approved block cipher: 1010
conditioned_output = CMAC(Key, entropy_bitstring), 1011

where CMAC operates on the entropy_bitstring using a Key determined as specified in 1012
Section 3.3.1.1. 1013

2. Using CBC-MAC (specified in Appendix F of [SP800-90B]) with an approved block 1014
cipher: 1015

conditioned_output = CBC-MAC(Key, entropy_bitstring), 1016
where CBC-MAC operates on the entropy_bitstring using a Key determined as specified 1017
in Section 3.3.1.1. 1018

10 At the time of publication, only AES-128, AES-192, and AES-256 were approved as block ciphers for the

conditioning functions (see SP 800-90B). In all three cases, the block length is 128 bits.

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

24

CBC-MAC shall only be used as an external conditioning function under the following 1019
conditions: 1020

a. The length of the input is an integer multiple of the block size of the block cipher 1021
(e.g., a multiple of 128 bits for AES) − no padding is done by CBC-MAC itself.11 1022

b. All inputs to CBC-MAC in the same RBG shall have the same length. 1023
c. If the CBC-MAC conditioning function is used to obtain full entropy from an 1024

entropy source for CTR_DRBG instantiation or reseeding: 1025
 A personalization string shall not be used during instantiation. 1026
 Additional input shall not be used during the reseeding of the 1027

CTR_DRBG but may be used during the generate process. 1028
CBC-MAC is not approved for any use other than in an RBG (see [SP800-90B]). 1029

3. Using the Block_cipher_df as specified in [SP800-90A] with an approved block cipher: 1030
conditioned_output = Block_cipher_df(entropy_bitstring, block_length), 1031

where Block_cipher_df operates on the entropy_bitstring using a key specified within the 1032
function, and the block_length is 128 bits for AES. 1033

In all three cases, the length of the conditioned output is equal to the length of the output block 1034
(i.e., 128 bits for AES). If the requested amount of entropy is requested for subsequent use by an 1035
RBG,12 then multiple iterations of the conditioning function may be required, each using a different 1036
entropy_bitstring. 1037

3.3.2. Using a Vetted Conditioning Function to Obtain Full-Entropy Bitstrings 1038

This construction will produce a bitstring with full entropy using one of the conditioning functions 1039
identified in Section 3.3.1.1 for an RBG2 or RBG3 construction whenever a bitstring with full 1040
entropy is required (e.g., to seed or reseed a CTR_DRBG with no derivation function or to provide 1041
full entropy for the RBG3(XOR) construction). This process is unnecessary if the entropy source 1042
provides full-entropy output. 1043
Let output_len be the length of the output block of the vetted conditioning function to be used; 1044
output_len is the length of the hash function’s output block when a hash-based conditioning 1045
function is used (see Section 3.3.1.2); output_len = 128 when an AES-based conditioning function 1046
is used (see Section 3.3.1.3). 1047
The approach used by this construction is to acquire sufficient entropy from the entropy source to 1048
produce output_len bits with full entropy in the conditioning function’s output block, where 1049
output_len is the length of the output block. The amount of entropy required for each use of the 1050
conditioning function is output_len + 64 bits (see item 11 of Section 2.6). This process is repeated 1051
until the requested number of full-entropy bits have been produced. 1052

11 Any padding required could be done before submitting the entropy_bitstring to the CBC-MAC function.
12 Since the output block of AES is only 128 bits, this will often be the case when seeding or reseeding a DRBG.

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

25

The Get_conditioned_full_entropy_ input function below obtains entropy from one or more 1053
entropy sources using the Get_ES_Bitstring function discussed in Section 3.1 and conditions it 1054
to provide an n-bit string with full entropy. 1055
Get_conditioned_full_entropy_input: 1056

Input: integer n. Comment: the requested number of full-entropy bits. 1057
Output: integer status, bitstring returned_bitstring. 1058

Process: 1059
1. temp = the Null string. 1060
2. ctr = 0. 1061
3. While ctr < n, do 1062

3.1 (status, entropy_bitstring) = Get_ES_Bitstring(output_len + 64). 1063
3.2 If (status ≠ SUCCESS), then return (status, invalid_bitstring). 1064
3.3 conditioned_output = Conditioning_function(input_parameters). 1065
3.4 temp = temp || conditioned_output. 1066
3.5 ctr = ctr + output_len. 1067

4. returned_bitstring = leftmost(temp, n). 1068
5. Return (SUCCESS, returned_bitstring). 1069

Steps 1 and 2 initialize the temporary bitstring (temp) for storing the full-entropy bitstring being 1070
assembled and the counter (ctr) that counts the number of full-entropy bits produced for each 1071
iteration of step 3. 1072
Step 3 obtains and processes the entropy for each iteration. 1073

• Step 3.1 requests output_len + 64 bits from the validated entropy sources. When the output 1074
of multiple entropy sources is used, the entropy counted for fulfilling the request for outlen 1075
+ 64 bits is determined using Method 1 or Method 2 as specified in Section 2.3 in the 1076
following situations: 1077
Method 1 shall be used when: 1078

 Instantiating and reseeding an RBG2(P) construction containing a CTR_DRBG with no 1079
derivation function (see Section 5.2.1, item 1b, and Section 5.2.3), 1080

 Instantiating and reseeding a CTR_DRBG with no derivation function that is used within 1081
an RBG3 construction (see Section 6.1, requirement 1), or 1082

 Generating bits in an RBG3(XOR) construction (see Section 6.2.1.2, step 1). 1083
Method 2 shall be used when instantiating and reseeding an RBG2(NP) construction 1084
containing a CTR_DRBG with no derivation function (see Section 5.2.1, item 1b, and 1085
Section 5.2.3). 1086

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

26

• Step 3.2 checks whether or not the status returned in step 3.1 indicated a success. If the 1087
status did not indicate a success, the status is returned along with an invalid bitstring as the 1088
returned_bitstring (e.g., invalid_bitstring is Null). 1089

• Step 3.3 invokes the conditioning function for processing the entropy_bitstring obtained 1090
from step 3.1. The input_parameters for the selected Conditioning_function are specified 1091
in Sections 3.3.1.2 or 3.3.1.3, depending on the conditioning function used. 1092

• Step 3.4 concatenates the conditioned_output received in step 3.3 to the temporary bitstring 1093
(temp), and step 3.5 increments the counter for the number of full-entropy bits that have 1094
been produced so far. 1095

• If at least n full-entropy bits have not been produced, repeat the process starting at step 3.1. 1096

• Step 4 truncates the full-entropy bitstring to n bits. 1097

• Step 5 returns an n-bit full-entropy bitstring as the returned_bitstring. 1098

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

27

 RBG1 Constructions Based on RBGs with Physical Entropy Sources 1099

An RBG1 construction provides a source of cryptographic random bits from a device that has no 1100
internal randomness source. Its security depends entirely on being instantiated securely from an 1101
RBG with access to a physical entropy source that resides outside of the device. 1102
An RBG1 construction is instantiated (i.e., seeded) only once before its first use by an RBG2(P) 1103
construction (see Section 5) or an RBG3 construction (see Section 6). Since a randomness source 1104
is not available after DRBG instantiation, an RBG1 construction cannot be reseeded and, therefore, 1105
cannot provide prediction resistance. 1106
An RBG1 construction may be useful for constrained devices in which an entropy source cannot 1107
be implemented or in any device in which access to a suitable source of randomness is not available 1108
after instantiation. Since an RBG1 construction cannot be reseeded, the use of the DRBG is limited 1109
to the DRBG’s seedlife (see [SP800-90A]). 1110
Subordinate DRBGs (sub-DRBGs) may be used within the security boundary of an RBG1 1111
construction (see Section 4.3). The use of one or more sub-DRBGs may be useful for 1112
implementations that use flash memory, such as when the number of write operations to the 1113
memory is limited (resulting in short device lifetimes) or when there is a need to use different 1114
DRBG instantiations for different purposes. The RBG1 construction is the source of the 1115
randomness that is used to (optionally) instantiate one or more sub-DRBGs. Each sub-DRBG is a 1116
DRBG specified in SP 800-90A and is intended to be used for a limited time and a limited purpose. 1117
A sub-DRBG is, in fact, a different instantiation of the DRBG design implemented within the 1118
RBG1 construction (see Section 2.4.1). 1119

 RBG1 Description 1120

As shown in Figure 12, an RBG1 construction consists of a DRBG contained within a DRBG 1121
security boundary in one cryptographic module and an RBG (serving as a randomness source) 1122
contained within a separate cryptographic module from that of the RBG1 construction. Note that 1123
the required health tests are not shown in the figure. 1124

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

28

 1125
Fig. 12. RBG1 Construction 1126

The RBG for instantiating the DRBG within the RBG1 construction must be either an RBG2(P) 1127
construction that has support for prediction resistance requests (see Section 5) or an RBG3 1128
construction (see Section 6). A physically secure channel between the randomness source and the 1129
DRBG is used to securely transport the randomness input required for the instantiation of the 1130
DRBG. An optional recommended personalization string and optional additional input may be 1131
provided from within the DRBG’s cryptographic module or from outside of that module (see 1132
Section 2.4.1). 1133
An external conditioning function is not needed for this design because the output of the RBG has 1134
already been cryptographically processed. 1135
The output from an RBG1 construction may be used within the cryptographic module (e.g., to seed 1136
a sub-DRBG as specified in Section 4.3) or by an application outside of the RBG1 security 1137
boundary. 1138
The security strength provided by the RBG1 construction is the minimum of the security strengths 1139
provided by the DRBG within the construction, the secure channel, and the RBG used to seed the 1140
DRBG. 1141
Examples of RBG1 and sub-DRBG constructions are provided in Appendices B.2 and B.3, 1142
respectively. 1143

 Conceptual Interfaces 1144

Interfaces to the DRBG within an RBG1 construction include function calls for instantiating the 1145
DRBG and generating pseudorandom bits upon request (see Sections 4.2.1 and 4.2.2). 1146
Note that reseeding is not included in this construction. 1147

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

29

4.2.1. Instantiating the DRBG in the RBG1 Construction 1148

The DRBG within the RBG1 construction may be instantiated at any security strength possible for 1149
the DRBG design using the Instantiate_function discussed in Section 2.8.1.1 and [SP800-90A], 1150
subject to the maximum security strength that is supported by the RBG used as the randomness 1151
source. 1152

(status, RBG1_state_handle) = 1153
Instantiate_function (s, prediction_resistance_flag = FALSE, personalization_string), 1154

where s is the requested security strength for the DRBG in the RBG1 construction. If used, the 1155
prediction_resistance_flag is set to FALSE since the DRBG cannot be reseeded to provide 1156
prediction resistance. 1157
An external RBG (i.e., the randomness source) shall be used to obtain the bitstring necessary for 1158
establishing the DRBG’s s-bit security strength. 1159
In SP 800-90A, the Instantiate_function specifies the use of a Get_randomness-source_input 1160
call to obtain randomness input from the randomness source for instantiation (see Section 2.8.1.4 1161
in this document and in [SP800-90A]). For an RBG1 construction, an approved external RBG2(P) 1162
or RBG3 construction must be used as the randomness source (see Sections 5 and 6, respectively). 1163
If the randomness source is an RBG2(P) construction (see Figure 13), the Get_randomness-1164
source_input call in the Instantiate_function shall be replaced by a Generate_function call to 1165
the RBG2(P) construction (in whatever manner is required) (see Sections 2.8.1.2 and 5.2.2). The 1166
RBG2(P) construction must be reseeded using its internal entropy source(s) before generating bits 1167
to be provided to the RBG1 construction. This is accomplished by setting the 1168
prediction_resistance_request parameter in the Generate_function call to TRUE (see steps 1a 1169
and 2a below). 1170

 1171
Fig. 13. Instantiation Using an RBG2(P) Construction as a Randomness Source 1172

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

30

If the randomness source is an RBG3 construction (as shown in Figure 14), the Get_randomness-1173
source_input call shall be replaced by the appropriate RBG3 generate function (see Sections 1174
2.8.3.2, 6.2.1.2, and 6.3.1.2 and steps 1b, 1c, 2b, and 2c below). 1175

 1176
Fig. 14. Instantiation using an RBG3(XOR) or RBG3(RS) Construction as a Randomness Source 1177

Let s be the security strength to be instantiated. The DRBG within an RBG1 construction is 1178
instantiated as follows: 1179

1. When an RBG1 construction is instantiating a CTR_DRBG without a derivation function, 1180
s + 128 bits13 shall be obtained from the randomness source as follows: 1181

If the randomness source is an RBG2(P) construction (see Figure 13), the 1182
Get_randomness-source_input call is replaced by: 1183

(status, randomness-source_input) = Generate_function(RBG2_state_handle, s + 1184
128, s, prediction_resistance_request = TRUE, additional_input). 1185

Note that the DRBG within the RBG2(P) construction must be reseeded before 1186
generating output.14 This may be accomplished by requesting prediction resistance 1187
(i.e., setting prediction_resistance_request = TRUE). See Requirement 17 in Section 1188
4.4.1. 1189

13 For AES, the block length is 128 bits, and the key length is equal to the security strength s. SP 800-90A requires the randomness input from the
randomness source to be key length + block length bits when a derivation function is not used.
14 See Requirement 11 in Section 5.4.1.

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

31

If the randomness source is an RBG3(XOR) construction (see Figure 14), the 1190
Get_randomness-source_input call is replaced by: 1191
(status, randomness-source_input) = RBG3(XOR)_Generate(RBG3_state_handle, s 1192

+ 128, prediction_resistance_request, additional_input). 1193
A request for prediction resistance from the DRBG used by the RBG3(XOR) 1194
construction is optional. 1195

c) If the randomness source is an RBG3(RS) construction (see Figure 14), the 1196
Get_randomness-source_input call is replaced by: 1197

(status, randomness-source_input) = RBG3(RS)_Generate(RBG3_state_handle, 1198
3s/2, additional_input). 1199

2. When an RBG1 construction is instantiating any other DRBG (including a CTR_DRBG 1200
with a derivation function), 3s/2 bits shall be obtained from a randomness source that 1201
provides a security strength of at least s bits. 1202
a) If the randomness source is an RBG2(P) construction (see Figure 13), the 1203

Get_randomness-source_input call is replaced by: 1204
(status, randomness-source_input) = Generate_function(RGB2_state_handle, 3s/2, 1205

s, prediction_resistance_request = TRUE, additional_input). 1206
Note that the DRBG within the RBG2(P) construction must be reseeded before 1207
generating output. This is accomplished by requesting prediction resistance (i.e., by 1208
setting prediction_resistance_request = TRUE). See Requirement 17 in Section 4.4. 1209

b) If the randomness source is an RBG3(XOR) construction (see Figure 14), the 1210
Get_randomness-source_input call is replaced by: 1211
(status, randomness-source_input) = RBG3(XOR)_Generate(RBG3_state_handle, 1212

3s/2, prediction_resistance_request, additional_input). 1213
A request for prediction resistance from the DRBG used by the RBG3(XOR) 1214
construction is optional. 1215

c) If the randomness source is an RBG3(RS) construction (see Figure 14), the 1216
Get_randomness_-sourceinput call is replaced by: 1217

(status, randomness-source_input) = RBG3(RS)_Generate(RBG3_state_handle, 1218
3s/2, additional_input). 1219

4.2.2. Requesting Pseudorandom Bits 1220

Pseudorandom bits from the RBG1 construction shall be requested using the following call: 1221
(status, returned_bits) = Generate_function(RBG1_state_handle, 1222

requested_number_of_bits, s, prediction_resistance_request = FALSE, additional_input). 1223
The prediction_resistance_request is set to FALSE or the parameter may be omitted since a 1224
reseeding capability is not included in an RBG1 construction. 1225

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

32

 Using an RBG1 Construction with Subordinate DRBGs (Sub-DRBGs) 1226

Figure 15 depicts an example of the use of optional subordinate DRBGs (sub-DRBGs) within the 1227
security boundary of an RBG1 construction. The RBG1 construction is used as the randomness 1228
source to provide separate outputs to instantiate each of its sub_DRBGs. 1229

 1230
Fig. 15. RBG1 Construction with Sub-DRBGs 1231

The RBG1 construction and each of its sub-DRBGs shall be implemented as separate physical or 1232
logical entities (see Figure 15). 1233

• When implemented as separate physical entities, the DRBG algorithms used by the RBG1 1234
construction and a sub-DRBG shall be the same DRBG algorithm (e.g., the RBG1 1235
construction and all of its sub_DRBGs use HMAC_DRBG and SHA-256). 1236

• When implemented as separate logical entities, the same software or hardware 1237
implementation of a DRBG algorithm is used but with a different internal state for each 1238
logical entity (e.g., the RBG1 construction has an internal state whose state handle is 1239
RBG1_state_handle, while the state handle for Sub-DRBG 1’s internal state is sub-1240
DRBG1_state_handle). 1241

The sub-DRBGs have the following characteristics: 1242
1. A sub-DRBG cannot be reseeded or provide prediction resistance. 1243
2. Sub-DRBG outputs are considered outputs from the RBG1 construction. 1244
3. The security strength that can be provided by a sub-DRBG is no more than the security 1245

strength of its randomness source (i.e., the RBG1 construction). 1246
4. Each sub-DRBG has restrictions on its use (e.g., the number of outputs) as specified for its 1247

DRBG algorithm in [SP800-90A]. 1248
5. Sub-DRBGs cannot provide output with full entropy. 1249
6. The number of sub-DRBGs that can be instantiated by a RBG1 construction is limited only 1250

by practical considerations associated with the implementation or application. 1251

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

33

4.3.1. Instantiating a Sub-DRBG 1252

Instantiation of the sub-DRBG is requested (e.g., by a consuming application) using the 1253
Instantiate_function discussed in Section 2.8.1.1 and [SP800-90A]. 1254

(status, sub-DRBG_state_handle) = 1255
Instantiate_function(s, prediction_resistance_flag = FALSE, personalization_string), 1256

where s is the requested security strength for the (target) sub-DRBG (note that s must be no greater 1257
than the security strength of the RBG1 construction).15 1258
The (target) sub-DRBG is instantiated as follows: 1259

1. When the sub-DRBG uses CTR_DRBG without a derivation function, s + 128 bits16 shall 1260
be obtained from the RBG1 construction as follows: 1261

(status, randomness-source_input) = Generate_function(RBG1_state_handle, s + 1262
128, s, prediction_resistance_request = FALSE, additional_input). 1263

2. When the sub-DRBG uses any other DRBG (including a CTR_DRBG with a derivation 1264
function), 3s/2 bits shall be obtained from the RBG1 construction as follows: 1265

(status, randomness-source_input) = Generate_function(RBG1_state_handle, 3s/2, 1266
s, prediction_resistance_request = FALSE, additional_input). 1267

4.3.2. Requesting Random Bits 1268

Pseudorandom bits may be requested from a sub-DRBG using the following call (see Section 1269
2.8.1.2): 1270

(status, returned_bits) = Generate_function(sub_DRBG_state_handle, 1271
requested_number_of_bits, requested_security_strength, prediction_resistance_request = 1272

FALSE, additional_input), 1273
where sub_DRBG_state_handle (if used) was returned by the Instantiate_function (see Sections 1274
2.8.1.1 and 4.3.1). 1275

 Requirements 1276

4.4.1. RBG1 Requirements 1277

An RBG1 construction being instantiated has the following testable requirements (i.e., testable by 1278
the validation labs): 1279

1. An approved DRBG from [SP800-90A] whose components are capable of providing the 1280
targeted security strength for the RBG1 construction shall be employed. 1281

15 The implementation is required to check the requested security strength (for the sub-DRBG) against the security strength recorded in the internal
state of the RBG1’s DRBG (see SP 800-90A).
16 For AES, the block length is 128 bits, and the key length is equal to the security strength s. SP 800-90A requires the randomness input from the
randomness source to be (key length + block length) bits when a derivation function is not used.

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

34

2. The RBG1 components shall be successfully validated for compliance with [SP800-90A], 1282
SP 800-90C, [FIPS140], and the specification of any other approved algorithm used within 1283
the RBG1 construction, as applicable. 1284

3. The RBG1 construction shall not produce any output until it is instantiated. 1285
4. The RBG1 construction shall not include a reseed capability. 1286
5. The RBG1 construction shall not permit itself to be instantiated more than once.17 1287
6. For a Hash_DRBG, HMAC_DRBG or CTR_DRBG (with a derivation function), 3s/2 bits 1288

shall be obtained from a randomness source (see Requirements 13 - 17), where s is the 1289
targeted security strength for the DRBG used in the RBG1 construction. 1290

7. For a CTR_DRBG (without a derivation function), s + 128 bits18 shall be obtained from 1291
the randomness source (see Requirements 13 - 17), where s is the targeted security strength 1292
for the DRBG used in the RBG1 construction. 1293

8. The internal state of the RBG1 construction shall be maintained19 and updated to produce 1294
output on demand. 1295

9. The RBG1 construction shall not provide output for generating requests that specify a 1296
security strength greater than the instantiated security strength of its DRBG. 1297

10. If the RBG1 construction is used to instantiate a sub-DRBG, the RBG1 construction may 1298
directly produce output in addition to instantiating the sub-DRBG. 1299

11. If the seedlife of the DRBG within the RBG1 construction is ever exceeded or a health test 1300
of the DRBG fails, the use of the RBG1 construction shall be terminated. 1301

12. If a health test on the RBG1 construction fails, the RBG1 construction and all of its sub-1302
DRBGs shall be terminated. 1303

The non-testable requirements for the RBG1 construction are listed below. If these requirements 1304
are not met, no assurance can be obtained about the security of the implementation. 1305

13. An approved RBG2(P) construction with support for prediction resistance requests or an 1306
RBG3 construction must be used as the randomness source for the DRBG in the RBG1 1307
construction. 1308

14. The randomness source must fulfill the requirements in Section 5 (for an RBG(P) 1309
construction) or Section 6 (for an RBG3 construction), as appropriate. 1310

15. The randomness source must provide the requested number of bits at a security strength of 1311
s bits or higher, where s is the targeted security strength for the RBG1 construction. 1312

16. The specific output of the randomness source (or portion thereof) that is used for the 1313
instantiation of an RBG1 construction must not be used for any other purpose, including 1314
for seeding a different instantiation. 1315

17 While technically possible to reseed the DRBG, doing so outside of very controlled conditions (e.g., “in the field”) might result in seeds with less
than the required amount of randomness.
18 Note that s + 128 = keylen + blocklen = seedlen, as specified in SP 800-90A.
19 This means ever-changing but maintained regardless of access to power for its entire lifetime.

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

35

17. If an RBG2(P) construction is used as the randomness source for the RBG1 construction, 1316
the RBG2(P) construction must be reseeded (i.e., prediction resistance must be obtained 1317
within the RBG2(P) construction) before generating bits for each RBG1 instantiation. 1318

18. A physically secure channel must be used to insert the randomness input from the 1319
randomness source into the DRBG of the RBG1 construction. 1320

19. An RBG1 construction must not be used for applications that require a higher security 1321
strength than has been instantiated. 1322

4.4.2. Sub-DRBG Requirements 1323

A sub-DRBG has the following testable requirements (i.e., testable by the validation labs). 1324
1. The randomness source for a sub-DRBG shall be an RBG1 construction; a sub-DRBG 1325

shall not serve as a randomness source for another sub-DRBG. 1326
2. A sub-DRBG shall employ the same DRBG components as its randomness source. 1327
3. A sub-DRBG shall reside in the same security boundary as the RBG1 construction that 1328

initializes it. 1329
4. The RBG1 construction shall fulfill the appropriate requirements of Section 4.4.1. 1330
5. A sub-DRBG shall exist only for a limited time and purpose, as determined by the 1331

application or developer. 1332
6. The output from the RBG1 construction that is used for sub-DRBG instantiation shall not 1333

be output from the security boundary of the construction and shall not be used for any 1334
other purpose, including for seeding a different sub-DRBG. 1335

7. A sub-DRBG shall not permit itself to be instantiated more than once. 1336
8. A sub-DRBG shall not provide output for use by the RBG1 construction (e.g., as additional 1337

input) or another sub-DRBG in the security boundary. 1338
9. The security strength s requested for a target sub-DRBG instantiation shall not exceed the 1339

security strength that is supported by the RBG1 construction. 1340
10. For a Hash_DRBG, HMAC_DRBG or CTR_DRBG (with a derivation function), 3s/2 bits 1341

shall be obtained from the RBG1 construction for instantiation, where s is the requested 1342
security strength for the target sub-DRBG. 1343

11 For a CTR_DRBG (without a derivation function), s + 128 bits shall be obtained from the 1344
RBG1 construction for instantiation, where s is the requested security strength for the target 1345
sub-DRBG. 1346

12. A sub-DRBG shall not produce output until it is instantiated. 1347
13. A sub-DRBG shall not provide output for generating requests that specify a security 1348

strength greater than the instantiated security strength of the sub-DRBG. 1349
14. A sub-DRBG shall not include a reseed capability. 1350

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

36

15. If the seedlife of a sub-DRBG is ever exceeded or a health test of the sub-DRBG fails, the 1351
use of the sub-DRBG shall be terminated. 1352

A non-testable requirement for a sub-DRBG (not testable by the validation labs) is: 1353
16. The output of a sub-DRBG must not be used as input to seed other DRBGs (e.g., the 1354

DRBGs in other RBGs). 1355

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

37

 RBG2 Constructions Based on Physical and/or Non-Physical Entropy Sources 1356

An RBG2 construction is a cryptographically secure RBG with continuous access to one or more 1357
validated entropy sources within its RBG security boundary. The RBG is instantiated before use, 1358
generates outputs on demand, and can be used in an RBG3 construction (see Section 6). An RBG2 1359
construction may support reseeding and may provide prediction resistance during generation 1360
requests (i.e., by performing a reseed of the DRBG prior to generating output). Both reseeding and 1361
providing prediction resistance are optional for this construction. 1362
If full-entropy output is required by a consuming application, an RBG3 construction from Section 1363
6 needs to be used rather than an RBG2 construction. 1364
An RBG2 construction may be useful for all devices in which an entropy source can be 1365
implemented. 1366

 RBG2 Description 1367

The DRBG for an RBG2 construction is contained within the same RBG security boundary and 1368
cryptographic module as its validated entropy source(s) (see Figure 16). The entropy source is 1369
used to provide the entropy bits for both DRBG instantiation and the reseeding of the DRBG used 1370
by the construction (e.g., to provide prediction resistance). An optional recommended 1371
personalization string and optional additional input may be provided from within the cryptographic 1372
module or from outside of that module. 1373

 1374
Fig. 16. RBG2 Construction 1375

The output from the RBG may be used within the cryptographic module or by an application 1376
outside of the module. 1377

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

38

An example of an RBG2 construction is provided in Appendix B.4. 1378
An RBG2 construction may be implemented to use one or more validated physical and/or non-1379
physical entropy sources for instantiation and reseeding. Two variants of the RBG2 construction 1380
may be implemented. 1381

1. An RBG2(P) construction uses the output of one or more validated physical entropy 1382
sources and (optionally) one or more validated non-physical entropy sources as discussed 1383
in Method 1 of Section 2.3 (i.e., only the entropy produced by validated physical entropy 1384
sources is counted toward the entropy required for instantiating or reseeding the RBG). 1385
Any amount of entropy may be obtained from a non-physical entropy source as long as 1386
sufficient entropy has been obtained from the physical entropy sources to fulfill an entropy 1387
request. 1388

2. An RBG2(NP) construction uses the output of any validated non-physical or physical 1389
entropy sources as discussed in Method 2 of Section 2.3 (i.e., the entropy produced by both 1390
validated physical and non-physical entropy sources is counted toward the entropy required 1391
for instantiating or reseeding the RBG). 1392

These variants affect the implementation of a Get_ES_Bitstring function (as specified in Section 1393
2.8.2.2 and discussed in Section 3.1), either accessing the entropy source directly or via the 1394
Get_conditioned_full_entropy_input function during instantiation and reseeding (see Sections 1395
5.2.1 and 5.2.3). That is, when instantiating and reseeding an RBG2(P) construction (including a 1396
DRBG within an RBG3 construction as discussed in Section 6), Method 1 in Section 2.3 is used 1397
to combine the entropy from the entropy sources, and Method 2 is used when instantiating and 1398
reseeding an RBG2(NP) construction. 1399

 Conceptual Interfaces 1400

The RBG2 construction interfaces to the DRBG include function calls for instantiating the DRBG 1401
(see Section 5.2.1), generating pseudorandom bits on request (see Section 5.2.2), and (optionally) 1402
reseeding the DRBG at the end of the DRBG’s seedlife and providing prediction resistance upon 1403
request (see Section 5.2.3). 1404
Once instantiated, an RBG2 construction with a reseed capability may be reseeded on demand or 1405
whenever sufficient entropy is available. 1406

5.2.1. RBG2 Instantiation 1407

An RBG2 construction may be instantiated at any valid20 security strength possible for the DRBG 1408
and its components using the following call: 1409

(status, RBG2_state_handle) = Instantiate_function (s, prediction_resistance_flag, 1410
personalization_string), 1411

20 A security strength of either 128, 192, or 256 bits.

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

39

where s is the requested instantiation security strength for the DRBG. The 1412
prediction_resistance_flag (if used) is set to TRUE if prediction resistance is to be supported and 1413
FALSE otherwise. 1414
An RBG2 construction obtains entropy for its DRBG from one or more validated entropy sources, 1415
either directly or using a conditioning function to process the output of the entropy source to obtain 1416
a full-entropy bitstring for instantiation (e.g., when employing a CTR_DRBG without a derivation 1417
function using entropy sources that do not provide full-entropy output). 1418
SP 800-90A uses a Get_randomness-source_input call to obtain the entropy needed for 1419
instantiation (see SP 800-90A). 1420

1. When the DRBG is a CTR_DRBG without a derivation function, full-entropy bits shall be 1421
obtained as follows: 1422
a) If the entropy source provides full-entropy output, the Get_randomness-source_input 1423

call is replaced by:21, 22 1424
(status, entropy_bitstring) = Get_ES_Bitstring (s + 128).23 1425

For an RBG2(P) construction, only validated physical entropy sources shall be used. 1426
The output of the entropy sources shall be concatenated to obtain the s + 128 full-1427
entropy bits to be returned as entropy_bitstring. 1428
(This recommendation assumes that non-physical entropy sources cannot provide full-1429
entropy output. Therefore, the Get_ES_bitstring function shall not be used with non-1430
physical entropy sources in this case.) 1431

b) If the entropy sources does not provide full-entropy output, the Get_randomness-1432
source_input call is replaced by:24, 25 1433

(status, Full_entropy_bitstring) = 1434
Get_conditioned_full_entropy_input(s + 128). 1435

Validated physical and/or non-physical entropy sources shall be used to provide the 1436
requested entropy. For an RBG2(P) construction, the requested s + 128 bits of entropy 1437
shall be counted as specified in Method 1 of Section 2.3. For an RBG2(NP) 1438
construction, the requested s + 128 bits of entropy shall be counted as specified in 1439
Method 2 of Section 2.3. 1440

2. For the Hash_DRBG, HMAC_DRBG and CTR_DRBG (with a derivation function), the 1441
entropy source shall provide 3s/2 bits of entropy to establish the security strength. 1442
a) If the consuming application requires full entropy in the returned bitstring, the 1443

Get_randomness-source_input call is replaced by: 1444
(status, Full_entropy_bitstring) = 1445

Get_conditioned_full_entropy_input(3s/2). 1446

21 Appropriate changes may be required for the Instantiate_function in [SP800-90A] and the algorithms in Section 10 of that document.
22 See Section 3.8.2.2 for a specification of the Get_ES_Bitstring function.
23 For a CTR_DRBG using AES, s + 128 = the length of the key + the length of the AES block = seedlen (see Table 2 in SP 800-90A).
24 Appropriate changes may be required for the Instantiate_function in [SP800-90A] and the algorithms in Section 10.2 of that document.
25 See Section 4.3.2 for a specification of the Get_conditioned_full_entropy_input function.

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

40

b) If the consuming application does not require full entropy in the returned bitstring, the 1447
Get_randomness-source_input call is replaced by: 1448

(status, entropy_bitstring) = Get_ES_Bitstring(3s/2). 1449
Validated physical and/or non-physical entropy sources shall be used to provide the 1450
requested entropy. For an RBG2(P) construction, the requested 3s/2 bits of entropy shall 1451
be counted as specified in Method 1 of Section 2.3. For an RBG2(NP) construction, the 1452
requested 3s/2 bits of entropy shall be counted as specified in Method 2 of Section 3.3. 1453

5.2.2. Requesting Pseudorandom Bits from an RBG2 Construction 1454

Pseudorandom bits may be requested using the following call (see Section 2.8.1.2): 1455
(status, returned_bits) = Generate_function(RBG2_state_handle, requested_number_of_bits, 1456

requested_security_strength, prediction_resistance_request, additional_input), 1457
where state_handle (if used) was returned by the Instantiate_function (see Sections 2.8.1.1 and 1458
5.2.1). 1459
Support for prediction resistance is optional. If prediction resistance is supported, its use is 1460
optional. This RBG may be designed to always provide prediction resistance, to only provide 1461
prediction resistance upon request, or to be unable to provide prediction resistance (i.e., to not 1462
support prediction-resistance requests during generation). 1463
Note that when prediction resistance is requested, the Generate_function will invoke the 1464
Reseed_function. If sufficient entropy is not available for reseeding, an error indication shall be 1465
returned, and the requested bits shall not be generated. 1466

5.2.3. Reseeding an RBG2 Construction 1467

As discussed in Section 2.4.2, when the RBG2 construction includes a reseed capability, the 1468
reseeding of the DRBG may be performed 1) upon request from a consuming application (either 1469
an explicit request for reseeding or a request for the generation of bits with prediction resistance); 1470
2) on a fixed schedule based on time, number of outputs, or events; or 3) as sufficient entropy 1471
becomes available. 1472
An RBG2 construction is reseeded using the following call: 1473

status = Reseed_function(RBG2_state_handle, additional_input), 1474
where the RBG2_state_handle (when used) was obtained during the instantiation of the RBG (see 1475
Sections 2.8.1.1 and 5.2.1). 1476
SP 800-90A uses a Get_randomness-source_input call to obtain the entropy needed for 1477
reseeding the DRBG (see Section 2.8.1.3 herein and in [SP800-90A]. The DRBG is reseeded at 1478
the instantiated security strength recorded in the DRBG’s internal state. The Get_randomness-1479
source_input call in SP 800-90A shall be replaced with the following: 1480

1. For the CTR_DRBG without a derivation function, use the appropriate replacement as 1481
specified in step 1 of Section 5.2.1. 1482

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

41

2. For the Hash_DRBG, HMAC_DRBG and CTR_DRBG (with a derivation function), 1483
replace the Get_randomness-sourceinput call in the Reseed_function with the 1484
following:26 1485

a) If the consuming application requires full entropy in the returned bitstring, the 1486
Get_randomness-source_input call is replaced by: 1487

(status, Full_entropy_bitstring) = Get_conditioned_full_entropy_input(s). 1488
b) If the consuming application does not require full entropy in the returned bitstring, 1489

the Get_randomness-source_input call is replaced by: 1490
(status, entropy_bitstring) = Get_ES_Bitstring(s). 1491

Validated physical and/or non-physical entropy sources shall be used to provide the 1492
requested entropy. For an RBG2(P) construction, the requested s bits of entropy shall be 1493
counted as specified in Method 127 of Section 2.3. For an RBG2(NP) construction, the 1494
requested s bits of entropy shall be counted as specified in Method 228 of Section 2.3. 1495

 RBG2 Requirements 1496

An RBG2 construction has the following requirements in addition to those specified in [SP800-1497
90A]: 1498

1. The RBG shall employ an approved and validated DRBG from [SP800-90A] whose 1499
components are capable of providing the targeted security strength for the RBG. 1500

2. The RBG and its components shall be successfully validated for compliance with [SP800-1501
90A], [SP800-90B], SP 800-90C, [FIPS140], and the specification of any other approved 1502
algorithm used within the RBG, as appropriate. 1503

3. The RBG may include a reseed capability. If implemented, the reseeding of the DRBG 1504
shall be performed either a) upon request from a consuming application (either an explicit 1505
request for reseeding or a request for the generation of bits with prediction resistance); b) 1506
on a fixed schedule based on time, number of outputs, or events; and/or c) as sufficient 1507
entropy becomes available. 1508

4. Validated entropy sources shall be used to instantiate and reseed the DRBG. A non-1509
validated entropy sources shall not be used for this purpose. 1510

5. The entropy sources used for the instantiation and reseeding of an RBG(P) construction 1511
shall include one or more validated physical entropy sources; the inclusion of one or more 1512
validated non-physical entropy sources is optional. A bitstring that contains entropy shall 1513
be assembled and the entropy in that bitstring determined as specified in Method 1 of 1514
Section 2.3 (i.e., only the entropy provided by validated physical entropy sources shall be 1515
counted toward fulfilling the amount of entropy in an entropy request). 1516

26 See Sections 2.8.2.2 and 3.1 for discussions of the Get_ES_bitstring function.
27 Method 1 only counts the entropy provided by validated physical sources.
28 Method 2 counts the entropy provided by both physical and non-physical entropy sources.

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

42

6. The entropy sources used for the instantiation and reseeding of an RBG2(NP) construction 1517
shall include one or more validated non-physical entropy sources; the inclusion of one or 1518
more validated physical entropy sources is optional. A bitstring containing entropy shall 1519
be assembled and the entropy in that bitstring determined as specified in Method 2 of 1520
Section 2.3 (i.e., the entropy provided by both validated non-physical entropy sources and 1521
any validated physical entropy sources included in the implementation shall be counted 1522
toward fulfilling the requested amount of entropy). 1523

7. The DRBG shall be capable of being instantiated and reseeded at the maximum security 1524
strength (s) for the DRBG design (see [SP800-90A]). 1525

8. A specific entropy-source output (or portion thereof) shall not be reused (e.g., it is 1526
destroyed after use). 1527

9. When instantiating and reseeding a CTR_DRBG without a derivation function, (s + 128) 1528
bits with full entropy shall be obtained either directly from the entropy source or from the 1529
entropy source via an external vetted conditioning function (see Section 3.3). 1530

10. For a Hash_DRBG, HMAC_DRBG or CTR_DRBG (with a derivation function), a 1531
bitstring with at least 3s/2 bits of entropy shall be obtained from the entropy source to 1532
instantiate the DRBG at a security strength of s bits. When reseeding is performed, a 1533
bitstring with at least s bits of entropy shall be obtained from the entropy source. 1534

11. The DRBG shall be instantiated before first use (i.e., before providing output for use by a 1535
consuming application) and reseeded using the validated entropy sources used for 1536
instantiation. 1537

12. When health tests detect the failure of a validated entropy source, the failure shall be 1538
handled as discussed in Section 7.1.2.1. 1539

A non-testable requirement for the RBG (not testable by the validation labs) is: 1540
13. The RBG must not be used by applications that require a higher security strength than 1541

has been instantiated in the DRBG. 1542

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

43

 RBG3 Constructions Based on Physical Entropy Sources 1543

An RBG3 construction is designed to provide full entropy (i.e., an RBG3 construction can support 1544
all security strengths). The RBG3 constructions specified in this Recommendation include one or 1545
more entropy sources and an approved DRBG from SP 800-90A that can and will be instantiated 1546
at a security strength of 256 bits. If an entropy source fails in an undetected manner, the RBG 1547
continues to operate as an RBG2(P) construction, providing outputs at the security strength of its 1548
DRBG (256 bits) (see Section 5 and Appendix A). If a failure is detected, the RBG operation shall 1549
be terminated. 1550
Two RBG3 constructions are specified: 1551

1. RBG3(XOR) − This construction is based on combining the output of one or more 1552
validated entropy sources with the output of an instantiated, approved DRBG using an 1553
exclusive-or operation (see Section 6.2). 1554

2. RBG3(RS) − This construction is based on using one or more validated entropy sources to 1555
continuously reseed the DRBG (see Section 6.3). 1556

An RBG3 construction continually accesses its entropy sources, and its DRBG may be reseeded 1557
whenever requested (e.g., to provide prediction resistance for the DRBG’s output). Upon receipt 1558
of a request for random bits from a consuming application, the entropy source is accessed to obtain 1559
sufficient bits for the request. See Sections 3.1 and 3.2 for further discussion about accessing the 1560
entropy source(s). 1561
An implementation may be designed so that the DRBG implementation used within an RBG3 1562
construction can be directly accessed by a consuming application (i.e., the directly accessible 1563
DRBG uses the same internal state as the RBG3 construction). 1564
An RBG3 construction is useful when bits with full entropy are required or a higher security 1565
strength than RBG1 and RBG2 constructions can support is needed. 1566

 General Requirements 1567

RBG3 constructions have the following general security requirements. See Sections 6.2.2 and 6.3.2 1568
for additional requirements for the RBG3(XOR) and RBG3(RS) constructions, respectively. 1569

1. An RBG3 construction shall be designed to provide outputs with full entropy using one or 1570
more validated independent physical entropy sources as specified for Method 1 in Section 1571
3.3 (i.e., only the entropy provided by validated physical entropy sources shall be counted 1572
toward fulfilling entropy requests, although entropy provided by any validated non-1573
physical entropy source may be used but not counted). 1574

2. An RBG3 construction and its components shall be successfully validated for compliance 1575
with the corresponding requirements in [SP800-90A], [SP800-90B], SP 800-90C, [FIPS 1576
140] and the specification of any other approved algorithm used within the RBG, as 1577
appropriate. 1578

3. The DRBG within the RBG3 construction shall be capable of supporting a security strength 1579
of 256 bits (i.e., a CTR_DRBG based on AES-256 or either Hash_DRBG or 1580
HMAC_DRBG using a hash function with an output length of at least 256 bits). 1581

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

44

4. The DRBG shall be instantiated at a security strength of 256 bits before the first use of the 1582
RBG3 construction or direct access of the DRBG. 1583

5. The DRBG shall include a reseed function to support reseed requests. 1584
6. A specific entropy-source output (or portion thereof) shall not be reused (e.g., the same 1585

entropy-source outputs shall not be used for an RBG3 request and a request to a separate 1586
instantiation of a DRBG). 1587

7. If the DRBG is directly accessible, the requirements in Section 5.3 for RBG2(P) 1588
constructions shall apply to the direct access of the DRBG. 1589

8. When health tests detect the failure of a validated physical entropy source, the failure shall 1590
be handled as discussed in Section 7.1.2.1. If a failure is detected in a non-physical entropy 1591
source, the consuming application shall be notified. 1592

 RBG3(XOR) Construction 1593

An RBG3(XOR) construction contains one or more validated entropy sources and a DRBG whose 1594
outputs are XORed to produce full-entropy output (see Figure 17). In order to provide the required 1595
full-entropy output, the input to the XOR (shown as “⊕” in the figure) from the entropy-source 1596
side of the figure shall consist of bits with full entropy (see Section 2.1).29 If the entropy sources 1597
cannot provide full-entropy output, then an external conditioning function shall be used to 1598
condition the output of the entropy sources to a full-entropy bitstring before XORing with the 1599
output of the DRBG (see Section 3.3). 1600

29 Note that the DRBGs themselves are not designed to inherently provide full-entropy output.

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

45

 1601
Fig. 17. RBG3(XOR) Construction 1602

When n bits of output are requested from an RBG3(XOR) construction, n bits of output from the 1603
DRBG are XORed with n full-entropy bits obtained either directly from the entropy source or from 1604
the entropy source after cryptographic processing by an external vetted conditioning function (see 1605
Section 3.3). When the entropy source is working properly,30 an n-bit output from the RBG3(XOR) 1606
construction is said to provide n bits of entropy or to support a security strength of n bits. The 1607
DRBG used in the RBG3(XOR) construction is always required to support a 256-bit security 1608
strength. If the entropy source fails without being detected and the DRBG has been successfully 1609
instantiated with at least 256 bits of entropy, the DRBG continues to produce output at a security 1610
strength of 256 bits. 1611
An example of an RBG3(XOR) design is provided in Appendix B.5. 1612

6.2.1. Conceptual Interfaces 1613

The RBG interfaces include function calls for instantiating the DRBG (see Section 6.2.1.1), 1614
generating random bits on request (see Section 6.2.1.2), and reseeding the DRBG instantiation(s) 1615
(see Section 6.2.1.3). 1616

6.2.1.1. Instantiation of the DRBG 1617

The DRBG for the RBG3(XOR) construction is instantiated as follows: 1618

30 The entropy source provides at least the amount of entropy determined during the entropy-source validation process.

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

46

RBG3(XOR)_DRBG_Instantiate: 1619
Input: integer (prediction_resistance_flag), string personalization_string. 1620
Output: integer status, integer state_handle. 1621
Process: 1622

1. (status, RBG3(XOR)_state_handle) = Instantiate_function(256, 1623
prediction_resistance_flag, personalization_string). 1624

2. Return (status, RBG3(XOR)_state_handle). 1625
In step 1, the DRBG is instantiated at a security strength of 256 bits. The 1626
prediction_resistance_flag and personalization_string (when provided as input to the 1627
RBG3(XOR)_DRBG_Instantiate function) shall be used in step 1. 1628
In step 2, the status and RBG3(XOR)_state_handle that were obtained in step 1 are returned. Note 1629
that if the status does not indicate a successful instantiate process (i.e., a failure is indicated), the 1630
returned state handle shall be invalid (e.g., a Null value). The handling of status codes is discussed 1631
in Section 2.8.3. 1632

6.2.1.2. Random and Pseudorandom Bit Generation 1633

Let n be the requested number of bits to be generated, and let the RBG3(XOR)_state_handle be 1634
the value returned by the instantiation function for RBG3’s DRBG instantiation (see Section 1635
6.2.1.1). Random bits with full entropy shall be generated by the RBG3(XOR) construction using 1636
the following generate function: 1637
RBG3(XOR)_Generate: 1638

Input: integer (RBG3(XOR)_state_handle, n, prediction_resistance_request), string 1639
additional_input. 1640
Output: integer status, string returned_bits. 1641
Process: 1642

1. (status, ES_bits) = Request_entropy(n). 1643
2. If (status ≠ SUCCESS), then return (status, invalid_string). 1644
3. (status, DRBG_bits) = Generate_function(RBG3(XOR)_state_handle, n, 256, 1645

prediction_resistance_request, additional_input). 1646
4. If (status ≠ SUCCESS), then return (status, invalid_string). 1647

5. returned_bits = ES_bits ⊕ DRBG_bits. 1648
6. Return (SUCCESS, returned_bits). 1649

Step 1 requests that the entropy sources generate bits. Since full-entropy bits are required, the 1650
(place holder) Request_entropy call shall be replaced by one of the following: 1651

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

47

• If full-entropy output is provided by all validated physical entropy sources used by the 1652
RBG3(XOR) implementation, and non-physical entropy sources are not used,31 step 1 1653
becomes: 1654

(status, ES_bits) = Get_ES_Bitstring(n). 1655
The Get_ES_Bitstring function32 shall use Method 1 in Section 2.3 to obtain the n full-1656
entropy bits that were requested in order to produce the ES_bits bitstring. 1657

• If full-entropy output is not provided by all physical entropy sources, or the output of both 1658
physical and non-physical entropy sources is also used by the implementation, step 1 1659
becomes: 1660

(status, ES_bits) = Get_conditioned_full_entopy_input(n). 1661
The Get_conditioned_full_entropy_input construction is specified in Section 3.3.2. It 1662
requests entropy from the entropy sources in step 3.1 of that construction with a 1663
Get_ES_Bitstring call. The Get_ES_Bitstring call shall use Method 1 (as specified in 1664
Section 3.3) when collecting the output of the entropy sources (i.e., only the entropy 1665
provided by physical entropy sources is counted). 1666

In step 2, if the request in step 1 is not successful, abort the RBG3(XOR)_Generate function, 1667
returning the status received in step 1 and an invalid bitstring as the returned_bits (e.g., a Null 1668
bitstring). If status indicates a success, ES_bits is the full-entropy bitstring to be used in step 5. 1669
In step 3, the RBG3(XOR)’s DRBG instantiation is requested to generate n bits at a security 1670
strength of 256 bits. The DRBG instantiation is indicated by the RBG3(XOR)_state_handle, which 1671
was obtained during instantiation (see Section 6.2.1.1). If a prediction-resistance request and/or 1672
additional input are provided in the RBG.3(XOR)_Generate call, they shall be included in the 1673
Generate_function call. 1674
Note that it is possible that the DRBG would require reseeding during the Generate_function call 1675
in step 3 (e.g., because of a prediction-resistance request, or the end of the seedlife of the DRBG 1676
has been reached). If a reseed of the DRBG is required during Generate-function execution, the 1677
DRBG shall be reseeded as specified in Section 6.2.1.3 with bits not otherwise used by the RBG. 1678
In step 4, if the Generate_function request is not successful, the RBG3(XOR)_Generate 1679
function is aborted, and the status received in step 3 and an invalid bitstring (e.g., a Null bitstring) 1680
are returned to the consuming application. If status indicates a success, DRBG_bits is the 1681
pseudorandom bitstring to be used in step 5. 1682
Step 5 combines the bitstrings returned from the entropy sources (from step 1) and the DRBG 1683
(from step 3) using an XOR operation. The resulting bitstring is returned to the consuming 1684
application in step 6. 1685

31 Since non-physical entropy sources are assumed to be incapable of providing full-entropy output, they cannot contribute to the bitstring provided
by the Get_ES_Bitstring function.
32 See Section 3.10.2.2.

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

48

6.2.1.3. Pseudorandom Bit Generation Using a Directly Accessible DRBG 1686

Pseudorandom bit generation by a direct access of the DRBG is accomplished as specified in 1687
Section 5.2.2 using the state handle obtained during instantiation (see Section 6.2.1.1). 1688
When directly accessing the DRBG instantiation that is also used by the RBG3(XOR) 1689
construction, the following function is used: 1690

 (status, returned_bits) = Generate_function(RBG3(XOR)_state_handle, 1691
requested_number_of_bits, requested_security_strength, prediction_resistance_request, 1692

additional_input), 1693
where: 1694

• RBG3(XOR)_state_handle indicates the DRBG instantiation to be used. 1695

• requested_security_strength ≤ 256. 1696

• prediction-resistance-request is either TRUE or FALSE; requesting prediction resistance 1697
during the Generate_function is optional. 1698

• The use of additional input is optional. 1699

Note that when prediction resistance is requested, the Generate_function will invoke the 1700
Reseed_function (see Section 6.2.1.3). If sufficient entropy is not available for reseeding, an error 1701
indication shall be returned, and the requested bits shall not be generated. 1702

6.2.1.4. Reseeding the DRBG Instantiations 1703

Reseeding is performed using the entropy sources in the same manner as an RBG2 construction 1704
using the appropriate state handle (e.g., RBG3(XOR)_state_handle, as specified in Section 6.2.1.1). 1705

6.2.2. RBG3(XOR) Requirements 1706

An RBG3(XOR) construction has the following requirements in addition to those provided in 1707
Section 6.2: 1708

1. Bitstrings with full entropy shall be provided to the XOR operation either directly from the 1709
concatenated output of one or more validated physical entropy sources or by an external 1710
conditioning function using the output of one or more validated entropy sources as 1711
specified in Method 1 of Section 2.3. In the latter case, the output of validated non-physical 1712
entropy sources may be used without counting any entropy that they might provide. 1713

2. The same entropy-source outputs used by the DRBG for instantiation or reseeding shall 1714
not be used as input into the RBG’s XOR operation. 1715

3. The DRBG instantiations shall be reseeded occasionally (e.g., after a predetermined period 1716
of time or number of generation requests). 1717

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

49

 RBG3(RS) Construction 1718

The second RBG3 construction specified in this document is the RBG3(RS) construction shown 1719
in Figure 18, and an example of this construction is provided in Appendix B.6. 1720
Note that external conditioning of the outputs from the entropy sources during instantiation and 1721
reseeding is required when the DRBG is a CTR_DRBG without a derivation function and the 1722
entropy sources do not provide a bitstring with full entropy. 1723

 1724
Fig. 18. RBG3(RS) Construction 1725

6.3.1. Conceptual Interfaces 1726

The RBG interfaces include function calls for instantiating the DRBG (see Section 6.3.1.1), 1727
generating random bits on request (see Section 6.3.1.2), and reseeding the DRBG instantiation (see 1728
Section 6.3.1.3). 1729

6.3.1.1. Instantiation of the DRBG Within an RBG3(RS) Construction 1730

DRBG instantiation is performed as follows: 1731
RBG3(RS)_DRBG_Instantiate: 1732

Input: integer (prediction_resistance_flag), string personalization_string. 1733
Output: integer status, integer state_handle. 1734
Process: 1735

1. (status, RBG3(RS)_state_handle) = Instantiate_function(256, 1736
prediction_resistance_flag = TRUE, personalization_string). 1737

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

50

2. Return (status, RBG3(RS)_state_handle). 1738
In step 1, the DRBG is instantiated at a security strength of 256 bits. The 1739
prediction_resistance_flag is set to TRUE, and personalization_string (when provided as input to 1740
the RBG3(RS)_DRBG_Instantiate function) shall be used in step 1. 1741
In step 2, the status and the RBG3(RS)_state_handle are returned. Note that if the status does not 1742
indicate a successful instantiate process (i.e., a failure is indicated), the returned state handle shall 1743
be invalid (e.g., a Null value). The handling of status codes is discussed in Section 2.8.3. 1744

6.3.1.2. Random and Pseudorandom Bit Generation 1745

6.3.1.2.1 Generation Using the RBG3(RS) Construction 1746
When an RBG3(RS) construction receives a request for n random bits, the DRBG instantiation 1747
used by the construction needs to be reseeded with sufficient entropy so that bits with full entropy 1748
can be extracted from the DRBG’s output block. 1749
Table 3 provides information for generating full-entropy output from the DRBGs in SP 800-90A 1750
that use the cryptographic primitives listed in the table. Each primitive in the table can support a 1751
security strength of 256 bits − the highest security strength recognized by this Recommendation. 1752
To use the table, select the row that identifies the cryptographic primitive used by the implemented 1753
DRBG. 1754

• Column 1 lists the DRBGs. 1755

• Column 2 identifies the cryptographic primitives that can be used by the DRBG(s) in 1756
column 1 to support a security strength of 256 bits. 1757

• Column 3 indicates the length of the output block (output_len) for the cryptographic 1758
primitives in column 2. 1759

• Column 4 indicates the amount of fresh entropy that is obtained by a Reseed_function 1760
when the Generate_function is invoked with prediction resistance requested. 1761

Table 3. Values for generating full-entropy bits by an RBG3(RS) Construction 1762

DRBG DRBG
Primitives

Output Block
Length (output_len)

in bits

Entropy obtained
during a normal
reseed operation

CTR_DRBG
(with no derivation
function)

AES-256 128 384

CTR_DRBG (using a
derivation function) AES-256 128 256

Hash_DRBG
or
HMAC_DRBG

SHA-256
SHA3-256 256 256

SHA-384
SHA3-384 384 256

SHA-512
SHA3-512 512 256

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

51

The strategy used for obtaining full-entropy output from the RBG3(RS) construction requires 1763
obtaining sufficient fresh entropy and subsequently extracting full entropy bits from the output 1764
block in accordance with item 11 of Section 2.6. 1765
For the RBG3(RS)_Generate function: 1766

• Let n be the requested number of full-entropy bits to be generated by an RBG3(RS) 1767
construction. 1768

• Let RBG3(RS)_state_handle be a state handle returned from the instantiate function (see 1769
Section 6.3.1.1). 1770

Random bits with full entropy shall be generated as follows: 1771
RBG3(RS)_ Generate: 1772

Input: integer (RBG3(RS)_state_handle, n), string additional_input. 1773
Output: integer status, bitstring returned_bits. 1774
Process: 1775

1. full-entropy_bits =Null. 1776
2. sum = 0. 1777
3. While (sum < n), 1778

3.1 Obtain generated_bits from the entropy source. 1779
3.2 If (status ≠ SUCCESS), then return (status, invalid_bitstring). 1780
3.3 full-entropy_bits = full_entropy_bits || generated_bits. 1781
3.4 sum = sum + len(generated_bits). 1782

4. Return (SUCCESS, leftmost(full-entropy_bits, n)). 1783
In steps 1 and 2, the bitstring intended to collect the generated bits for returning to the calling 1784
application (i.e., full-entropy_bits) is initialized to the Null bitstring, and the counter for the number 1785
of bits obtained for fulfilling the request is initialized to zero. 1786
Step 3 is iterated until n bits have been generated. 1787

In step 3.1, the DRBG is requested to obtain sufficient entropy so that a bitstring with full 1788
entropy can be extracted from the output block. The form of the request depends on the DRBG 1789
algorithm used in the RBG3(RS) construction and the method for obtaining a full-entropy 1790
bitstring (see Section 2.6, item 11). Note that extracting fewer full-entropy bits from the 1791
DRBG’s output block is permitted. 1792
 For a CTR_DRBG (with or without a derivation function), a maximum of 128 bits with 1793

full entropy can be provided from the AES output block for each iteration of the DRBG as 1794
follows: 1795

(status, generated_bits) = Generate_function(RBG3(RS)_state_handle, 128, 1796
256, prediction_resistance_request = TRUE, additional_input). 1797

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

52

The Generate_function generates 128 (full entropy) bits after reseeding the 1798
CTR_DRBG with either 256 or 384 bits of entropy (by setting 1799
prediction_resistance_request = TRUE).33 1800

 For a hash-based DRBG (i.e., Hash_DRBG and HMAC_DRBG), a maximum of 256 full-1801
entropy bits can be produced from each iteration of the DRBG as follows: 1802

3.1.1 (status, additional_entropy) = Get_ES_Bitstring (64). 1803
3.1.2 If (status ≠ SUCCESS), then return (status, invalid_bitstring). 1804
3.1.3 (status, generated_bits) = Generate_function(RBG3(RS)_state_handle, 1805

256, 256, prediction_resistance_request = TRUE, additional_input || 1806
additional_entropy). 1807

At least 64 bits of entropy beyond the amount obtained during reseeding are required. 1808
As shown in Table 3, the reseeding process will acquire 256 bits of entropy. The (256 1809
+ 64 = 384) bits of entropy are inserted into the DRBG by 1) obtaining a bitstring with 1810
at least 64 bits of entropy directly from the entropy sources (step 3.1.1), 2) 1811
concatenating the additional entropy bits with any additional_input provided in the 1812
RBG3(RS)_Generate call, and 3) requesting the generation of 256 bits with prediction 1813
resistance and including the concatenated bitstring. This results in both the reseed of 1814
the DRBG with 256 bits of entropy and the insertion of the additional 64 bits of entropy) 1815
(step 3.1.3). 1816

 For a hash-based DRBG (i.e., Hash_DRBG and HMAC_DRBG), a maximum of 192 full-1817
entropy bits can be produced from each iteration of the DRBG as follows: 1818

(status, generated_bits) = Generate_function(RBG3(RS)_state_handle, 192, 1819
256, prediction_resistance_request = TRUE, additional_input). 1820

The DRBG is reseeded with 256 bits of entropy by requesting generation with prediction 1821
resistance and extracting only (256 − 64 = 192) bits from the DRBG’s output block as 1822
full-entropy bits. 1823

In step 3.2, if the Generate_function request invoked in step 3.1 is not successful, the 1824
RBG3(RS)_Generate function is aborted, and the status received in step 3.1 and an invalid 1825
bitstring (e.g., a Null bitstring) are returned to the consuming application. 1826
Step 3.3 combines the full-entropy bitstrings obtained in step 3.1 with previously generated 1827
full-entropy bits using a concatenation operation. 1828
Step 3.4 adds the number of full-entropy bits produced in step 3.1 to those generated in 1829
previous iterations of step 3. 1830
If sum is less than the requested number of bits (n), repeat step 3 starting at step 3.1. 1831

In step 4, the leftmost n bits are selected from the collected bitstring (i.e., full-entropy_bits) and 1832
returned to the consuming application. 1833
6.3.1.2.2 Generation Using a Directly Accessible DRBG 1834

33 The use of the prediction_resistance_request will handle the differences between the two versions of the CTR_DRBG (i.e., with or without a
derivation function).

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

53

Direct access of the DRBG is accomplished as specified in Section 5.2.2 using the state handle 1835
associated with the instantiation and internal state that was returned for the DRBG (see Section 1836
6.3.1.1). 1837

(status, returned_bits) = Generate_function(RBG3(RS)_state_handle, 1838
requested_number_of_bits, requested_security_strength, prediction_resistance_request, 1839

additional_input), 1840
where state_handle (if used) was returned by the Instantiate_function (see Section 6.3.1.1). 1841
When the previous generate request was made to the RBG3(RS) construction rather than directly 1842
to the DRBG, the prediction_resistance_request parameter shall be set to TRUE. Otherwise, 1843
requesting prediction resistance during the Generate_function is optional. 1844

6.3.1.3. Reseeding 1845

Reseeding is performed during a Generate_function request to a directly accessible DRBG (see 1846
Section 6.3.1.2.2) when prediction resistance is requested or the end of the DRBG’s seedlife is 1847
reached. The Generate_function invokes the Reseed_function specified in [SP800-90A]. 1848
Reseeding may also be performed on demand as specified in Section 4.2.3 using the 1849
RBG3(RS)_state_handle if provided during instantiation. 1850

6.3.2. Requirements for a RBG3(RS) Construction 1851

An RBG3(RS) construction has the following requirements in addition to those provided in 1852
Section 6.1: 1853

1. Fresh entropy shall be acquired either directly from all independent validated entropy 1854
sources (see Section 3.2) or (in the case of a CTR_DRBG used as the DRBG when the 1855
entropy sources do not provide full-entropy output) from an external conditioning function 1856
that processes the output of the validated entropy sources as specified in Section 3.3.2. 1857
Method 1 in Section 2.3 shall be used when collecting the required entropy (i.e., only the 1858
entropy provided by validated physical entropy sources shall be counted toward fulfilling 1859
the amount of entropy requested). 1860

2. If the DRBG is directly accessible, a reseed of the DRBG instantiation shall be performed 1861
before generating output in response to a request for output from the directly accessible 1862
DRBG when the previous use of the DRBG was by the RBG3(RS) construction. This could 1863
require an additional internal state value to record the last use of the DRBG for generation 1864
(e.g., used by an RBG3(RS)_Generate function as specified in Section 6.3.1.2.1 or 1865
directly accessed by a (DRBG) Generate_function as discussed in Section 6.3.1.2.2). 1866

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

54

 Testing 1867

Two types of testing are specified in this Recommendation: health testing and implementation-1868
validation testing. Health testing shall be performed on all RBGs that claim compliance with this 1869
Recommendation (see Section 7.1). Section 7.2 provides requirements for implementation 1870
validation. 1871

 Health Testing 1872

Health testing is the testing of an implementation prior to and during normal operations to 1873
determine that the implementation continues to perform as expected and as validated. Health 1874
testing is performed by the RBG itself (i.e., the tests are designed into the RBG implementation). 1875
An RBG shall support the health tests specified in [SP800-90A] and [SP800-90B] as well as 1876
perform health tests on the components of SP 800-90C (see Section 7.1.1). [FIPS 140] specifies 1877
the testing to be performed within a cryptographic module. 1878

7.1.1. Testing RBG Components 1879

Whenever an RBG receives a request to start up or perform health testing, a request for health 1880
testing shall be issued to the RBG components (e.g., the DRBG and any entropy source). 1881

7.1.2. Handling Failures 1882

Failures may occur during the use of entropy sources and during the operation of other components 1883
of an RBG. 1884
Note that [SP800-90A] and [SP800-90B] discuss the error handling for DRBGs and entropy 1885
sources, respectively. 1886

7.1.2.1. Entropy-Source Failures 1887

A failure of a validated entropy source may be reported to the Get_ES_Bitstring function (see 1888
item 3 of Section 3.1 and item 4 of Section 3.2) during entropy requests to the entropy sources or 1889
to the RBG when the entropy sources continue to function when entropy is not requested (see item 1890
5 of Section 3.2). 1891

7.1.2.2. Failures by Non-Entropy-Source Components 1892

Failures by non-entropy-source components may be caused by either hardware or software 1893
failures. Some of these may be detected using the health testing within the RBG using known-1894
answer tests. Failures could also be detected by the system in or on which the RBG resides. 1895
When such failures are detected that affect the RBG, RBG operation shall be terminated. The RBG 1896
must not be resumed until the reasons for the failure have been determined and the failures have 1897
been repaired and successfully tested for proper operation. 1898

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

55

 Implementation Validation 1899

Implementation validation is the process of verifying that an RBG and its components fulfill the 1900
requirements of this Recommendation. Validation is accomplished by: 1901

• Validating the components from [SP800-90A] and [SP800-90B]. 1902

• Validating the use of the constructions in SP 800-90C via code inspection, known-answer 1903
tests, or both, as appropriate. 1904

• Validating that the appropriate documentation as specified in SP 800-90C has been 1905
provided (see below). 1906

Documentation shall be developed that will provide assurance to testers that an RBG that claims 1907
compliance with this Recommendation has been implemented correctly. This documentation shall 1908
include the following as a minimum: 1909

• An identification of the constructions and components used by the RBG, including a 1910
diagram of the interaction between the constructions and components. 1911

• If an external conditioning function is used, an indication of the type of conditioning 1912
function and the method for obtaining any keys that are required by that function. 1913

• Appropriate documentation, as specified in [SP800-90A] and [SP800-90B]. The DRBG 1914
and the entropy sources shall be validated for compliance with SP 800-90A or SP 800-1915
90B, respectively, and the validations successfully finalized before the completion of RBG 1916
implementation validation. 1917

• For an RBG1 or RBG2 construction, the maximum security-strength that can be supported 1918
by the DRBG. 1919

• A description of all validated and non-validated entropy sources used by the RBG, 1920
including identifying whether the entropy source is a physical or non-physical entropy 1921
source. 1922

• Documentation justifying the independence of all validated entropy sources from all other 1923
validated and non-validated entropy sources. 1924

• An identification of the features supported by the RBG (e.g., access to the underlying 1925
DRBG of an RBG3 construction). 1926

• A description of the health tests performed, including an identification of the periodic 1927
intervals for performing the tests. 1928

• A description of any support functions other than health testing. 1929

• A description of the RBG components within the RBG security boundary (see Section 2.5). 1930

• For an RBG1 construction, a statement indicating that the randomness source must be a 1931
validated RBG2(P) or RBG3 construction (e.g., this could be provided in user 1932
documentation and/or a security policy). 1933

• If sub-DRBGs can be used in an RBG1 construction, the maximum number of sub-DRBGs 1934
and the security strengths to be supported by the sub-DRBGs. 1935

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

56

• For an RBG2 construction (including a directly accessible DRBG within an RBG3 1936
construction), a statement indicating whether prediction resistance is always provided 1937
when a request is made by a consuming application, only provided when requested, or 1938
never provided. 1939

• For an RBG3 construction, a statement indicating whether the DRBG can be accessed 1940
directly. 1941

• Documentation specifying the guidance to users about fulfilling the non-testable 1942
requirements for RBG1 constructions, RBG2 constructions, and sub-DRBGs, as 1943
appropriate (see Sections 5.4 and 6.3, respectively). 1944

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

57

References 1945

[FIPS140] National Institute of Standards and Technology (2001) Security 1946
Requirements for Cryptographic Modules. (U.S. Department of Commerce, 1947
Washington, DC), Federal Information Processing Standards Publication 1948
(FIPS) 140-2, Change Notice 2 December 03, 2002. 1949
https://doi.org/10.6028/NIST.FIPS.140-2 1950

National Institute of Standards and Technology (2010) Security 1951
Requirements for Cryptographic Modules. (U.S. Department of Commerce, 1952
Washington, DC), Federal Information Processing Standards Publication 1953
(FIPS) 140-3. https://doi.org/10.6028/NIST.FIPS.140-3 1954

[FIPS140IG] National Institute of Standards and Technology, Canadian Centre for 1955
Cyber Security Implementation Guidance for FIPS 140-2 and the 1956
Cryptographic Module Validation Program, [Amended]. Available at 1957
https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-1958
program/documents/fips140-2/FIPS1402IG.pdf 1959

[FIPS180] National Institute of Standards and Technology (2015) Secure Hash 1960
Standard (SHS). (U.S. Department of Commerce, Washington, DC), 1961
Federal Information Processing Standards Publication (FIPS) 180-4. 1962
https://doi.org/10.6028/NIST.FIPS.180-4 1963

[FIPS197] National Institute of Standards and Technology (2001) Advanced 1964
Encryption Standard (AES). (U.S. Department of Commerce, Washington, 1965
DC), Federal Information Processing Standards Publication (FIPS) 197. 1966
https://doi.org/10.6028/NIST.FIPS.197 1967

[FIPS198] National Institute of Standards and Technology (2008) The Keyed-Hash 1968
Message Authentication Code (HMAC). (U.S. Department of Commerce, 1969
Washington, DC), Federal Information Processing Standards Publication 1970
(FIPS) 198-1. https://doi.org/10.6028/NIST.FIPS.198-1. 1971

[FIPS202] National Institute of Standards and Technology (2015) SHA-3 Standard: 1972
Permutation-Based Hash and Extendable-Output Functions. (U.S. 1973
Department of Commerce, Washington, DC), Federal Information 1974
Processing Standards Publication (FIPS) 202. 1975
https://doi.org/10.6028/NIST.FIPS.202 1976

[NISTIR8427] Buller D, Kaufer A, Roginsky AL, Sonmez Turan M (2022). Discussion on 1977
the Full Entropy Assumption of SP 800-90 Series. (National Institute of 1978
Standards and Technology, Gaithersburg, MD), NIST Internal Report 1979
(NISTIR) 8427 ipd. https://doi.org/10.6028/NIST.IR.8427.ipd 1980

[SP800-38B] Dworkin MJ (2005) Recommendation for Block Cipher Modes of 1981
Operation: the CMAC Mode for Authentication. (National Institute of 1982
Standards and Technology, Gaithersburg, MD), NIST Special Publication 1983

https://doi.org/10.6028/NIST.FIPS.140-2
https://doi.org/10.6028/NIST.FIPS.140-3
https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/fips140-2/FIPS1402IG.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/fips140-2/FIPS1402IG.pdf
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.6028/NIST.FIPS.198-1
https://doi.org/10.6028/NIST.FIPS.202

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

58

(SP) 800-38B, Includes updates as of October 6, 2016. 1984
https://doi.org/10.6028/NIST.SP.800-38B 1985

[SP800-57Part1] Barker EB (2020) Recommendation for Key Management: Part 1 – 1986
General. (National Institute of Standards and Technology, Gaithersburg, 1987
MD), NIST Special Publication (SP) 800-57 Part 1, Rev. 5. 1988
https://doi.org/10.6028/NIST.SP.800-57pt1r5 1989

[SP800-67] Barker EB, Mouha N (2017) Recommendation for the Triple Data 1990
Encryption Algorithm (TDEA) Block Cipher. (National Institute of 1991
Standards and Technology, Gaithersburg, MD), NIST Special Publication 1992
(SP) 800-67, Rev. 2. https://doi.org/10.6028/NIST.SP.800-67r2 1993

[SP800-90A] Barker EB, Kelsey JM (2015) Recommendation for Random Number 1994
Generation Using Deterministic Random Bit Generators. (National 1995
Institute of Standards and Technology, Gaithersburg, MD), NIST Special 1996
Publication (SP) 800-90A, Rev. 1. https://doi.org/10.6028/NIST.SP.800-1997
90Ar1 1998

[SP800-90B] Sönmez Turan M, Barker EB, Kelsey JM, McKay KA, Baish ML, Boyle M 1999
(2018) Recommendation for the Entropy Sources Used for Random Bit 2000
Generation. (National Institute of Standards and Technology, Gaithersburg, 2001
MD), NIST Special Publication (SP) 800-90B. 2002
https://doi.org/10.6028/NIST.SP.800-90B 2003

[SP800-131A] Barker EB, Roginsky AL (2019) Transitioning the Use of Cryptographic 2004
Algorithms and Key Lengths. (National Institute of Standards and 2005
Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-131A, 2006
Rev. 2. https://doi.org/10.6028/NIST.SP.800-131Ar2 2007

[WS19] Woodage J, Shumow D (2019) An Analysis of NIST SP 800-90A. In: 2008
Ishai Y, Rijmen V (eds) Advances in Cryptology – EUROCRYPT 2019. 2009
EUROCRYPT 2019. Lecture Notes in Computer Science, vol 11477. 2010
Springer, Cham. https://doi.org/10.1007/978-3-030-17656-3_6 2011

https://doi.org/10.6028/NIST.SP.800-38B
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-67r2
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90B
https://doi.org/10.6028/NIST.SP.800-131Ar2
https://doi.org/10.1007/978-3-030-17656-3_6

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

59

Appendix A. Entropy vs. Security Strength (Informative) 2012

This section of the appendix compares and contrasts entropy and security strength. 2013

A.1. Entropy 2014

Suppose that an entropy source produces n-bit strings with m bits of entropy in each bitstring. This 2015
means that when an n-bit string is obtained from that entropy source, the best possible guess of the 2016
value of the string has a probability of no more than 2−m of being correct. 2017
Entropy can be thought of as a property of a probability distribution, like the mean or variance. 2018
Entropy measures the unpredictability or randomness of the probability distribution on bitstrings 2019
produced by the entropy source, not a property of any particular bitstring. However, the 2020
terminology is sometimes slightly abused by referring to a bitstring as having m bits of entropy. 2021
This simply means that the bitstring came from a source that ensures m bits of entropy in its output 2022
bitstrings. 2023
Because of the inherent variability in the process, predicting future entropy-source outputs does 2024
not depend on an adversary’s amount of computing power. 2025

A.2. Security Strength 2026

A deterministic cryptographic mechanism (such as one of the DRBGs defined in [SP800-90A]) 2027
has a security strength − a measure of how much computing power an adversary expects to need 2028
to defeat the security of the mechanism. If a DRBG has an s-bit security strength, an adversary 2029
who can make 2w computations of the underlying block cipher or hash function, where w < s, 2030
expects to have about a 2w−s probability of defeating the DRBG’s security. For example, an 2031
adversary who can perform 296 AES encryptions can expect to defeat the security of the CTR-2032
DRBG that uses AES-128 with a probability of about 2−32 (i.e., 296−128). 2033

A.3. A Side-by-Side Comparison 2034

Informally, one way of thinking of the difference between security strength and entropy is the 2035
following: suppose that an adversary somehow obtains the internal state of an entropy source (e.g., 2036
the state of all of the ring oscillators and any internal buffer). This might allow the adversary to 2037
predict the next few bits from the entropy source (assuming that there is some buffering of bits 2038
within the entropy source), but the entropy source outputs will once more become unpredictable 2039
to the adversary very quickly. For example, knowing what faces of the dice are showing on the 2040
craps table does not allow a player to successfully predict the next roll of the dice. 2041
In contrast, suppose that an adversary somehow obtains the internal state of a DRBG. Because the 2042
DRBG is deterministic, the adversary can then predict all future outputs from the DRBG until the 2043
next reseeding of the DRBG with a sufficient amount of entropy. 2044
An entropy source provides bitstrings that are hard for an adversary to guess correctly but usually 2045
have some detectable statistical flaws (e.g., they may have slightly biased bits, or successive bits 2046
may be correlated). However, a well-designed DRBG provides bitstrings that exhibit none of these 2047

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

60

properties. Rather, they have independent and identically distributed bits, with each bit taking on 2048
a value with a probability of exactly 0.5. These bitstrings are only unpredictable to an adversary 2049
who does not know the DRBG’s internal state. 2050

A.4. Entropy and Security Strength in this Recommendation 2051

In the RBG1 construction specified in Section 4, the DRBG is instantiated from either an RBG2(P) 2052
or an RBG3 construction. In order to instantiate the RBG1 construction at a security strength of s 2053
bits, this Recommendation requires the source RBG to support a security strength of at least s bits 2054
and provide a bitstring that is 3s/2 bits long for most of the DRBGs. However, for a CTR_DRBG 2055
without a derivation function, a bitstring that is s + 128 bits long is required. (Note that an RBG3 2056
construction supports any desired security strength.) 2057
In the RBG2 and RBG3 constructions specified in Sections 5 and 6, respectively, the DRBG within 2058
the construction is instantiated using a bitstring with a certain amount of entropy obtained from a 2059
validated entropy source.34 In order to instantiate the DRBG to support an s-bit security strength, 2060
a bitstring with at least 3s/2 bits of entropy is required for the instantiation of most of the DRBGs. 2061
Reseeding requires a bitstring with at least s bits of entropy. However, for a CTR_DRBG without 2062
a derivation function, a bitstring with exactly s + 128 full-entropy bits is required for instantiation 2063
and reseeding, either obtained directly from an entropy source that provides full-entropy output or 2064
from an entropy source via an approved (vetted) conditioning function (see Section 3.3). 2065
The RBG3 constructions specified in Section 6 are designed to provide full-entropy outputs but 2066
with a DRBG included in the design in case the entropy source fails undetectably. Entropy bits are 2067
possibly obtained from an entropy source via an approved (vetted) conditioning function. When 2068
the entropy source is working properly, an n-bit output from the RBG3 construction is said to 2069
provide n bits of entropy. The DRBG in an RBG3 construction is always required to support a 2070
256-bit security strength. If an entropy-source fails and the failure is undetected, the RBG3 2071
construction outputs are generated at a security strength of 256 bits. In this case, the security 2072
strength of a bitstring produced by the RBG is the minimum of 256 and its length (i.e., 2073
security_strength = min(256, length)). 2074
In conclusion, entropy sources and properly functioning RBG3 constructions provide output with 2075
entropy. RBG1 and RBG2 constructions provide output with a security strength that depends on 2076
the security strength of the RBG instantiation and the length of the output. Likewise, if the entropy 2077
source used by an RBG3 construction fails undetectably, the output is then dependent on the 2078
DRBG within the construction (an RBG(P) construction) to produce output at a security strength 2079
of 256 bits. 2080
Because of the difference between the use of “entropy” to describe the output of an entropy source 2081
and the use of “security strength” to describe the output of a DRBG, the term “randomness” is 2082
used as a general term to mean either “entropy” or “security strength,” as appropriate. A 2083
“randomness source” is the general term for an entropy source or RBG that provides the 2084
randomness used by an RBG. 2085
 2086

34 However, note that the entropy-source output may be cryptographically processed by an approved conditioning function before being used.

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

61

Appendix B. RBG Examples (Informative) 2087

Appendix B.1 discusses and provides an example of the direct access to a DRBG used by an RBG3 2088
construction. 2089
Appendices B.2 – B.6 provide examples of each RBG construction. Not shown in the figures: if 2090
an error that indicates an RBG failure (e.g., a noise source in the entropy source has failed) is 2091
reported, RBG operation is terminated (see Section 7.1.2). For these examples, all entropy sources 2092
are considered to be physical entropy sources. 2093

B.1. Direct DRBG Access in an RBG3 Construction 2094

An implementation may be designed so that the DRBG implementation used within an RBG3 2095
construction can be directly accessed by a consuming application35 using the same or separate 2096
instantiations from the instantiation used by the RBG3 construction (see the examples in Figure 2097
19). 2098

 2099
Fig. 19. DRBG Instantiations 2100

In the leftmost example in Figure 19, the same internal state is used by the RBG3 construction and 2101
a directly accessible DRBG. The DRBG implementation is instantiated only once, and only a 2102
single state handle is obtained during instantiation (e.g., RBG3_state handle).36 Generation and 2103

35 Without using other components or functionality used by the RBG3 construction (see Sections 6.2 and 6.3).
36 Because only a single instantiation has been implemented, a state handle is not required.

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

62

reseeding for RBG3 operations use RBG3 function calls (see Sections 6.2 and 6.3), while 2104
generation and reseeding for direct DRBG access use RBG2 function calls (see Section 5.2) with 2105
the RBG3_state_handle. Using the same instantiation for both RBG3 operation and direct access 2106
to the DRBG requires additional reseeding processes in the case of an RBG3(RS) construction 2107
(see Section 6.3.2). 2108
In the rightmost example in Figure 19, different internal states are used by the RBG3 construction 2109
and a directly accessible DRBG. The DRBG implementation is instantiated twice – once for RBG3 2110
operations and a second time for direct access to the DRBG. A different state handle needs to be 2111
obtained for each instantiation (e.g., RBG3_state_handle and DRBG_state_handle). Generation 2112
and reseeding for RBG3 operations use RBG3 function calls and RBG3_state_handle (see Sections 2113
6.2 and 6.3), while generation and reseeding for direct DRBG access use RBG2 function calls and 2114
DRBG_state_handle (see Section 5.2). 2115
Multiple directly accessible DRBGs may also be incorporated into an implementation by creating 2116
multiple instantiations. However, no more than one directly accessible DRBG should share the 2117
same internal state with the RBG3 construction (i.e., if n directly accessible DRBGs are required, 2118
either n or n− 1 separate instantiations are required). 2119
The directly accessed DRBG instantiations are in the same security boundary as the RBG3 2120
construction. When accessed directly (rather than operating as part of the RBG3 construction), the 2121
DRBG instantiations are considered to be operating as RBG2(P) constructions as discussed in 2122
Section 5. 2123

B.2. Example of an RBG1 Construction 2124

An RBG1 construction has access to a randomness source only during instantiation when it is 2125
seeded (see Section 4). For this example (see Figure 20), the DRBG used by the RBG1 construction 2126
and the randomness source reside in two different cryptographic modules with a secure channel 2127
connecting them during the instantiation process. Following DRBG instantiation, the secure 2128
channel is not available. For this example, the randomness source is an RBG2(P) construction (see 2129
Section 5) with a state handle of RBG2_state_handle. 2130
The targeted security strength for the RBG1 construction is 256 bits, so a DRBG from [SP800-2131
90A] that is able to support this security strength must be used (HMAC_DRBG using SHA-256 is 2132
used in this example). A personalization_string is provided during instantiation, as recommended 2133
in Section 2.4.1. 2134
As discussed in Section 4, the randomness source (i.e., the RBG2(P) construction for this example) 2135
is not available during normal operation, so reseeding and prediction resistance cannot be 2136
provided. 2137
This example provides an RBG that is instantiated at a security strength of 256 bits. 2138

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

63

 2139
Fig. 20. RBG1 Construction Example 2140

B.2.1. Instantiation of the RBG1 Construction 2141

A physically secure channel is required to transport the entropy bits from the randomness source 2142
(the RBG2(P) construction) to the HMAC_DRBG during instantiation; an example of an RBG2(P) 2143
construction is provided in Appendix B.4. Thereafter, the randomness source and the secure 2144
channel are no longer available. 2145
The HMAC_DRBG is instantiated using the Instantiate_function, as specified in Section 2.8.1.1, 2146
with the following call: 2147

(status, RBG1_state_handle) = Instantiate_function (256, prediction_resistance_flag = 2148
FALSE, “Device 7056”). 2149

A security strength of 256 bits is requested for the HMAC_DRBG used in the RBG1 2150
construction. 2151
Since an RBG1 construction does not provide prediction resistance (see Section 4), the 2152
prediction_resistance_flag is set to FALSE. 2153
The personalization string to be used for this example is “Device 7056.” 2154

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

64

The Get_randomness-source_input call in the Instantiate_function results in a single request 2155
being sent to the randomness source to generate bits to establish the security strength (see Section 2156
4.2.1, item 2.a). 2157

The HMAC_DRBG requests 3s/2 = 384 bits from the randomness source, where s = the 2158
256-bit targeted security strength for the DRBG: 2159

(status, randomness_bitstring) = Generate_function(RBG2_state_handle, 384, 256, 2160
prediction_resistance_request = TRUE). 2161

This call requests the randomness source (indicated by RBG2_state_handle) to generate 2162
384 bits at a security strength of 256 bits for the randomness input required for seeding the 2163
DRBG in the RBG1 construction. Prediction resistance is requested so that the randomness 2164
source (i.e., the RBG2(P) construction) is reseeded before generating the requested 384 2165
bits (see Requirement 17 in Section 4.4.1). Note that optional additional_input is not 2166
provided for this example. 2167

2. The RBG2(P) construction checks that the request can be handled (e.g., whether a security 2168
strength of 256 bits is supported). If the request is valid, 384 bits are generated after 2169
reseeding the RBG2(P) construction, the internal state of the RBG2(P) construction is 2170
updated, and status = SUCCESS is returned to the RBG1 construction along with the newly 2171
generated randomness_bitstring. 2172
If the request is determined to be invalid, status = FAILURE is returned along with a Null 2173
bitstring as the randomnessy_bitstring. The FAILURE status is subsequently returned from 2174
the Instantiate_function along with a Null value as the RBG1_state_handle, and the 2175
instantiation process is terminated. 2176

If a valid randomness_bitstring is returned from the RBG2(P) construction, the 2177
randomness_bitstring is used along with the personalization_string to create the seed to 2178
instantiate the DRBG (see [SP800-90A]).37 If the instantiation is successful, the internal state is 2179
established, a status of SUCCESS is returned from the Instantiate_function with a state handle 2180
of RBG1_state_handle, and the RBG can be used to generate pseudorandom bits. 2181

B.2.2. Generation by the RBG1 Construction 2182

Assuming that the HMAC_DRBG in the RBG1 construction has been instantiated (see Appendix 2183
B.2.1), pseudorandom bits are requested from the RBG by a consuming application using the 2184
Generate_function call as specified in Section 2.8.1.2: 2185

(status, returned_bits) = Generate_function (RBG1_state_handle, 2186
requested_number_of_bits, requested_security_strength, prediction_resistance_request = 2187

FALSE, additional_input). 2188
RBG1_state_handle was returned as the state handle during instantiation (see Appendix 2189
B.2.1). 2190

37 The first 256 bits of the randomness_bitstring are used as the randomness input, and the remaining 128 bits are used as the nonce in SP 800-90A,
Revision 1. A future update of SP 800-90A will revise this process by using the entire 384-bit string as the randomness input.

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

65

The requested_security_strength may be any value that is less than or equal to 256 (the 2191
instantiated security strength recorded in the DRBG’s internal state). 2192
Since prediction resistance cannot be provided in an RBG1 construction, 2193
prediction_resistance_request is set to FALSE. (Note that the prediction_resistance 2194
request input parameter could be omitted from the Generate_function call for this 2195
example). 2196
Any additional input is optional. 2197

The Generate_function returns an indication of the status. If status = SUCCESS, the 2198
requested_number_of_bits are provided as the returned_bits to the consuming application. If 2199
status = FAILURE, returned_bits is an empty (i.e., null) bitstring. 2200

B.3. Example Using Sub-DRBGs Based on an RBG1 Construction 2201

This example uses an RBG1 construction to instantiate two sub-DRBGs: sub-DRBG1 and sub-2202
DRBG2 (see Figure 21). 2203

 2204
Fig. 21. Sub-DRBGs Based on an RBG1 Construction 2205

The instantiation of the RBG1 construction is discussed in Appendix B.2. The RBG1 construction 2206
that is used as the source RBG includes an HMAC_DRBG and has been instantiated to provide a 2207
security strength of 256 bits. The state handle for the construction is RBG1_state_handle. 2208
For this example, Sub-DRBG1 will be instantiated to provide a security strength of 128 bits, and 2209
Sub-DRBG2 will be instantiated to provide a security strength of 256 bits. Both sub-DRBGs use 2210
the same DRBG algorithm as the RBG1 construction. 2211
Neither the RBG1 construction nor the sub-DRBGs can be reseeded or provide prediction 2212
resistance. 2213
This example provides the following capabilities: 2214

• Access to the RBG1 construction to provide output generated at a security strength of 256 2215
bits (see Appendix B.2 for the RBG1 example) 2216

• Access to one sub-DRBG (Sub-DRBG1) that provides output for an application that 2217
requires a security strength of no more than 128 bits 2218

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

66

• Access to a second sub-DRBG (Sub-DRBG2) that provides output for a second application 2219
that requires a security strength of 256 bits 2220

B.3.1. Instantiation of the Sub-DRBGs 2221

Each sub-DRBG is instantiated using output from an RBG1 construction that is discussed in 2222
Appendix 62B.2. 2223

B.3.1.1. Instantiating Sub-DRBG1 2224

Sub-DRBG1 is instantiated using the following Instantiate_function call (see Section 2.8.1.1): 2225
(status, sub-DRBG1_state_handle) = Instantiate_function (128, prediction_resistance_flag 2226

= FALSE, “Sub-DRBG App 1”). 2227

• A security strength of 128 bits is requested from the DRBG indicated by the 2228
RBG1_state_handle. 2229

• Setting “prediction_resistance_flag = FALSE” indicates that a consuming application will 2230
not be allowed to request prediction resistance. Optionally, the parameter can be omitted. 2231

• The personalization string to be used for sub-DRBG1 is “Sub-DRBG App 1.” 2232
• The returned state handle for sub-DRBG1 will be sub-DRBG1_state_handle. 2233

The randomness input for establishing the 128-bit security strength of sub-DRBG1 is requested 2234
using the following Generate_function call to the RBG1 construction): 2235

(status, randomness-source_input) = Generate_function(RBG1_state_handle, 192, 128, 2236
prediction_resistance_request = FALSE, additional_input). 2237

• 192 bits are requested from the source RBG (indicated by RBG1_state_handle) at a security 2238
strength of 128 bits (192 = 128 + 64 = 3s/2). 2239

• Setting “prediction_resistance_flag = FALSE” indicates that the source RBG (the RBG1 2240
construction) will not need to reseed itself before generating the requested output. 2241
Alternatively, the parameter can be omitted. 2242

• Additional input is optional. 2243
If status = SUCCESS is returned from the Generate_function, the HMAC_DRBG in sub-DRBG1 2244
is seeded using the randomness-source_input obtained from the RBG1 construction and the 2245
personalization_string provided in the Instantiate_function call (i.e., “Sub-DRBG App 1”). The 2246
internal state is recorded for Sub-DRBG1 (including the 128-bit security strength), and status = 2247
SUCCESS is returned from the Instantiate_function along with a state handle of sub-2248
DRBG1_state_handle. 2249
If status = FAILURE is returned from the Generate_function call, then the internal state is not 2250
created, status = FAILURE and a Null state handle are returned from the Instantiate_function, 2251
and the sub-DRBG1 cannot be used to generate bits. 2252

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

67

B.3.1.2. Instantiating Sub-DRBG2 2253

Sub-DRBG2 is instantiated using the following Instantiate_function call (see Section 2.8.1.1): 2254
(status, sub-DRBG2_state_handle) = Instantiate_function (256, prediction_resistance_flag = 2255

FALSE, “Sub-DRBG App 2”). 2256

• A security strength of 256 bits is requested from the randomness source (the DRBG 2257
construction indicated by RBG1_state_handle). 2258

• Setting “prediction_resistance_flag = FALSE” indicates that a consuming application will 2259
not be allowed to request prediction resistance. Optionally, the parameter can be omitted. 2260

• The personalization string to be used for sub-DRBG2 is “Sub-DRBG App 2.” 2261
• The returned state handle will be sub-DRBG2_state_handle. 2262

The randomness input for establishing the 256-bit security strength of sub-DRBG2 is requested 2263
using the following Generate_function call to the RBG1 construction): 2264

(status, randomness-source_input) = Generate_function(RBG1_state_handle, 384, 256, 2265
prediction_resistance_request = FALSE, additional_input). 2266

• 384 bits are requested from the source RBG (indicated by RBG1_state_handle) at a security 2267
strength of 256 bits (384 = 256 + 128 = 3s/2). 2268

• Setting “prediction_resistance_flag = FALSE” indicates that the source RBG (the RBG1 2269
construction) will not need to reseed itself before generating the requested output. 2270
Alternatively, the parameter can be omitted. 2271

• Additional input is optional. 2272
If status = SUCCESS is returned from the Generate_function, the HMAC_DRBG in sub-DRBG2 2273
is seeded using the randomness-source_input obtained from the RBG1 construction and the 2274
personalization_string provided in the Instantiate_function call (i.e., “Sub-DRBG App 2”). The 2275
internal state is recorded for Sub-DRBG2 (including the 256-bit security strength), and status = 2276
SUCCESS is returned from the Instantiate_function along with a state handle of sub-2277
DRBG2_state_handle. 2278
If status = FAILURE is returned from the Generate_function call, then the internal state is not 2279
created, status = FAILURE and a Null state handle are returned from the Instantiate_function, 2280
and the sub-DRBG2 cannot be used to generate bits. 2281

B.3.2. Pseudorandom Bit Generation by Sub-DRBGs 2282

Assuming that the sub-DRBG has been successfully instantiated (see Appendix B.3.1), 2283
pseudorandom bits are requested from the sub-DRBG by a consuming application using the 2284
Generate_function call as specified in Section 2.8.1.2: 2285

(status, returned_bits) = Generate_function(state_handle, requested_number_of_bits, 2286
security_strength, prediction_resistance_request, additional input), 2287

where: 2288

• For sub_DRBG1, state_handle = sub-DRBG1_state_handle; 2289

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

68

For sub-DRBG2, state_handle = sub-DRBG2_state_handle; 2290

• requested_number_of_bits must be ≤ 219 (see SP 800-90A for HMAC_DRBG); 2291

• For sub_DRBG1, security strength must be ≤ 128; 2292

• For sub_DRBG2, security strength must be ≤ 256; 2293

• prediction_resistance_request = FALSE (or is omitted); and 2294

• additional_input is optional. 2295

B.4. Example of an RBG2(P) or RBG2(NP) Construction 2296

For this example of an RBG2 construction, no conditioning function is used, and only a single 2297
DRBG instantiation will be used (see Figure 22), so a state handle is not needed. Full-entropy 2298
output is not provided by the entropy source, which may be either a physical or non-physical 2299
entropy source. 2300

 2301
Fig. 22. RBG2 Example 2302

The targeted security strength is 256 bits, so a DRBG from [SP800-90A] that can support this 2303
security strength must be used; HMAC_DRBG using SHA-256 is used in this example. A 2304
personalization_string may be provided, as recommended in Section 2.4.1. Reseeding and 2305
prediction resistance are supported and will be available on demand. 2306
This example provides the following capabilities: 2307

• An RBG instantiated at a security strength of 256 bits, and 2308

• Access to an entropy source to provide prediction resistance. 2309

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

69

B.4.1. Instantiation of an RBG2 Construction 2310

The DRBG in the RBG2 construction is instantiated using an Instantiate_function call (see 2311
Section 2.8.1.1): 2312

(status) = Instantiate_function (256, prediction_resistance_flag = TRUE, “RBG2 42”). 2313

• Since there is only a single instantiation, a state_handle is not used for this example. 2314

• Using “prediction_resistance_flag = TRUE”, the RBG is notified that prediction resistance 2315
may be requested in subsequent Generate_function calls. 2316

• The personalization string to be used for this example is “RBG2 42.” 2317
The entropy for establishing the security strength (s) of the DRBG (i.e., s = 256 bits) is requested 2318
using the following Get_ES_Bitstring call to the entropy source (see Section 2.8.2.2 and item 2 2319
in Section 5.2.1): 2320

 (status, entropy_bitstring) = Get_ES_Bitstring(384), 2321
where 3s/2 = 384 bits of entropy are requested from the entropy source. 2322
If status = SUCCESS is returned from the Get_ES_Bitstring call, the HMAC_DRBG is seeded 2323
using entropy_bitstring, and the personalization_string is “RBG2 42.” The internal state is 2324
recorded (including the security strength of the instantiation), and status = SUCCESS is returned 2325
to the consuming application by the Instantiate_function. 2326
If status = FAILURE is returned from the Get_ES_Bitstring call, then the internal state is not 2327
created, status = FAILURE and a Null state handle are returned by the Instantiate_function to 2328
the consuming application, and the RBG cannot be used to generate bits. 2329

B.4.2. Generation in an RBG2 Construction 2330

Assuming that the RBG has been successfully instantiated (see Appendix B.4.1), pseudorandom 2331
bits are requested from the RBG by a consuming application using the Generate_function call as 2332
specified in Section 2.8.1.2: 2333

(status, returned_bits) = Generate_function(requested_number_of_bits, security_strength, 2334
prediction_resistance_request, additional input). 2335

• Since there is only a single instantiation of the HMAC_DRBG, a state_handle was not 2336
returned from the Instantiate_function (see Appendix B.4.1) and is not used during the 2337
Generate_function call. 2338

• The requested_security_strength may be any value that is less than or equal to 256 (the 2339
instantiated security strength recorded in the HMAC_DRBG’s internal state). 2340

• prediction_resistance_request = TRUE if prediction resistance is requested and FALSE 2341
otherwise. 2342

• Additional input is optional. 2343
If prediction resistance is requested, a reseed of the HMAC_DRBG is requested by the 2344
Generate_function before the requested bits are generated (see Appendix B.4). If status = 2345

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

70

FAILURE is returned from the Reseed_function, status = FAILURE is also returned to the 2346
consuming application by the Generate_function, along with a Null value as the returned_bits. 2347
Whether or not prediction resistance is requested, a status indication is returned from the 2348
Generate_function call. If status = SUCCESS, a bitstring of at least requested_number_of_bits 2349
is provided as the returned_bits to the consuming application. If status = FAILURE, returned_bits 2350
is an empty bitstring. 2351

B.4.3. Reseeding an RBG2 Construction 2352

The HMAC_DRBG will be reseeded 1) if explicitly requested by the consuming application, 2) 2353
whenever generation with prediction resistance is requested by the Generate_function, or 3) 2354
automatically during a Generate_function call at the end of the DRBG’s designed seedlife (see 2355
the Generate_function specification in [SP800-90A)]. 2356
The Reseed_function call, as specified in Section 2.8.1.3, is: 2357

status = Reseed_function(additional_input). 2358

• Since there is only a single instantiation of the HMAC_DRBG, a state_handle was not 2359
returned from the Instantiate_function (see Appendix B.4.1) and is not used during the 2360
Reseed_function call. 2361

• The additional_input is optional. 2362
Since entropy is obtained directly from the entropy source (case 2 in Section 5.2.3), the 2363
implementation has replaced the Get_randomness-source_input call used by the 2364
Reseed_function in [SP800-90A] with a Get_ES_Bitstring call. 2365
The HMAC_DRBG is reseeded with a security strength of 256 bits as follows: 2366

(status, entropy_bitstring) = Get_ES_Bitstring(256). 2367
If status = SUCCESS is returned by Get_ES_Bitstring, the entropy_bitstring contains at least 256 2368
bits of entropy and is at least 256 bits long. Status = SUCCESS is returned to the calling application 2369
(e.g., the Generate_function) by the Reseed_function. 2370
If status = FAILURE, entropy_bitstring is an empty (e.g., null) bitstring. The HMAC_DRBG is 2371
not reseeded, and status= FAILURE is returned from Reseed_function to the calling application. 2372

B.5. Example of an RBG3(XOR) Construction 2373

This construction is specified in Section 6.2 and requires a DRBG and a source of full-entropy 2374
bits. For this example, the entropy source itself does not provide full-entropy output, so the vetted 2375
Hash conditioning function listed in [SP800-90B] using SHA-256 is used as an external 2376
conditioning function. 2377
The Hash_DRBG specified in [SP800-90A] will be used as the DRBG, with SHA-256 used as the 2378
underlying hash function for the DRBG (note the use of SHA-256 for both the Hash_DRBG and 2379
the vetted conditioning function). The DRBG will obtain input directly from the RBG’s entropy 2380
source without conditioning (as shown in Figure 23), since bits with full entropy are not required 2381

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

71

for input to the DRBG, even though full-entropy bits are required for input to the XOR operation 2382
(shown as “⊕” in the figure) from the entropy source via the conditioning function. 2383

 2384
Fig. 23. RBG3(XOR) Construction Example 2385

As specified in Section 6.2, the DRBG must be instantiated (and reseeded) at 256 bits, which is 2386
possible for SHA-256. 2387
In this example, only a single instantiation is used, and a personalization string is provided during 2388
instantiation. The DRBG is not directly accessible. 2389
Calls are made to the RBG using the RBG3(XOR) calls specified in Section 6.2. 2390
The Hash_DRBG itself is not directly accessible. 2391
This example provides the following capabilities: 2392

• Full-entropy output by the RBG, 2393
• Fallback to the security strength provided by the Hash_DRBG (256 bits) if the entropy 2394

source has an undetected failure, and 2395
• Access to an entropy source to instantiate and reseed the Hash_DRBG. 2396

B.5.1. Instantiation of an RBG3(XOR) Construction 2397

The Hash_DRBG is instantiated using: 2398
status = RBG3(XOR)_DRBG_Instantiate(“RBG3(XOR)”), 2399

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

72

• Since the DRBG is not directly accessible, there is no need for a separate instantiation, so 2400
there is also no need for the return of a state handle. 2401

• The personalization string for the DRBG is “RBG3(XOR).” 2402
The RBG3(XOR)_DRBG_Instantiate function in Section 6.2.1.1 uses a DRBG 2403
Instantiate_function to seed the Hash_DRBG: 2404

(status) = Instantiate_function(256, prediction_resistance_flag = FALSE, 2405
personalization_string). 2406

• Since the DRBG is not directly accessible, there is no need for a separate instantiation, so 2407
there is also no need for the return of a state handle. 2408

• The DRBG is instantiated at a security strength of 256 bits. 2409

• The DRBG is notified that prediction resistance is not required using 2410
prediction_resistance_flag = FALSE. Since the DRBG will not be accessed directly, 2411
prediction_resistance will never be requested. Optionally, the implementation could omit 2412
this parameter. 2413

• The personalization string for the DRBG is “RBG3(XOR).” It was provided in the 2414
RBG3(XOR)_DRBG_Instantiate call. 2415

Section 6.2.1.1 refers to Section 5.2.1 for further information on instantiating the DRBG. 2416
The entropy for establishing the security strength (s) of the Hash_DRBG (i.e., where s = 256 bits) 2417
is requested using the following Get_ES_Bitstring call: 2418

 (status, entropy_bitstring) = Get_ES_Bitstring(384), 2419
where 3s/2 = 384 bits of entropy are requested from the entropy source. 2420
If status = SUCCESS is returned from the Get_ES_Bitstring call, the Hash_DRBG is seeded 2421
using the entropy_ bitstring and the personalization_string (“RBG3(XOR)”). The internal state is 2422
recorded (including the 256-bit security strength of the instantiation), and status = SUCCESS is 2423
returned to the consuming application by the Instantiate_function. The RBG can be used to 2424
generate full-entropy bits. 2425
If status = FAILURE is returned from the Get_ES_Bitstring call, status = FAILURE and a Null 2426
state handle are returned to the consuming application from the Instantiate_function. `The 2427
Hash_DRBG’s internal state is not established, and the RBG cannot be used to generate bits. 2428

B.5.2. Generation by an RBG3(XOR) Construction 2429

Assuming that the Hash_DRBG has been instantiated (see Appendix B.4.1), the RBG can be called 2430
by a consuming application to generate output with full entropy. 2431

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

73

B.5.2.1. Generation 2432

Let n indicate the requested number of bits to generate. The construction in Section 6.3.1.2 is used 2433
as follows: 2434
RBG3(XOR)_Generate: 2435
Input: integer n, string additional_input. 2436
Output: integer status, bitstring returned_bits. 2437
Process: 2438

1. (status, ES_bits) = Get_conditioned_full-entropy_input(n). 2439
2. If (status ≠ SUCCESS), then return(status, Null). 2440
3. (status, DRBG_bits) = Generate_function(n, 256, prediction_resistance_request = 2441

FALSE, additional_input). 2442
4. If (status ≠ SUCCESS), then return(status, Null). 2443

5. returned_bits = ES_bits ⊕ DRBG_bits. 2444
6. Return SUCCESS, returned_bits. 2445

Note that the state_handle parameter is not used in the RBG3(XOR)_Generate call or the 2446
Generate_function call (in step 3) for this example since a state_handle was not returned from 2447
the RBG3(XOR)_DRBG_Instantiate function (see Appendix B.5.1). 2448
In step 1, the entropy source is accessed via the conditioning function using the 2449
Get_conditioned_full-entropy_input routine (see Appendix B.5.2.2) to obtain n bits with full 2450
entropy. 2451
Step 2 checks that the Get_conditioned_full-entropy_input call in step 1 was successful. If it 2452
was not successful, the RBG3(XOR)_Generate function is aborted, returning status ≠ SUCCESS 2453
to the consuming application along with a Null bitstring as the returned_bits. 2454
Step 3 calls the Hash_DRBG to generate n bits to be XORed with the n-bit output of the entropy 2455
source (ES_Bits; see step 1) in order to produce the RBG output. Note that a request for prediction 2456
resistance is not made in the Generate_function call (i.e., prediction_resistance_request = 2457
FALSE). Optionally, this parameter could be omitted since prediction resistance is never 2458
requested. 2459
Step 4 checks that the Generate_function invoked in step 3 was successful. If it was not 2460
successful, the RBG3(XOR)_Generate function is aborted, returning status ≠ SUCCESS to the 2461
consuming application along with a Null bitstring as the returned_bits. 2462
If step 3 returns an indication of success, the ES_bits returned in step 1 and the DRBG_bits obtained 2463
in step 3 are XORed together in step 5. The result is returned to the consuming application in step 2464
6. 2465

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

74

B.5.2.2. Get_conditioned_full-entropy_input Function 2466

The Get_conditioned_full-entropy_input construction is specified in Section 3.3.2. For this 2467
example, the routine becomes the following: 2468
Get_conditioned_full_entropy_ input: 2469

Input: integer n. 2470
Output: integer status, bitstring Full-entropy_bitstring. 2471

Process: 2472
1. temp = the Null string. 2473
2. ctr = 0. 2474
3. While ctr < n, do 2475

3.1 (status, entropy_bitstring) = Get_ES_Bitstring (320). 2476
3.2 If (status ≠ SUCCESS), then return (status, invalid_string). 2477
3.3 conditioned_output = HashSHA_256(entropy_bitstring). 2478
3.4 temp =temp || conditioned_output. 2479
3.5 ctr = ctr + 256. 2480

4. Full-entropy_bitstring = leftmost(temp, n). 2481
5. Return (SUCCESS, Full-entropy_bitstring). 2482

Steps 1 and 2 initialize the temporary bitstring (temp) for holding the full-entropy bitstring being 2483
assembled, and the counter (ctr) that counts the number of full-entropy bits produced so far. 2484
Step 3 obtains and processes the entropy for each iteration. 2485

• Step 3.1 requests 320 bits from the entropy source(s) (i.e., output_len + 64 bits, where 2486
output_len = 256 for SHA-256). 2487

• Step 3.2 checks whether or not the status returned in step 3.1 indicated a success. If the 2488
status did not indicate a success, the status is returned along with an invalid (e.g., Null) 2489
bitstring as the Full-entropy_bitstring. 2490

• Step 3.3 invokes the Hash conditioning function (see Section 3.3.1.2) using SHA-256 for 2491
processing the entropy_bitstring obtained from step 3.1. 2492

• Step 3.4 concatenates the conditioned_output received in step 3.3 to the temporary bitstring 2493
(temp), and step 3.5 increments the counter for the number of full-entropy bits that have 2494
been produced so far. 2495

After at least n bits have been produced in step 3, step 4 selects the leftmost n bits of the temporary 2496
string (temp) to be returned as the bitstring with full entropy. 2497
Step 5 returns the result from step 4 (Full-entropy_bitstring). 2498

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

75

B.5.3. Reseeding an RBG3(XOR) Construction 2499

The Hash_DRBG must be reseeded at the end of its designed seedlife and may be reseeded on 2500
demand (e.g., by the consuming application). Reseeding will be automatic whenever the end of 2501
the DRBG’s seedlife is reached during a Generate_function call (see [SP800-90A]). For this 2502
example, whether reseeding is done automatically during a Generate_function call or is 2503
specifically requested by a consuming application, the Reseed_function call is: 2504

status = Reseed_function(additional_input). 2505

• The state_handle parameter is not used in the Reseed_function call since a state_handle 2506
was not returned from the RBG3(XOR)_DRBG_Instantiate function (see Appendix 2507
B.5.1). 2508

• The security strength for reseeding the Hash_DRBG is recorded in the internal state as 256 2509
bits. 2510

• Additional input is optional. 2511
Section 6.3.1.3 refers to Section 5.2.3 for reseeding the Hash_DRBG. Since entropy is obtained 2512
directly from the entropy source and no conditioning function is used (case 2 in Section 6.3.2), the 2513
implementation has replaced the Get_randomness-source_input call used by the 2514
Reseed_function in [SP800-90A] with a Get_ES_Bitstring call. 2515
The Hash_DRBG is reseeded with a security strength of 256 bits as follows: 2516

(status, entropy_bitstring) = Get_ES_Bitstring(256). 2517
If status = SUCCESS is returned by the Get_ES_Bitstring call, entropy_bitstring consists of at 2518
least 256 bits that contain at least 256 bits of entropy. These bits are used to reseed the 2519
Hash_DRBG. Status = SUCCESS is then returned to the calling application by the 2520
Reseed_function. 2521
If status = FAILURE, entropy_bitstring is an empty (e.g., null) bitstring. The Hash_DRBG is not 2522
reseeded, and status ≠ SUCCESS is returned from the Reseed_function to the calling application 2523
(e.g., the Generate_function). 2524

B.6. Example of an RBG3(RS) Construction 2525

This construction is specified in Section 6.3 and requires an entropy source and a DRBG (see the 2526
left half of Figure 24 outlined in green). The DRBG is directly accessible using the same 2527
instantiation that is used by the RBG3(RS) construction (i.e., they share the same internal state). 2528
When accessed directly, the DRBG behaves as an RBG2(P) construction (see the right half of 2529
Figure 24 outlined in blue). 2530

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

76

 2531
Fig. 24. RBG3(RS) Construction Example 2532

The CTR_DRBG specified in [SP800-90A] will be used as the DRBG with AES-256 used as the 2533
underlying block cipher for the DRBG. The CTR_DRBG will be implemented using a derivation 2534
function (located inside the CTR_DRBG implementation). In this case, full-entropy output will 2535
not be required for the entropy source (see [SP800-90A]). However, an alternative example could 2536
use the CTR_DRBG without a derivation function. In that case, either the entropy source would 2537
need to provide full-entropy output, or a vetted conditioning function would be required to 2538
condition the entropy to provide full-entropy bits before providing it to the DRBG. 2539
As specified in Section 6.2, a DRBG used as part of the RBG must be instantiated (and reseeded) 2540
at a security strength of 256 bits (which AES-256 can support). 2541
For this example, the DRBG has a fixed security strength (256 bits), which is hard-coded into the 2542
implementation so will not be used as an input parameter. 2543
Calls are made to the RBG as specified in Section 6.3.1. Calls made to the directly accessible 2544
DRBG (part of a RBG2(P) construction) use the RBG calls specified in Section 5.2. Since an 2545
entropy source is always available, the directly accessed DRBG can be reseeded and support 2546
prediction resistance. 2547
If the entropy source produces output at a slow rate, a consuming application might call the 2548
RBG3(RS) construction only when full-entropy bits are required, obtaining all other output from 2549
the directly accessible DRBG. 2550
This example provides the following capabilities: 2551

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

77

• Full-entropy output by the RBG3(RS) construction, 2552
• Fallback to the security strength of the RBG3(RS)’s DRBG instantiation (256 bits) if the 2553

entropy source has an undetected failure, 2554
• Direct access to an RBG2(P) construction with a security strength of 256 bits for faster 2555

output when full-entropy output is not required, 2556
• Access to an entropy source to instantiate and reseed the DRBG, and 2557

• Prediction resistance support for the directly accessed DRBG. 2558

B.6.1. Instantiation of an RBG3(RS) Construction 2559

Instantiation for this example consists of the instantiation of the CTR_DRBG used by the 2560
RBG3(RS) construction. 2561
The DRBG is initialized as follows: 2562

(status, RBG3(RS)_state_handle) = RBG3(RS)_DRBG_Instantiate(“RBG3(RS) 2021”). 2563

• “RBG3(RS) 2021” is to be used as the personalization string for the DRBG instantiation 2564
used in the RBG3(RS) construction. 2565

• RBG3(RS)_state_handle is returned as the state handle for the DRBG instantiation used 2566
by the RBG3(RS) construction. 2567

Appendices B.6.2 and B.6.3 will show the differences between the operation of the RBG3(RS) 2568
and RBG2(P) constructions. 2569

B.6.2. Generation by an RBG3(RS) Construction 2570

Assuming that the DRBG instantiation for the RBG3(RS) construction has been instantiated (see 2571
Appendix B.6.1), the RBG can be invoked by a consuming application to generate outputs with 2572
full entropy. The RBG3(RS)_Generate construction in Section 6.3.1.2.1 is invoked using 2573

(status, returned_bits) = RBG3(RS)_Generate(RBG3(RS)_state_handle, n, 2574
additional_information). 2575

• The RBG3(RS)_state_handle (obtained during instantiation; see Appendix B.6.1) is used 2576
to access the internal state information for the DRBG instantiation for the RBG3(RS) 2577
construction. 2578

• The consuming application requests n bits. 2579

• The input of additional_information is optional. 2580
The process is specified in Section 6.3.1.2.1. The state handle in the Generate_function is 2581
RBG3(RS)_state_handle, which was obtained during instantiation (see Appendix B.6.1). 2582

B.6.3. Generation by the Directly Accessible DRBG 2583

Assuming that the DRBG has been instantiated (see Appendix B.6.1), it can be accessed directly 2584
by a consuming application in the same manner as the RBG2(P) example in Appendix B.4.2 using 2585

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

78

the RBG3(RS)_state_handle obtained during instantiation (see Appendix B.6.1) and using a 2586
Generate_function call: 2587

(status, returned_bits) = Generate_function(RBG3(RS)_state_handle, n, 2588
prediction_resistance_request, additional_input). 2589

Note that the security strength parameter (256) was omitted since its value has been hard coded. 2590
Requirement 2 in Section 6.3.2 requires that the DRBG be reseeded whenever a request for 2591
generation by a directly accessible DRBG follows a request for generation by the RBG3(RS) 2592
construction. For this example, the internal state includes an indication about whether the last use 2593
of the DRBG was as part of the RBG3(RS) construction or was directly accessible. If the 2594
Generate_function (above) does not include a request for prediction resistance (e.g., 2595
prediction_resistance_request was not set to TRUE), then the DRBG will be reseeded anyway 2596
using the entropy source before generating output if the previous use of the DRBG was part of the 2597
RBG3(RS) construction. 2598

B.6.4. Reseeding a DRBG 2599

When operating as part of the RBG3(RS) construction, the Reseed_function is invoked one or 2600
more times to produce full-entropy output when the RBG3(RS)_Generate function is invoked by 2601
a consuming application. 2602
When operating as part of the RBG2(P) construction (the directly accessible DRBG), the DRBG 2603
is reseeded 1) if explicitly requested by the consuming application, 2) automatically whenever a 2604
generation with prediction resistance is requested during a direct access of the DRBG (see 2605
Appendix B.6.3), 3) whenever the previous use of the DRBG was by the RBG3(RS)_Generate 2606
function (see Appendix B.6.2), or 4) automatically during a Generate_function call at the end of 2607
the seedlife of the RBG2(P) construction (see the Generate_function specification in [SP800-2608
90A]). 2609
The Reseed_function call is: 2610

status = Reseed_function(RBG3(RS)_state_handle, additional_input). 2611

• The state_handle is RBG3(RS)_state handle, and 2612

• additional_input is optional.38 2613
The DRBG is reseeded with a security strength of 256 bits as follows: 2614

(status, entropy_bitstring) = Get_ES_Bitstring(256). 2615
If status = SUCCESS is returned by Get_ES_Bitstring, entropy_bitstring consists of at least 256 2616
bits containing at least 256 bits of entropy. Status = SUCCESS is returned to the calling application 2617
by the Reseed_function. 2618

38 Note that when the RBG3(RS) Generate function uses a Hash_DRBG, HMAC_DRBG, or CTR_DRBG with no derivation function and Method
A, whereby 64 bits of additional entropy are required to produce output_len bits with full entropy (see Section 7.3.1,.2.1, step 3.1), the additional
64 bits of entropy obtained in step 3.1.1 is provided to the Generate_function (in step 3.1.3) with prediction requested. In Section 9.3 of SP 800-
90A, the Generate_function reseeds the DRBG when prediction resistance is requested using entropy from the entropy source and any additional
input that is provided – the additional 64 bits of entropy, in this case.

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

79

If status ≠ SUCCESS (e.g., the entropy source has failed), entropy_bitstring is an empty (e.g., null) 2619
bitstring, the DRBG is not reseeded, and a FAILURE status is returned from Reseed_function to 2620
the calling application (e.g., the Generate_function). 2621

 2622

Appendix C. Addendum to SP 800-90A: Instantiating and Reseeding a CTR_DRBG 2623

C.1. Background and Scope 2624

The CTR_DRBG, specified in [SP800-90A], uses the block cipher AES and has two versions that 2625
may be implemented: with or without a derivation function. 2626
When a derivation function is not used, SP 800-90A requires the use of bitstrings with full entropy 2627
for instantiating and reseeding a CTR_DRBG. This addendum permits the use of an RBG 2628
compliant with SP 800-90C to provide the required seed material for the CTR_DRBG when 2629
implemented as specified in SP 800-90C (see Appendix C.2). 2630
When a derivation function is used in a CTR_DRBG implementation, SP 800-90A specifies the 2631
use of the block cipher derivation function. This addendum modifies the requirements in SP 800-2632
90A for the CTR_DRBG by specifying two additional derivation functions that may be used 2633
instead of the block cipher derivation function (see Appendix C.3). 2634

C.2. CTR_DRBG without a Derivation Function 2635

When a derivation function is not used, SP 800-90A requires that seedlen full-entropy bits be 2636
provided as the randomness input (e.g., from an entropy source that provides full-entropy output), 2637
where seedlen is the length of the key to be used by the CTR_DRBG plus the length of the output 2638
block.39 SP 800-90C includes an approved method for externally conditioning the output of an 2639
entropy source to provide a bitstring with full entropy when using an entropy source that does not 2640
provide full-entropy output. 2641
SP 800-90C also permits the use of seed material from an RBG when the DRBG to be instantiated 2642
and reseeded is implemented and used as specified in SP 800-90C. 2643

C.3. CTR_DRBG using a Derivation Function 2644

When a derivation function is used within a CTR_DRBG, SP 800-90A specifies the use of the 2645
Block_cipher_df included in that document during instantiation and reseeding to adjust the length 2646
of the seed material to seedlen bits, where 2647

seedlen = the security strength + the block length. 2648
For AES, seedlen = 256, 320 or 384 bits (see [SP800-90A], Rev. 1). During generation, the length 2649
of any additional input provided during the generation request is adjusted to seedlen bits as well 2650
(see SP 800-90A). 2651

39 128 bits for AES.

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

80

Two alternative derivation functions are specified in Appendices C.3.2 and C.3.3. Appendix C.3.1 2652
discusses the keys and constants for use with the alternative derivation functions specified in 2653
Appendices C.3.2 and C.3.3. 2654

C.3.1. Derivation Keys and Constants 2655

Both of the derivation methods specified in Appendices C.3.2 and C.3.3 an AES derivation key 2656
(df_Key) whose length shall meet or exceed the instantiated security strength of the DRBG 2657
instantiation. 2658
The df_Key may be set to any value and may be the current value of a key used by the DRBG. 2659
These alternative methods use three 128-bit constants C1, C2 and C3, which are defined as: 2660

C1 = 000000...00 2661
C2 = 101010...10 2662
C3 = 010101...01 2663

The value of B used in Appendices C.3.2 and C.3.3 depends on the length of the AES derivation 2664
key (df_Key). When the length of df_Key = 128 bits, then B = 2. Otherwise, B = 3. 2665

C.3.2. Derivation Function Using CMAC 2666

CMAC is a block-cipher mode of operation specified in [SP800-38B]. The CMAC_df derivation 2667
function is specified as follows: 2668
CMAC_df: 2669
Input: bitstring input_string, integer number_of_bits_to_return. 2670
Output: bitstring Z. 2671
Process: 2672

1. Let C1, C2, C3 be 128-bit blocks defined as 000000...0, 101010...10, 010101...01, 2673
respectively. 2674

2. Get df_Key. Comment: See Appendix C.3.1. 2675
3. Z = the Null string. 2676
4. For i = 1 to B: 2677
Z = Z || CMAC(df_Key, Ci || input_string). 2678
5. Z = leftmost (Z, number_of_bits_to_return). 2679
6. Return(Z). 2680

C.3.3. Derivation Function Using CBC-MAC 2681

This CBC-MAC derivation function shall only be used when the input_string has the following 2682
properties: 2683

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

81

• The length of the input string is always a fixed length. 2684

• The length of the input_string is an integer multiple of 128 bits. Let m be the number of 2685
128-bit blocks in the input_string. 2686

This derivation function is specified as follows: 2687
CBC-MAC_df: 2688
Input: bitstring input_string, integer number_of_bits_to_return. 2689
Output: bitstring Z. 2690
Process: 2691

1. Let C1, C2, C3 be 128-bit blocks defined as 000000...0, 101010...10, 010101...01, 2692
respectively. 2693

2. Get df_Key. Comment: See Appendix C.3.1. 2694
3. Z = the Null string. 2695
4. Let input_string = S1 || S2 || ... || Sm, where the Si are contiguous 128-bit blocks. 2696
5. For j = 1 to B: 2697

5.1 S0 = Cj. 2698
5.2 V = 128-bit block of all zeroes. 2699
5.3 For i = 0 to m: 2700

V = Encrypt(df_Key, V ⊕ Si). Comment: Perform the cipher operation 2701
specified in [FIPS197]. 2702

5.4 Z = Z || V. 2703
6. Z = leftmost(Z, number_of_bit_to_return). 2704
7. Return(Z). 2705

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

82

Appendix D. List of Symbols, Abbreviations, and Acronyms 2706

AES 2707
Advanced Encryption Standard40 2708

API 2709
Application Programming Interface 2710

CAVP 2711
Cryptographic Algorithm Validation Program 2712

CDF 2713
Cumulative Distribution Function 2714

CMVP 2715
Cryptographic Module Validation Program 2716

DRBG 2717
Deterministic Random Bit Generator41 2718

FIPS 2719
Federal Information Processing Standard 2720

ITL 2721
Information Technology Laboratory 2722

MAC 2723
Message Authentication Code 2724

NIST 2725
National Institute of Standards and Technology 2726

RAM 2727
Random Access Memory 2728

RBG 2729
Random Bit Generator 2730

SP 2731
(NIST) Special Publication 2732

Sub-DRBG 2733
Subordinate DRBG 2734

TDEA 2735
Triple Data Encryption Algorithm42 2736

XOR 2737
Exclusive-Or (operation) 2738

0x 2739
A string of x zeroes 2740

x 2741

40 As specified in [FIPS 197].
41 Mechanism specified in [SP800-90A].
42 As specified in [SP 800-67], Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher.

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

83

The ceiling of x; the least integer number that is not less than the real number x. For example, 3 = 3, and 5.5 = 6. 2742

ε 2743
A positive constant that is assumed to be smaller than 2−32 2744

E(X) 2745
The expected value of the random variable X 2746

len(x) 2747
The length of x in bits 2748

min(a, b) 2749
The minimum of a and b 2750

output_len 2751
The bit length of the output block of a cryptographic primitive 2752

s 2753
The security strength 2754

X ⊕ Y 2755
Boolean bitwise exclusive-or (also bitwise addition modulo 2) of two bitstrings X and Y of the same length 2756

+ 2757
Addition over real numbers 2758

× 2759
Multiplication over real numbers 2760

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

84

Appendix E. Glossary 2761

adversary 2762
A malicious entity whose goal is to determine, to guess, or to influence the output of an RBG. 2763

approved 2764
An algorithm or technique for a specific cryptographic use that is specified in a FIPS or NIST Recommendation, 2765
adopted in a FIPS or NIST Recommendation, or specified in a list of NIST-approved security functions. 2766

backtracking resistance 2767
A property of a DRBG that provides assurance that compromising the current internal state of the DRBG does not 2768
weaken previously generated outputs. See SP 800-90A for a more complete discussion. (Contrast with prediction 2769
resistance.) 2770

biased 2771
A random variable is said to be biased if values of the finite sample space are selected with unequal probability. 2772
Contrast with unbiased. 2773

big-endian format 2774
A format in which the most significant bytes (the bytes containing the high-order or leftmost bits) are stored in the 2775
lowest address with the following bytes in sequentially higher addresses. 2776

bitstring 2777
An ordered sequence (string) of 0s and 1s. The leftmost bit is the most significant bit. 2778

block cipher 2779
A parameterized family of permutations on bitstrings of a fixed length; the parameter that determines the permutation 2780
is a bitstring called the key. 2781

conditioning function (external) 2782
As used in SP 800-90C, a deterministic function that is used to produce a bitstring with full entropy. 2783

consuming application 2784
An application that uses random outputs from an RBG. 2785

cryptographic boundary 2786
An explicitly defined physical or conceptual perimeter that establishes the physical and/or logical bounds of a 2787
cryptographic module and contains all of the hardware, software, and/or firmware components of a cryptographic 2788
module. 2789

cryptographic module 2790
The set of hardware, software, and/or firmware that implements cryptographic functions (including cryptographic 2791
algorithms and key generation) and is contained within the cryptographic boundary. 2792

deterministic random bit generator (DRBG) 2793
An RBG that produces random bitstrings by applying a deterministic algorithm to initial seed material. 2794
Note: A DRBG at least has access to a randomness source initially. 2795
Note: A portion of the seed material is secret. 2796

digitization 2797
The process of generating raw discrete digital values from non-deterministic events (e.g., analog noise sources) within 2798
a noise source. 2799

entropy 2800
A measure of disorder, randomness, or variability in a closed system. 2801

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

85

Note: The entropy of a random variable X is a mathematical measure of the amount of information gained by an 2802
observation of X. 2803
Note: The most common concepts are Shannon entropy and min-entropy. Min-entropy is the measure used in SP 800-2804
90. 2805

entropy rate 2806
The validated rate at which an entropy source provides entropy in terms of bits per entropy-source output (e.g., five 2807
bits of entropy per eight-bit output sample). 2808

entropy source 2809
The combination of a noise source, health tests, and optional conditioning component that produce bitstrings 2810
containing entropy. A distinction is made between entropy sources having physical noise sources and those having 2811
non-physical noise sources. 2812
Note: Health tests are comprised of continuous tests and startup tests. 2813

fresh entropy 2814
A bitstring that is output from a non-deterministic randomness source that has not been previously used to generate 2815
output or has otherwise been made externally available. 2816
Note: The randomness source should be an entropy source or RBG3 construction. 2817

full-entropy bitstring 2818
A bitstring with ideal randomness (i.e., the amount of entropy per bit is equal to 1). This Recommendation assumes 2819
that a bitstring has full entropy if the entropy rate is at least 1 − ε, where ε is at most 2−32. 2820

hash function 2821
A (mathematical) function that maps values from a large (possibly very large) domain into a smaller range. The 2822
function satisfies the following properties: 2823

1. (One-way) It is computationally infeasible to find any input that maps to any pre-specified output. 2824
2. (Collision-free) It is computationally infeasible to find any two distinct inputs that map to the same output. 2825

health testing 2826
Testing within an implementation immediately prior to or during normal operations to obtain assurance that the 2827
implementation continues to perform as implemented and validated. 2828

ideal randomness source 2829
The source of an ideal random sequence of bits. Each bit of an ideal random sequence is unpredictable and unbiased, 2830
with a value that is independent of the values of the other bits in the sequence. Prior to an observation of the sequence, 2831
the value of each bit is equally likely to be 0 or 1, and the probability that a particular bit will have a particular value 2832
is unaffected by knowledge of the values of any or all of the other bits. An ideal random sequence of n bits contains n 2833
bits of entropy. 2834

independent entropy sources 2835
Two entropy sources are independent if knowledge of the output of one entropy source provides no information about 2836
the output of the other entropy source. 2837

instantiate 2838
The process of initializing a DRBG with sufficient randomness to generate pseudorandom bits at the desired security 2839
strength. 2840

internal state (of a DRBG) 2841
The collection of all secret and non-secret information about an RBG or entropy source that is stored in memory at a 2842
given point in time. 2843

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

86

known-answer test 2844
A test that uses a fixed input/output pair to detect whether a deterministic component was implemented correctly or 2845
to detect whether it continues to operate correctly. 2846

min-entropy 2847
A lower bound on the entropy of a random variable. The precise formulation for min-entropy is (−log2 max pi) for a 2848
discrete distribution having probabilities p1, ..., pk. Min-entropy is often used as a measure of the unpredictability of a 2849
random variable. 2850

must 2851
Used in SP 800-90C to indicate a requirement that may not be testable by a CMVP testing lab. Note that must may 2852
be coupled with not to become must not. 2853

noise source 2854
A source of unpredictable data that outputs raw discrete digital values. The digitization mechanism is considered part 2855
of the noise source. A distinction is made between physical noise sources and non-physical noise sources. 2856

non-physical entropy source 2857
An entropy source whose primary noise source is non-physical. 2858

non-physical noise source 2859
A noise source that typically exploits system data and/or user interaction to produce digitized random data. 2860

non-validated entropy source 2861
An entropy source that has not been validated by the CMVP as conforming to SP 800-90B. 2862

null string 2863
An empty bitstring. 2864

personalization string 2865
An optional input value to a DRBG during instantiation to make one DRBG instantiation behave differently from 2866
other instantiations. 2867

physical entropy source 2868
An entropy source whose primary noise source is physical. 2869

physical noise source 2870
A noise source that exploits physical phenomena (e.g., thermal noise, shot noise, jitter, metastability, radioactive 2871
decay, etc.) from dedicated hardware designs (using diodes, ring oscillators, etc.) or physical experiments to produce 2872
digitized random data. 2873

prediction resistance 2874
A property of a DRBG that provides assurance that compromising the current internal state of the DRBG does not 2875
allow future DRBG outputs to be predicted past the point where the DRBG has been reseeded with sufficient entropy. 2876
See SP 800-90A for a more complete discussion. (Contrast with backtracking resistance.) 2877

pseudocode 2878
An informal, high-level description of a computer program, algorithm, or function that resembles a simplified 2879
programming language. 2880

random bit generator (RBG) 2881
A device or algorithm that outputs a random sequence that is effectively indistinguishable from statistically 2882
independent and unbiased bits. 2883

randomness 2884
As used in this Recommendation, the unpredictability of a bitstring. If the randomness is produced by a non-deterministic 2885
source (e.g., an entropy source or RBG3 construction), the unpredictability is dependent on the quality of the source. If 2886

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

87

the randomness is produced by a deterministic source (e.g., a DRBG), the unpredictability is based on the capability of 2887
an adversary to break the cryptographic algorithm for producing the pseudorandom bitstring. 2888

randomness input 2889
An input bitstring from a randomness source that provides an assessed minimum amount of randomness (e.g., entropy) 2890
for a DRBG. See min-entropy. 2891

randomness source 2892
A source of randomness for an RBG. The randomness source may be an entropy source or an RBG construction. 2893

RBG1 construction 2894
An RBG construction with the DRBG and the randomness source in separate cryptographic modules. 2895

RBG2 construction 2896
An RBG construction with one or more entropy sources and a DRBG within the same cryptographic module. This 2897
RBG construction does not provide full-entropy output. 2898

RBG2(NP) construction 2899
A non-physical RBG2 construction. An RBG2 construction that obtains entropy from one or more validated non-2900
physical entropy sources and possibly from one or more validated physical entropy sources. This RBG construction 2901
does not provide full-entropy output. 2902

RBG2(P) construction 2903
A physical RBG2 construction. An RBG construction that includes a DRBG and one or more entropy sources in the 2904
same cryptographic module. Only the entropy from validated physical entropy sources is counted when fulfilling an 2905
entropy request within the RBG. This RBG construction does not provide full-entropy output. 2906

RBG3 construction 2907
An RBG construction that includes a DRBG and one or more entropy sources in the same cryptographic module. 2908
When working properly, bitstrings that have full entropy are produced. Sometimes called a non-deterministic random 2909
bit generator (NRBG) or true random number (or bit) generator. 2910

reseed 2911
To refresh the internal state of a DRBG with seed material. The seed material should contain sufficient entropy to 2912
allow recovery from a possible compromise. 2913

sample space 2914
The set of all possible outcomes of an experiment. 2915

secure channel 2916
A physically protected secure path for transferring data between two cryptographic modules that ensures 2917
confidentiality, integrity, and replay protection as well as mutual authentication between the modules. 2918

security boundary 2919
For an entropy source: A conceptual boundary that is used to assess the amount of entropy provided by the values 2920
output from the entropy source. The entropy assessment is performed under the assumption that any observer 2921
(including any adversary) is outside of that boundary during normal operation. 2922
For a DRBG: A conceptual boundary that contains all of the DRBG functions and internal states required for a DRBG. 2923
For an RBG: A conceptual boundary that is defined with respect to one or more threat models that includes an 2924
assessment of the applicability of an attack and the potential harm caused by the attack. 2925

security strength 2926
A number associated with the amount of work (i.e., the number of basic operations of some sort) that is required to 2927
“break” a cryptographic algorithm or system in some way. In this Recommendation, the security strength is specified 2928
in bits and is a specific value from the set {128, 192, 256}. If the security strength associated with an algorithm or 2929
system is s bits, then it is expected that (roughly) 2s basic operations are required to break it. 2930

NIST SP 800-90C 3pd (Third Public Draft) Recommendation for RBG Constructions
September 2022

88

Note: This is a classical definition that does not consider quantum attacks. This definition will be revised to address 2931
quantum issues in the future. 2932

seed 2933
To initialize the internal state of a DRBG with seed material. The seed material should contain sufficient entropy to 2934
meet security requirements. 2935

seed material 2936
A bitstring that is used as input to a DRBG. The seed material determines a portion of the internal state of the DRBG. 2937

seedlife 2938
The period of time between instantiating or reseeding a DRBG with seed material and reseeding the DRBG with seed 2939
material containing fresh entropy or uninstantiation of the DRBG. 2940

shall 2941
The term used to indicate a requirement that is testable by a testing lab. Shall may be coupled with not to become 2942
shall not. See Testable requirement. 2943

should 2944
The term used to indicate an important recommendation. Ignoring the recommendation could result in undesirable 2945
results. Note that should may be coupled with not to become should not. 2946

state handle 2947
A pointer to the internal state information for a particular DRBG instantiation. 2948

subordinate DRBG (sub-DRBG) 2949
A DRBG that is instantiated by an RBG1 construction. 2950

support a security strength (by a DRBG) 2951
The DRBG has been instantiated at a security strength that is equal to or greater than the security strength requested 2952
for the generation of random bits. 2953

targeted security strength 2954
The security strength that is intended to be supported by one or more implementation-related choices (e.g., algorithms, 2955
cryptographic primitives, auxiliary functions, parameter sizes, and/or actual parameters). 2956

testable requirement 2957
A requirement that can be tested for compliance by a testing lab via operational testing, a code review, or a review of 2958
relevant documentation provided for validation. A testable requirement is indicated using a shall statement. 2959

threat model 2960
A description of a set of security aspects that need to be considered. A threat model can be defined by listing a set of 2961
possible attacks along with the probability of success and the potential harm from each attack. 2962

unbiased 2963
A random variable is said to be unbiased if all values of the finite sample space are chosen with the same 2964
probability. Contrast with biased. 2965

uninstantiate 2966
The termination of a DRBG instantiation. 2967

validated entropy source 2968
An entropy source that has been successfully validated by the CAVP and CMVP for conformance to SP 800-90B. 2969

	1. Introduction and Purpose
	1.1. Audience
	1.2. Document Organization

	2. General Information
	2.1. RBG Security
	2.2. RBG Constructions
	2.3. Sources of Randomness for an RBG
	2.4. DRBGs
	2.4.1. DRBG Instantiations
	2.4.2. DRBG Reseeding, Prediction Resistance, and Recovery from Compromise

	2.5. RBG Security Boundaries
	2.6. Assumptions and Assertions
	2.7. General Implementation and Use Requirements and Recommendations
	2.8. General Function Calls
	2.8.1. DRBG Functions
	2.8.1.1. DRBG Instantiation
	2.8.1.2. DRBG Generation Request
	2.8.1.3. DRBG Reseed Request
	2.8.1.4. The Get_randomness-source_input Call

	2.8.2. Interfacing with Entropy Sources Using the GetEntropy and Get_ES_Bitstring Functions
	2.8.2.1. The GetEntropy Call
	2.8.2.2. The Get_ES_Bitstring Function

	2.8.3. Interfacing with an RBG3 Construction
	2.8.3.1. Instantiating a DRBG within an RBG3 Construction
	2.8.3.2. Generation Using an RBG3 Construction

	3. Accessing Entropy Source Output
	3.1. The Get_ES_Bitstring Function
	3.2. Entropy Source Requirements
	3.3. External Conditioning to Obtain Full-Entropy Bitstrings
	3.3.1. Conditioning Function Calls
	3.3.1.1. Keys Used in External Conditioning Functions
	3.3.1.2. Hash Function-based Conditioning Functions
	3.3.1.3. Block Cipher-based Conditioning Functions

	3.3.2. Using a Vetted Conditioning Function to Obtain Full-Entropy Bitstrings

	4. RBG1 Constructions Based on RBGs with Physical Entropy Sources
	4.1. RBG1 Description
	4.2. Conceptual Interfaces
	4.2.1. Instantiating the DRBG in the RBG1 Construction
	4.2.2. Requesting Pseudorandom Bits

	4.3. Using an RBG1 Construction with Subordinate DRBGs (Sub-DRBGs)
	4.3.1. Instantiating a Sub-DRBG
	4.3.2. Requesting Random Bits

	4.4. Requirements
	4.4.1. RBG1 Requirements
	4.4.2. Sub-DRBG Requirements

	5. RBG2 Constructions Based on Physical and/or Non-Physical Entropy Sources
	5.1. RBG2 Description
	5.2. Conceptual Interfaces
	5.2.1. RBG2 Instantiation
	5.2.2. Requesting Pseudorandom Bits from an RBG2 Construction
	5.2.3. Reseeding an RBG2 Construction

	5.3. RBG2 Requirements

	6. RBG3 Constructions Based on Physical Entropy Sources
	6.1. General Requirements
	6.2. RBG3(XOR) Construction
	6.2.1. Conceptual Interfaces
	6.2.1.1. Instantiation of the DRBG
	6.2.1.2. Random and Pseudorandom Bit Generation
	6.2.1.3. Pseudorandom Bit Generation Using a Directly Accessible DRBG
	6.2.1.4. Reseeding the DRBG Instantiations

	6.2.2. RBG3(XOR) Requirements

	6.3. RBG3(RS) Construction
	6.3.1. Conceptual Interfaces
	6.3.1.1. Instantiation of the DRBG Within an RBG3(RS) Construction
	6.3.1.2. Random and Pseudorandom Bit Generation
	6.3.1.3. Reseeding

	6.3.2. Requirements for a RBG3(RS) Construction

	7. Testing
	7.1. Health Testing
	7.1.1. Testing RBG Components
	7.1.2. Handling Failures
	7.1.2.1. Entropy-Source Failures
	7.1.2.2. Failures by Non-Entropy-Source Components

	7.2. Implementation Validation

	References
	Appendix A. Entropy vs. Security Strength (Informative)
	A.1. Entropy
	A.2. Security Strength
	A.3. A Side-by-Side Comparison
	A.4. Entropy and Security Strength in this Recommendation

	Appendix B. RBG Examples (Informative)
	B.1. Direct DRBG Access in an RBG3 Construction
	B.2. Example of an RBG1 Construction
	B.2.1. Instantiation of the RBG1 Construction
	B.2.2. Generation by the RBG1 Construction

	B.3. Example Using Sub-DRBGs Based on an RBG1 Construction
	B.3.1. Instantiation of the Sub-DRBGs
	B.3.1.1. Instantiating Sub-DRBG1
	B.3.1.2. Instantiating Sub-DRBG2

	B.3.2. Pseudorandom Bit Generation by Sub-DRBGs

	B.4. Example of an RBG2(P) or RBG2(NP) Construction
	B.4.1. Instantiation of an RBG2 Construction
	B.4.2. Generation in an RBG2 Construction
	B.4.3. Reseeding an RBG2 Construction

	B.5. Example of an RBG3(XOR) Construction
	B.5.1. Instantiation of an RBG3(XOR) Construction
	B.5.2. Generation by an RBG3(XOR) Construction
	B.5.2.1. Generation
	B.5.2.2. Get_conditioned_full-entropy_input Function

	B.5.3. Reseeding an RBG3(XOR) Construction

	B.6. Example of an RBG3(RS) Construction
	B.6.1. Instantiation of an RBG3(RS) Construction
	B.6.2. Generation by an RBG3(RS) Construction
	B.6.3. Generation by the Directly Accessible DRBG
	B.6.4. Reseeding a DRBG

	Appendix C. Addendum to SP 800-90A: Instantiating and Reseeding a CTR_DRBG
	C.1. Background and Scope
	C.2. CTR_DRBG without a Derivation Function
	C.3. CTR_DRBG using a Derivation Function
	C.3.1. Derivation Keys and Constants
	C.3.2. Derivation Function Using CMAC
	C.3.3. Derivation Function Using CBC-MAC

	Appendix D. List of Symbols, Abbreviations, and Acronyms
	Appendix E. Glossary

