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Reports on Computer Systems Technology 85 

The Information Technology Laboratory (ITL) at the National Institute of Standards and 86 
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 87 
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 88 
methods, reference data, proof of concept implementations, and technical analyses to advance the 89 
development and productive use of information technology. ITL’s responsibilities include the 90 
development of management, administrative, technical, and physical standards and guidelines for 91 
the cost-effective security and privacy of other than national security-related information in federal 92 
information systems. The Special Publication 800-series reports on ITL’s research, guidelines, and 93 
outreach efforts in information system security, and its collaborative activities with industry, 94 
government, and academic organizations. 95 

Abstract 96 

The NIST Special Publication (SP) 800-90 series of documents supports the generation of high-97 
quality random bits for cryptographic and non-cryptographic use. SP 800-90A specifies several 98 
deterministic random bit generator (DRBG) mechanisms based on cryptographic algorithms. SP 99 
800-90B provides guidance for the development and validation of entropy sources. This document 100 
(SP 800-90C) specifies constructions for the implementation of random bit generators (RBGs) that 101 
include DRBG mechanisms as specified in SP 800-90A and that use entropy sources as specified 102 
in SP 800-90B. Constructions for three classes of RBGs (namely, RBG1, RBG2, and RBG3) are 103 
specified in this document. 104 

Keywords 105 

deterministic random bit generator (DRBG); entropy; entropy source; random bit generator 106 
(RBG); randomness source; RBG1 construction; RBG2 construction; RBG3 construction; 107 
subordinate DRBG (sub-DRBG).  108 



NIST SP 800-90C 3pd (Third Public Draft)  Recommendation for RBG Constructions 
September 2022   
 

ii 

 

Note to Reviewers  109 

1. This draft of SP800-90C describes three RBG constructions. Note that in this draft, a non-110 
deterministic random bit generator (NRBG) is presented as an RBG3 construction. 111 
Question: In a future revision of SP 800-90C, should other constructions be included? 112 
This version of SP 800-90C does not address the use of an RBG software implementation in 113 
which a) a cryptographic library or an application is loaded into a system and b) the software 114 
accesses entropy sources or RBGs already associated with the system for its required 115 
randomness. NIST intends to address this situation in the near future. 116 

2. The RBG constructions provided in this draft use NIST-approved cryptographic primitives 117 
(such as block ciphers and hash functions) as underlying components. Note that non-vetted 118 
conditioning components may be used within SP 800-90B entropy sources. 119 
Although NIST still allows three-key TDEA as a block-cipher algorithm, Section 4 of [SP800-120 
131A] indicates that its use is deprecated through 2023 and will be disallowed thereafter for 121 
applying cryptographic protection. This document (i.e., SP 800-90C) does not approve the 122 
use of three-key TDEA in an RBG. 123 
Although SHA-1 is still approved by NIST, NIST is planning to remove SHA-1 from a future 124 
revision of FIPS 180-4, so the SP 800-90 series will not be including the use of SHA-1. 125 
The use of the SHA-3 hash functions are approved in SP 800-90C for Hash_DRBG and 126 
HMAC_DRBG but are not currently included in [SP800-90A]. SP 800-90A will be revised to 127 
exclude the use of TDEA and SHA-1 and include the use of the SHA-3 family of hash 128 
functions. 129 

3. Since the projected date for requiring a minimum security strength of 128 bits for U.S. 130 
Government applications is 2030 (see [SP800-57Part1]), RBGs are only specified to provide 131 
128, 192, and 256 bits of security strength (i.e., the 112-bit security strength has been 132 
removed). Note that a consuming application may still request a lower security strength, but 133 
the RBG output will be generated at the instantiated security strength. 134 

4. Guidance is provided for accessing entropy sources and for obtaining full-entropy bits using 135 
the output of an entropy source that does not inherently provide full-entropy output (see 136 
Section 3.3). 137 

5. SP 800-90A requires that when instantiating a CTR_DRBG without a derivation function, the 138 
randomness source needs to provide full-entropy bits (see SP 800-90A). However, this draft 139 
(SP 800-90C) relaxes this requirement in the case of an RBG1 construction, as specified in 140 
Section 4. In this case, the external randomness source may be another RBG construction. An 141 
addendum to SP 800-90A has been prepared as a temporary specification in SP 800-90C, but 142 
SP 800-90A will be revised in the future to accommodate this change. 143 

6. The DRBG used in RBG3 constructions supports a security strength of 256 bits. The RBG1 144 
and RBG2 constructions may support any valid security strength (i.e., 128, 192 or 256 bits). 145 

7. SP 800-90A currently allows the acquisition of a nonce (when required) for DRBG 146 
instantiation from any randomness source. However, SP 800-90C does not include an explicit 147 
requirement for the generation of a nonce when instantiating a DRBG. Instead, additional bits 148 
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beyond those needed for the security strength are acquired from the randomness source. SP 149 
800-90A will be revised to agree with this change. 150 

8. SP 800-90C allows the use of both physical and non-physical entropy sources. See the 151 
definitions of physical and non-physical entropy sources in Appendix E. Also, multiple 152 
validated entropy sources may be used to provide entropy, and two methods are provided in 153 
Section 2.3 for counting the entropy provided in a bitstring. 154 

9. The CMVP is considering providing information on an entropy source validation certificate 155 
that indicates whether an entropy source is physical or non-physical. 156 

10. The CMVP is developing a program to validate entropy sources against SP 800-90B with the 157 
intent of allowing the re-use of those entropy sources in different RBG implementations. 158 
Question: Are there any issues that still need to be addressed in SP 800-90C to allow the re-159 
use of validated entropy sources in different RBG implementations? Note that in many cases, 160 
specific issues need to be addressed in the FIPS 140 implementation guide rather than in this 161 
document.  162 
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Call for Patent Claims  163 

This public review includes a call for information on essential patent claims (claims whose use 164 
would be required for compliance with the guidance or requirements in this Information 165 
Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may be 166 
directly stated in this ITL Publication or by reference to another publication. This call also includes 167 
disclosure, where known, of the existence of pending U.S. or foreign patent applications relating 168 
to this ITL draft publication and of any relevant unexpired U.S. or foreign patents. 169 
ITL may require from the patent holder, or a party authorized to make assurances on its behalf, in 170 
written or electronic form, either: 171 

a) assurance in the form of a general disclaimer to the effect that such party does not hold and 172 
does not currently intend holding any essential patent claim(s); or 173 

b) assurance that a license to such essential patent claim(s) will be made available to 174 
applicants desiring to utilize the license for the purpose of complying with the guidance or 175 
requirements in this ITL draft publication either: 176 

i. under reasonable terms and conditions that are demonstrably free of any unfair 177 
discrimination; or 178 

ii. without compensation and under reasonable terms and conditions that are 179 
demonstrably free of any unfair discrimination. 180 

Such assurance shall indicate that the patent holder (or third party authorized to make assurances 181 
on its behalf) will include in any documents transferring ownership of patents subject to the 182 
assurance, provisions sufficient to ensure that the commitments in the assurance are binding on 183 
the transferee, and that the transferee will similarly include appropriate provisions in the event of 184 
future transfers with the goal of binding each successor-in-interest. 185 
The assurance shall also indicate that it is intended to be binding on successors-in-interest 186 
regardless of whether such provisions are included in the relevant transfer documents. 187 
Such statements should be addressed to: rbg_comments@nist.gov  188 

mailto:rbg_comments@nist.gov
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 Introduction and Purpose 324 

Cryptography and security applications make extensive use of random bits. However, the 325 
generation of random bits is challenging in many practical applications of cryptography. 326 
The National Institute of Standards and Technology (NIST) developed the Special Publication 327 
(SP) 800-90 series to support the generation of high-quality random bits for both cryptographic 328 
and non-cryptographic purposes. The SP 800-90 series consists of three parts: 329 

• SP 800-90A, Recommendation for Random Number Generation Using Deterministic 330 
Random Bit Generators, specifies several approved deterministic random bit generator 331 
(DRBG) mechanisms based on approved cryptographic algorithms that – once provided 332 
with seed material that contains sufficient entropy – can be used to generate random bits 333 
suitable for cryptographic applications. 334 

• SP 800-90B, Recommendation for the Entropy Sources Used for Random Bit Generation, 335 
provides guidance for the development and validation of entropy sources − mechanisms 336 
that generate entropy from physical or non-physical noise sources and that can be used to 337 
generate the input for the seed material needed by a DRBG or for input to an RBG. 338 

• SP 800-90C, Recommendation for Random Bit Generator (RBG) Constructions, specifies 339 
constructions for random bit generators (RBGs) using entropy sources that comply with 340 
SP 800-90B and DRBGs that comply with SP 800-90A. Three classes of RBGs are 341 
specified in this document (see Sections 5, 6, and 7). SP 800-90C also provides high-level 342 
guidance for testing RBGs for conformance to this Recommendation. 343 

The RBG constructions defined in this Recommendation consist of two main components: the 344 
entropy sources that generate true random variables (variables that may be biased, i.e., each 345 
possible outcome does not need to have the same chance of occurring) and the DRBGs that ensure 346 
that the outputs of the RBG are indistinguishable from the ideal distribution to a computationally 347 
bounded adversary. 348 
Throughout this document, the phrase “this Recommendation” refers to the aggregate of SP 800-349 
90A, SP 800-90B, and SP 800-90C, while the phrase “this document” refers only to SP 800-90C. 350 
SP 800-90C has been developed in coordination with NIST’s Cryptographic Algorithm Validation 351 
Program (CAVP) and Cryptographic Module Validation Program (CMVP). The document uses 352 
“shall” and “must” to indicate requirements and uses “should” to indicate an important 353 
recommendation. The term “shall” is used when a requirement is testable by a testing lab during 354 
implementation validation using operational tests or a code review. The term “must” is used for 355 
requirements that may not be testable by the CAVP or CMVP. An example of such a requirement 356 
is one that demands certain actions and/or considerations from a system administrator. Meeting 357 
these requirements can be verified by a CMVP review of the cryptographic module’s 358 
documentation. If the requirement is determined to be testable at a later time (e.g., after SP 800-359 
90C is published and before it is revised), the CMVP will so indicate in the Implementation 360 
Guidance for FIPS 140, Security Requirements for Cryptographic Modules. 361 
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 Audience  362 

The intended audience for this Recommendation includes 1) developers who want to design and 363 
implement RBGs that can be validated by NIST’s CMVP and CAVP, 2) testing labs that are 364 
accredited to perform the validation tests and the evaluation of the RBG constructions, and 3) users 365 
who install RBGs in systems. 366 

 Document Organization  367 

This document is organized as follows: 368 

• Section 2 provides background and preliminary information for understanding the 369 
remainder of the document. 370 

• Section 3 provides guidance on accessing and handling entropy sources, including the 371 
external conditioning of entropy-source output. 372 

• Sections 4, 5, and 6 specify the RBG constructions. 373 

• Section 7 discusses health and implementation-validation testing. 374 

• References contains a list of papers and publications cited in this document. 375 
The following informational appendices are also provided: 376 

• Appendix A provides discussions on entropy versus security strength. 377 

• Appendix B provides examples of each RBG construction. 378 

• Appendix C is an addendum to SP 800-90A that includes two additional derivation 379 
functions that may be used with the CTR_DRBG. These functions will be moved into SP 380 
800-90A as part of the next revision of that document. 381 

• Appendix D provides a list of abbreviations, symbols, functions, and notations used in this 382 
document.  383 

• Appendix E provides a glossary with definitions for terms used in this document.  384 
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 General Information 385 

 RBG Security 386 

Ideal randomness sources generate identically distributed and independent uniform random bits 387 
that provide full-entropy outputs (i.e., one bit of entropy per output bit). Real-world RBGs are 388 
designed with a security goal of indistinguishability from the output of an ideal randomness source. 389 
That is, given some limits on an adversary’s data and computing power, it is expected that there is 390 
no adversary that can reliably distinguish between RBG outputs and outputs from an ideal 391 
randomness source. 392 
Consider an adversary that can perform 2w computations (typically, these are guesses of the RBG’s 393 
internal state) and is given an output sequence from either an RBG with a security strength of s 394 
bits (where s ≥ w) or an ideal randomness source. It is expected that an adversary has no better 395 
probability of determining which source was used for its random bits than 396 

1/2 + 2w−s−1 + ε, 397 

where ε is negligible. In this Recommendation, the size of the output is limited to 264 output bits 398 
and ε  ≤ 2−32. 399 

An RBG that has been designed to support a security strength of s bits is suitable for any 400 
application with a targeted security strength that does not exceed s. An RBG that is compliant with 401 
this Recommendation can support requests for output with a security strength of 128, 192, or 256 402 
bits, except for an RBG3 construction (as described in Section 6), which can provide full-entropy 403 
output. 404 
A bitstring with full entropy has an amount of entropy equal to its length. Full-entropy bitstrings 405 
are important for cryptographic applications, as these bitstrings have ideal randomness properties 406 
and may be used for any cryptographic purpose. They may be truncated to any length such that the 407 
amount of entropy in the truncated bitstring is equal to its length. However, due to the difficulty 408 
of generating and testing full-entropy bitstrings, this Recommendation assumes that a bitstring has 409 
full entropy if the amount of entropy per bit is at least 1 − ε, where ε is at most 2−32. NISTIR 84271 410 
provides a justification for the selection of ε. 411 

 RBG Constructions 412 

A construction is a method of designing an RBG or some component of an RBG to accomplish a 413 
specific goal. Three classes of RBG constructions are defined in this document: RBG1, RBG2, 414 
and RBG3 (see Table 1). Each RBG includes a DRBG from [SP800-90A] and is based on the use 415 
of a randomness source that is validated for compliance with [SP800-90B] or SP 800-90C. Once 416 
instantiated, a DRBG can generate output at a security strength that does not exceed the DRBG’s 417 
instantiated security strength. 418 

 
1 See NISTIR 8427, Discussion on the Full Entropy Assumption of SP 800-90 series. 
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Table 1. RBG Capabilities 419 

Construction Internal 
Entropy Source 

Prediction 
Resistance Full Entropy Type of 

randomness source 
RBG1 No No No Physical 
RBG2 Yes Yesa No Physical or 

Non-physical 
RBG3 Yes Yesa Yes Physical 

a If sufficient entropy is available or can be obtained when reseeding the RBG’s DRBG. 420 
1. An RBG1 construction (see Section 4) does not have access to a randomness source after 421 

instantiation. It is instantiated once in its lifetime over a secure channel from an external 422 
RBG with appropriate security properties. An RBG1 construction does not support 423 
reseeding and cannot provide prediction resistance as described in Section 2.4.2 and 424 
[SP800-90A]. The construction can be used to initialize subordinate DRBGs. 425 

2. An RBG2 construction (see Section 5) includes one or more entropy sources that are used 426 
to instantiate and reseed the DRBG within the construction. This construction can provide 427 
prediction resistance (see Section 2.4.2 and [SP800-90A]) when sufficient entropy is 428 
available or can be obtained from the RBG’s entropy source(s) at the time that prediction 429 
resistance is requested. The construction has two variants that depend on the type of 430 
entropy source(s) employed (i.e., physical and non-physical). 431 

3. An RBG3 construction is designed to provide output with a security strength equal to the 432 
requested length of its output by producing outputs that have full entropy (i.e., an RBG 433 
designed as an RBG3 construction can, in effect, support all security strengths) (see Section 434 
2.1). This construction provides prediction resistance and has two types, namely 435 
RBG3(XOR) and RBG3(RS). 436 
a. An RBG3(XOR) construction (see Section 6.2) combines the output of one or more 437 

validated entropy sources with the output of an instantiated, approved DRBG using an 438 
exclusive-or (XOR) operation. 439 

b. An RBG3(RS) construction (see Section 6.3) uses one or more validated entropy 440 
sources to provide randomness input for the DRBG by continuously reseeding. 441 

This document also provides constructions for 1) subordinate DRBGs (sub-DRBGs) that are 442 
instantiated and possibly reseeded by an RBG1 construction (see Section 4.3) and 2) acquiring 443 
entropy from an entropy source and conditioning the output to provide a bitstring with full entropy 444 
(see Section 3.3). SP 800 90A provides constructions for instantiating and reseeding DRBGs and 445 
requesting the generation of pseudorandom bitstrings. 446 
All constructions in SP 800-90C are described in pseudocode. These pseudocode conventions are 447 
not intended to constrain real-world implementations but to provide a consistent notation to 448 
describe the constructions. By convention, unless otherwise specified, integers are unsigned 32-449 
bit values, and when used as bitstrings, they are represented in the big-endian format. 450 

 Sources of Randomness for an RBG 451 

The RBG constructions specified in this document are based on the use of validated entropy 452 
sources. Some RBG constructions (e.g., the RBG3 construction) access these entropy sources 453 
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directly to obtain entropy. Other constructions (e.g., the RBG1 construction) fulfill their entropy 454 
requirements by accessing another RBG as a randomness source. In this case, the source RBG may 455 
include its own entropy source. 456 

SP 800 90B provides guidance for the development and validation of entropy sources − 457 
mechanisms that provide entropy for an RBG. Validated entropy sources (i.e., entropy sources that 458 
have been successfully validated by the CMVP as complying with SP 800-90B) provide fixed-459 
length outputs and have been validated as reliably providing a specified minimum amount of 460 
entropy for each output (e.g., each eight-bit output has been validated as providing at least five bits 461 
of entropy).2 462 
An entropy source is a physical entropy source if the primary noise source of the entropy source 463 
is physical – that is, it uses dedicated hardware to provide entropy (e.g., from ring oscillators, 464 
thermal noise, shot noise, jitter, or metastability). Similarly, a validated entropy source is a non-465 
physical entropy source if the primary noise source of the entropy source is non-physical – that is, 466 
entropy is provided by system data (e.g., the entropy present in the RAM data or system time). 467 
The entropy-source type is certified during SP 800-90B validation. 468 
One or more validated entropy sources are used to provide entropy for instantiating and reseeding 469 
the DRBGs in RBG2 or RBG3 constructions or used by an RBG3 construction to generate output 470 
upon request by a consuming application. 471 
An implementation could be designed to use a combination of physical and non-physical entropy 472 
sources. When requests are made to the sources, bitstring outputs are concatenated until the amount 473 
of entropy in the concatenated bitstring meets or exceeds the request. Two methods are provided 474 
for counting the entropy provided in the concatenated bitstring. 475 

Method 1: The RBG implementation includes one or more physical entropy sources, and one 476 
or more non-physical entropy sources may also be included in the implementation. However, 477 
only the entropy in a bitstring that is provided from physical entropy sources is counted toward 478 
fulfilling the amount of entropy requested in an entropy request. Any entropy in a bitstring that 479 
is provided by a non-physical entropy source is not counted, even if bitstrings produced by the 480 
non-physical entropy source are included in the concatenated bitstring that is used by the RBG. 481 
Method 2: The RBG implementation includes one or more non-physical entropy sources, and 482 
one or more physical entropy sources may also be included in the implementation. The entropy 483 
from both non-physical entropy sources and (if present) physical entropy sources is counted 484 
when fulfilling an entropy request. 485 
Example: Let pesi be the ith output of a physical entropy source, and npesi be the jh output of a 486 
non-physical entropy source. If an implementation consists of one physical and one non-487 
physical entropy source, and a request has been made for 128 bits of entropy, the concatenated 488 
bitstring might be something like: 489 

pes1 || pes2 || npes1 || pes3 || ... || npesm ||pesn, 490 
which is the concatenated output of the physical and non-physical entropy sources. 491 

 
2 Note that this document also discusses the use of non-validated entropy sources. When discussing such entropy sources, “non-validated” will 
always precede “entropy sources.” The use of the term “validated entropy source” may be shortened to just “entropy source” to avoid repetition. 
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According to Method 1, only the entropy in pes1, pes2, ..., pesn would be counted toward fulfilling 492 
the 128-bit request. Any entropy in npes1, ... npesm is not counted. 493 
According to Method 2, all of the entropy in pes1, pes2, ... pesn and in npes1, npes2, ..., npesm is 494 
counted. Since the entropy from both non-physical and physical entropy sources is counted in 495 
Method 2, the concatenated output string is expected to be shorter compared to that credited using 496 
Method 1. 497 
When multiple entropy sources are used, there is no requirement on the order in which the entropy 498 
sources are accessed or the number of times that each entropy source is accessed to fulfill an 499 
entropy request (e.g., if two physical entropy sources are used, it is possible that a request would 500 
be fulfilled by only one of the entropy sources because entropy is not available at the time of the 501 
request from the other entropy source). However, the Method 1 or Method 2 criteria for counting 502 
entropy still applies. 503 
This Recommendation assumes that the entropy produced by a validated physical entropy source 504 
is generally more reliable than the entropy produced by a validated non-physical entropy source 505 
since non-physical entropy sources are typically influenced by human actions or network events, 506 
the unpredictability of which is difficult to accurately quantify. Therefore, Method 1 is considered 507 
to provide more assurance that the concatenated bitstring actually contains at least the requested 508 
amount of entropy (128 bits for the example). Note that RBG2(P) and RBG3 constructions only 509 
count the entropy using Method 1 (see Sections 5 and 6). 510 

 DRBGs 511 

Approved DRBG designs are specified in [SP800-90A]. A DRBG includes instantiate, generate, 512 
and health-testing functions and may include reseed and uninstantiate functions. The instantiation 513 
of a DRBG involves acquiring sufficient randomness to initialize the DRBG to support a targeted 514 
security strength and establish the internal state, which includes the secret information for 515 
operating the DRBG. The generate function produces output upon request and updates the internal 516 
state. Health testing is used to determine that the DRBG continues to operate correctly. Reseeding 517 
introduces fresh entropy into the DRBG’s internal state and is used to recover from a potential (or 518 
actual) compromise (see Section 2.4.2 for additional discussion). An uninstantiate function is used 519 
to terminate a DRBG instantiation and destroy the information in its internal state. 520 

2.4.1. DRBG Instantiations  521 

A DRBG implementation consists of software code, hardware, or both hardware and software that 522 
is used to implement a DRBG design. The same implementation can be used to create multiple 523 
“copies” of the same DRBG (e.g., for different purposes) without replicating the software code or 524 
hardware. Each “copy” is a separate instantiation of the DRBG with its own internal state that is 525 
accessed via a state handle that is unique to that instantiation (see Figure 1). Each instantiation 526 
may be considered a different DRBG, even though it uses the same software code or hardware. 527 



NIST SP 800-90C 3pd (Third Public Draft)  Recommendation for RBG Constructions 
September 2022   
 

7 

 

 528 
Fig. 1. DRBG Instantiations 529 

Each DRBG instantiation is initialized with input from some randomness source that establishes 530 
the security strengths that can be supported by the DRBG. During this process, an optional but 531 
recommended personalization string may also be used to differentiate between instantiations in 532 
addition to the output of the randomness source. The personalization string could, for example, 533 
include information particular to the instantiation or contain entropy collected during system 534 
activity (e.g., from a non-validated entropy source). An implementation should allow the use of a 535 
personalization string. More information on personalization strings is provided in [SP800-90A]. 536 
A DRBG may be implemented to accept further input during operation from the randomness 537 
source (e.g., to reseed the DRBG) and/or additional input from inside or outside of the 538 
cryptographic module that contains the DRBG. This additional input could, for example, include 539 
information particular to a request for generation or reseeding or could contain entropy collected 540 
during system activity (e.g., from a validated or non-validated entropy source).3 541 

2.4.2. DRBG Reseeding, Prediction Resistance, and Recovery from Compromise 542 

Under some circumstances, the internal state of an RBG (containing the RBG’s secret information) 543 
could be leaked to an adversary. This would typically happen as the result of a side-channel attack 544 
or tampering with a hardware device, and it may not be detectable by the RBG or any consuming 545 
application. 546 
All DRBGs in [SP800-90A] are designed with backtracking resistance − that is, learning the 547 
DRBG’s current internal state does not provide knowledge of previous outputs. Since all RBGs in 548 
SP 800-90C are based on the use of SP 800-90A DRBGs, they also inherit this property. However, 549 

 
3 Entropy provided in additional input does not affect the instantiated security strength of the DRBG instantiation. However, it is good practice to 
include any additional entropy when available to provide more security. 
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once the secret information within the DRBG’s internal state is compromised, all future DRBG 550 
outputs are known to the adversary unless the DRBG is reseeded − a process that returns the DRBG 551 
to a non-compromised state. 552 
A DRBG is reseeded when at least s bits of fresh entropy are used to update the internal state 553 
(where s is the security strength of the DRBG) so that the updated internal state is unknown and 554 
extremely unlikely to be correctly guessed. A DRBG that has been reseeded has prediction 555 
resistance against an adversary who knows its previous internal state. Reseeding may be 556 
performed upon request from a consuming application (either an explicit request for reseeding or 557 
a request for the generation of bits with prediction resistance); on a fixed schedule based on time, 558 
number of outputs, or events; or as sufficient entropy becomes available. 559 
Although reseeding provides fresh entropy bits that are incorporated into an already instantiated 560 
DRBG at a security strength of s bits, this Recommendation does not consider the reseed process 561 
as increasing the DRBG’s security strength. For example, a reseed of a DRBG that has been 562 
instantiated to support a security strength of 128 bits does not increase the DRBG’s security 563 
strength to 256 bits when reseeding with 128 bits of fresh entropy. 564 
An RBG1 construction has no access to a randomness source after instantiation and so cannot be 565 
reseeded or recover from a compromise (see Section 4). Thus, it can never provide prediction 566 
resistance. 567 
An RBG2 construction contains an entropy source that is used to reseed the DRBG within the 568 
construction (see Section 5) and recover from a possible compromise of the RBG’s internal state. 569 
Prediction resistance may be requested by a consuming application during a request for the 570 
generation of (pseudo) random bits. If sufficient entropy can be obtained from the entropy 571 
source(s) at that time, the DRBG is reseeded before the requested bits are generated. If sufficient 572 
entropy is not available, an error indication is returned, and no bits are generated for output. 573 
Therefore, it is recommended that prediction resistance not be claimed for an RBG implementation 574 
unless sufficient entropy is reliably available upon request. 575 
An RBG3 construction is provided with fresh entropy for every RBG output (see Section 6). As a 576 
result, every output from an RBG3 construction has prediction resistance. 577 
For a more complete discussion of backtracking and prediction resistance, see [SP800-90A]. 578 

 RBG Security Boundaries 579 

An RBG exists within a conceptual RBG security boundary that should be defined with respect to 580 
one or more threat models that include an assessment of the applicability of an attack and the 581 
potential harm caused by the attack. The RBG security boundary must be designed to assist in the 582 
mitigation of these threats using physical or logical mechanisms or both. 583 
The primary components of an RBG are a randomness source (i.e., an entropy source or an RBG 584 
construction), a DRBG, and health tests for the RBG. RBG input (e.g., entropy bits and a 585 
personalization string) shall enter an RBG only as specified in the functions described in Section 586 
2.8. The security boundary of a DRBG is discussed in [SP800-90A]. The security boundary for an 587 
entropy source is discussed in [SP800-90B]. Both the entropy source and the DRBG contain their 588 
own health tests within their respective security boundaries. 589 
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Figure 2 shows an RBG implemented within a [FIPS 140]-validated cryptographic module. The 590 
RBG security boundary shall either be the same as the cryptographic module boundary or be 591 
completely contained within that boundary. The data input may be a personalization string or 592 
additional input (see Section 2.4.1). The data output is status information and possibly random bits 593 
or a state handle. Within the RBG security boundary of the figure are an entropy source and a 594 
DRBG − each with its own (conceptual) security boundary. An entropy-source security boundary 595 
includes a noise source, health tests, and (optionally) a conditioning component. A DRBG security 596 
boundary contains the chosen DRBG, memory for the internal state, and health tests. An RBG 597 
security boundary contains health tests and may also contain an (optional) external conditioning 598 
function. The RBG2 and RBG3 constructions in Sections 5 and 6, respectively, use this model. 599 

 600 
Fig. 2. Example of an RBG Security Boundary within a Cryptographic Module 601 

Note that in the case of the RBG1 construction in Section 4, the security boundary containing the 602 
DRBG does not include a randomness source (shown as an entropy source in Figure 2). 603 
A cryptographic primitive (e.g., an approved hash function) used by an RBG may be used by 604 
other applications within the same cryptographic module. However, these other applications shall 605 
not modify or reveal the RBG’s output, intermediate values, or internal state. 606 
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 Assumptions and Assertions 607 

The RBG constructions in SP 800-90C are based on the use of validated entropy sources and the 608 
following assumptions and assertions for properly functioning entropy sources: 609 

1. An entropy source is independent of another entropy source if a) their security boundaries 610 
do not overlap (e.g., they reside in separate cryptographic modules, or one is a physical 611 
entropy source and the other is a non-physical entropy source), b) there are no common 612 
noise sources,4 and c) statistical tests provide evidence of the independence of the entropy 613 
sources. 614 

2. The use of both validated and non-validated entropy sources is permitted in an 615 
implementation, but only entropy sources that have been validated for compliance with 616 
[SP800-90B] are used to provide the randomness input for seeding and reseeding a DRBG 617 
or providing entropy for an RBG3 construction. 618 

The following assumptions and assertions pertain to the use of validated entropy sources for 619 
providing entropy bits: 620 

3. For the purpose of analysis, it is assumed that a) the number of bits that are output by an 621 
entropy source is never more than 264, and b) the number of output bits from the RBG is 622 
never more than 264 bits for a DRBG instantiation. In the case of an RBG1 construction 623 
with one or more subordinate DRBGs, the output limit applies to the total output provided 624 
by the RBG1 construction and all of its subordinate DRBGs. 625 

4. Each entropy-source output has a fixed length, ES_len (in bits). 626 
5. Each entropy-source output is assumed to contain a fixed amount of entropy, denoted as 627 

ES_entropy, that was assessed during entropy-source implementation validation. (See 628 
[SP800-90B] for entropy estimation.) ES-entropy is assumed to be at least 0.1 bits per bit 629 
of output. 630 

6. Each entropy source has been characterized as either a physical entropy source or a non-631 
physical entropy source upon successful validation. 632 

7. The outputs from a single entropy source can be concatenated. The entropy of the resultant 633 
bitstring is the sum of the entropy from each entropy-source output. For example, if m 634 
outputs are concatenated, then the length of the bitstring is m × ES_len bits, and the entropy 635 
for that bitstring is assumed to be m × ES_entropy bits. (This is a consequence of the model 636 
of entropy used in [SP800-90B].) 637 

8. The output of multiple independent entropy sources can be concatenated in an RBG. The 638 
entropy in the resultant bitstring is the sum of the entropy in the output of each independent 639 
entropy-source output that is considered to be contributing to the entropy in the bitstring 640 
(see Methods 1 and 2 in Section 2.3). For example, suppose that the output from 641 
independent physical entropy sources A and B and non-physical entropy source C are 642 
concatenated. The length of the concatenated bitstring is the sum of the lengths of the 643 
component bitstrings (i.e., ES_lenA + ES_lenB + ES_lenC). 644 

 
4 They may, however, use the same type of noise source (e.g., both entropy sources could use ring oscillators but not the same ones). 
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• Using Method 1 in Section 2.3, the amount of entropy in the concatenated bitstring 645 
is ES_entropyA + ES_entropyB. 646 

• Using Method 2 in Section 2.3, the amount of entropy in the concatenated bitstring 647 
is the sum of the entropies in the bitstrings (i.e., ES_entropyA + ES_entropyB + 648 
ES_entropyC). 649 

9. Under certain conditions, the output of one or more entropy sources can be externally 650 
conditioned to provide full-entropy output. See Section 3.3.2 and Section 6.3.1 for the use 651 
of this assumption and [NISTIR8427] for rationale. 652 

Furthermore,  653 
10. The amount of entropy in a subset bitstring that is “extracted” from the output block of an 654 

approved hash function or block cipher is a proportion of the entropy in that block, such 655 
that 656 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = �
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑙𝑙𝑙𝑙𝑙𝑙
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑙𝑙𝑙𝑙𝑙𝑙�

𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 657 

where subset_len is the length of the subset bitstring, output_len is the length of the output 658 
block, entropyoutput_block is the amount of entropy in the output block, and entropysubset is the 659 
amount of entropy in the subset bitstring. 660 

11. Full entropy bits can be extracted from the output block of a hash function or block cipher 661 
when the amount of fresh entropy inserted into the algorithm exceeds the number of bits to 662 
be extracted by at least 64 bits. For example, if output_len is the length of the output block, 663 
all bits of the output block can be assumed to have full entropy if at least output_len + 64 664 
bits of entropy are inserted into the algorithm. As another example, if a DRBG is reseeded 665 
at its security strength s, (s − 64) bits with full entropy can be extracted from the DRBG’s 666 
output block. 667 

12. To instantiate a DRBG at a security strength of s bits, a bitstring of at least 3s/2 bits long 668 
is needed from a randomness source for an RBG1 construction, and a bitstring with at least 669 
3s/2 bits of entropy is needed from an entropy source for an RBG2 or RBG3 construction. 670 

13. One or more of the constructions provided herein are used in the design of an RBG. 671 
14. All components of an RBG2 and RBG3 construction (as specified in Sections 5 and 6) 672 

reside within the physical boundary of a single [FIPS140]-validated cryptographic module. 673 
15. The DRBGs specified in [SP800-90A] are assumed to meet their explicit security claims 674 

(e.g., backtracking resistance, prediction resistance, claimed security strength, etc.). 675 
The following assumptions and assertions have been made for the subordinate DRBGs (sub-676 
DRBGs) that are seeded (i.e., initialized) using an RBG1 construction: 677 

16. A sub-DRBG is considered to be part of the RBG1 construction that initializes it. 678 
17. The assumptions and assertions in items 3, 10, and 14 (above) apply to sub-DRBGs. 679 

 General Implementation and Use Requirements and Recommendations 680 

When implementing the RBGs specified in this Recommendation, an implementation: 681 



NIST SP 800-90C 3pd (Third Public Draft)  Recommendation for RBG Constructions 
September 2022   
 

12 

 

1. Shall destroy intermediate values before exiting the function or routine in which they are 682 
used,  683 

2. Shall employ an “atomic” generate operation whereby a generate request is completed 684 
before using any of the requested bits, 685 

3. Should consider the threats posed by quantum computers in the future, and 686 
4. Should be implemented with the capability to support a security strength of 256 bits or to 687 

provide full-entropy output. 688 
When using RBGs, the user or application requesting the generation of random or pseudorandom 689 
bits should request only the number of bits required for a specific immediate purpose rather than 690 
generating bits to be stored for future use. Since, in most cases, the bits are intended to be secret, 691 
the stored bits (if not properly protected) are potentially vulnerable to exposure, thus defeating the 692 
requirement for secrecy. 693 

 General Function Calls 694 

Functions used within this document for accessing the DRBGs in [SP800-90A], the entropy 695 
sources in [SP800-90B], and the RBG3 constructions specified in SP 800-90C are provided below. 696 
Each function shall return a status code that shall be checked (e.g., a status of success or failure 697 
by the function). 698 
If the status code indicates a success, then additional information may also be returned, such as a 699 
state handle from an instantiate function or the bits that were requested to be generated during a 700 
generate function. 701 
If the status code indicates a failure of an RBG component, then see Section 7.1.2 for error-702 
handling guidance. Note that if the status code does not indicate a success, an invalid output (e.g., 703 
a null bitstring) shall be returned with the status code if information other than the status code 704 
could be returned. 705 
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 706 
Fig. 3. General Function Calls 707 

2.8.1. DRBG Functions 708 

SP 800-90A specifies several functions for use within a DRBG, indicating the input and output 709 
parameters and other implementation details. Note that, in some cases, some input parameters may 710 
be omitted, and some output information may not be returned. 711 
At least two functions are required in a DRBG: 712 

1. An instantiate function that seeds the DRBG using the output of a randomness source and 713 
other input (see Section 2.8.1.1) and 714 

2. A generate function that produces output for use by a consuming application (see Section 715 
2.8.1.2). 716 

A DRBG may also support a reseed function (see Section 2.8.1.3). A Get_randomness-717 
source_input function is used in SP 800-90A to request output from a randomness source during 718 
instantiation and reseeding (see Section 2.8.1.4). 719 
The use of the Uninstantiate_function specified in SP 800-90A is not explicitly discussed in SP 720 
800-90C but may be required by an implementation. 721 

2.8.1.1. DRBG Instantiation 722 

A DRBG shall be instantiated prior to the generation of pseudorandom bits at the highest security 723 
strength to be supported by the DRBG instantiation using the following call: 724 

(status, state_handle) = Instantiate_function(requested_instantiation_security_strength, 725 
prediction_resistance_flag, personalization_string). 726 
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 727 
Fig. 4. Instantiate_function 728 

The Instantiate_function (shown in Figure 4) is used to instantiate a DRBG at the 729 
requested_instantiation_security_strength using the output of a randomness source5 and an 730 
optional personalization_string to create seed material. A prediction_resistance flag may be used 731 
to indicate whether subsequent Generate_function calls may request prediction resistance. As 732 
stated in Section 2.4.1, a personalization_string is optional but strongly recommended. (Details 733 
about the Instantiate_function are provided in [SP800-90A].) 734 
If the returned status code for the Instantiate_function indicates a success (i.e., the DRBG has 735 
been instantiated at the requested security strength), a state handle may6 be returned to indicate the 736 
particular DRBG instance. When provided, the state handle will be used in subsequent calls to the 737 
DRBG (e.g., during a Generate_function call) to identify the internal state information for the 738 
instantiation. The information in the internal state includes the security strength of the instantiation, 739 
the number of times that the instantiation has produced output, and other information that changes 740 
during DRBG execution (see [SP800-90A] for each DRBG design). 741 
When the DRBG has been instantiated at the requested_instantiation_security_strength, the 742 
DRBG will operate at that security strength even if the requested_security_strength in subsequent 743 
Generate_function calls (see Section 2.8.1.2) is less than the instantiated security strength. 744 
If the status code indicates an error and an implementation is designed to return a state handle, an 745 
invalid (e.g., Null) state handle shall be returned. 746 

2.8.1.2. DRBG Generation Request 747 

Pseudorandom bits are generated after DRBG instantiation using the following call: 748 
(status, returned_bits) = Generate_function(state_handle, requested_number_of_bits, 749 

requested_security_strength, prediction_resistance_request, additional_input). 750 

 
5 The randomness source provides the randomness input required to instantiate the security strength of the DRBG. 
6 In cases where only one instantiation of a DRBG will ever exist, a state handle need not be returned since only one internal state will be created. 
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 751 
Fig. 5. Generate_function 752 

The Generate_function (shown in Figure 5) requests that a DRBG generate a specified number 753 
of bits. The request may indicate the DRBG instance to be used (using the state handle returned 754 
by an Instantiate_function call; see Section 2.8.1.1), the number of bits to be returned, the security 755 
strength that the DRBG needs to support for generating the bitstring, and whether or not prediction 756 
resistance is to be obtained during this execution of the Generate_function. Optional additional 757 
input may also be incorporated into the function call. As stated in Section 2.4.1, the ability to 758 
handle and use additional input is recommended. 759 
The Generate_function returns status information – either an indication of success or an error. If 760 
the returned status code indicates a success, the requested number of bits is returned. 761 

• If requested_number_of_bits is equal to or greater than the instantiated security strength, 762 
the security strength that the returned_bits can support (if used as a key) is: 763 

ss_key = the instantiated security strength, 764 
where ss_key is the security strength of the key. 765 

• If the requested_number of bits is less than the instantiated security strength, and the 766 
returned_bits are to be used as a key, the key is capable of supporting a security strength 767 
of: 768 

ss_key = requested_number_of_bits. 769 
If the status code indicates an error, the returned_bits shall consist of an invalid (e.g., Null) 770 
bitstring that must not be used. Examples of conditions in which an error indication shall be 771 
returned include the following: 772 

• The requested_security_strength exceeds the instantiated security strength for the DRBG 773 
(i.e., the security strength recorded in the DRBG’s internal state during instantiation). 774 

• Prediction resistance has been requested but cannot be obtained at this time. 775 
Details about the Generate_function are provided in Section 9.3 of [SP800-90A]. 776 

2.8.1.3. DRBG Reseed Request 777 

The reseeding of a DRBG instantiation is intended to insert additional entropy into that DRBG 778 
instantiation (e.g., to recover from a possible compromise or to provide prediction resistance). This 779 
is accomplished using the following call (note that this does not increase the security strength of 780 
the DRBG): 781 
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status = Reseed_function(state_handle, additional_input). 782 

 783 
Fig. 6. Reseed_function 784 

A Reseed_function (shown in Figure 6) is used to acquire at least s bits of fresh entropy for the 785 
DRBG instance indicated by the state handle (or the only instance if no state handle has been 786 
provided), where s is the security strength of the DRBG.7 In addition to the randomness input 787 
provided from the randomness source(s) during reseeding, optional additional input may be 788 
incorporated into the reseed process. As discussed in Section 2.4.1, the capability for handling 789 
and using additional input is recommended. (Details about the Reseed_function are provided in 790 
[SP800-90A].) 791 
An indication of the status is returned. 792 
The Reseed_function is not permitted in an RBG1 construction (see Section 4) but is permitted 793 
in the RBG2 and RBG3 constructions (see Sections 5 and 6, respectively). 794 

2.8.1.4. The Get_randomness-source_input Call 795 

A Get_randomness-source_input call is used in the Instantiate_function and Reseed_function 796 
in [SP800-90A] to indicate when a randomness source (i.e., an entropy source or RBG) needs to 797 
be accessed to obtain randomness input. Details are not provided in SP 800-90A about how the 798 
Get_randomness-source_input call needs to be implemented. SP 800-90C provides guidance on 799 
how the call should actually be implemented based on various situations. Sections 4, 5, and 6 800 
provide instructions for obtaining input from a randomness source when the Get_randomness-801 
source_input call is encountered in SP 800-90A.8 802 

2.8.2. Interfacing with Entropy Sources Using the GetEntropy and 803 
Get_ES_Bitstring Functions 804 

2.8.2.1. The GetEntropy Call 805 

An entropy source, as discussed in [SP800-90B], is a mechanism for producing bitstrings that 806 
cannot be predicted and whose unpredictability can be quantified in terms of min-entropy. SP 800-807 
90B uses the following call for accessing an entropy source: 808 

(status, ES_output) = GetEntropy (bits_of_entropy), 809 

 
7 The value of s is available in the DRBG’s internal state. 
8 Note that, at this time, modifications to the Instantiate_function and Reseed_function specification in SP 800-90A and to the appropriate 
algorithms in Section 10 of that document may be required to accommodate the specific requests for entropy for each RBG construction. 
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where bits_of_entropy is the amount of entropy requested, ES_output is a bitstring containing the 810 
requested amount of entropy, and status indicates whether or not the request has been satisfied. 811 
See Figure 7. 812 

 813 
Fig. 7. GetEntropy function 814 

If the status indicates a success, a bitstring of at least bits_of_entropy long is returned as the 815 
ES_output. ES_output must contain at least the requested amount of entropy indicated by the 816 
bits_of_entropy input parameter. If the status does not indicate a success, an invalid ES_output 817 
bitstring is returned (e.g., ES_output could be a null bitstring). 818 

2.8.2.2. The Get_ES_Bitstring Function 819 

A single GetEntropy call may not be sufficient to obtain the entropy required for seeding and 820 
reseeding a DRBG and for providing input for the exclusive-or operation in an RBG3(XOR) 821 
construction (see Section 6.2). Therefore, SP 800-90C uses a Get_ES_Bitstring function (see 822 
Figure 8) to obtain the required entropy from one or more GetEntropy calls. The 823 
Get_ES_Bitstring function is invoked as follows: 824 

(status, entropy_bitstring) = Get_ES_Bitstring(bits_of_entropy), 825 
where bits_of_entropy is the amount of entropy requested in the returned entropy_ bitstring, and 826 
status indicates whether or not the request has been satisfied. 827 

 828 
Fig. 8. Get_ES_Bitstring function 829 

Note that if non-validated entropy sources are used (e.g., to provide entropy to be used as additional 830 
input), they shall be accessed using a different function than is used to access validated entropy 831 
sources (i.e., the Get_ES_Bitstring function). 832 
If the returned status from the Get_ES_Bitstring function indicates a success, the requested 833 
amount of entropy (i.e., indicated by bits_of_entropy) shall be returned in the entropy_bitstring, 834 
whose length is equal to or greater than bits_of_entropy. If the status does not indicate a success, 835 
an invalid entropy_bitstring shall be returned (e.g., entropy_bitstring is a null bitstring). 836 
The Get_ES_Bitstring function will be used in this document to access validated entropy sources 837 
to obtain one or more bitstrings with entropy using GetEntropy calls. 838 
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See Section 3.1 for additional discussion about the Get_ES_Bitstring function. 839 

2.8.3. Interfacing with an RBG3 Construction 840 

An RBG3 construction requires interface functions to instantiate its DRBG (see Section 2.8.3.1) 841 
and to request the generation of full-entropy bits (see Section 2.8.3.2). 842 

2.8.3.1. Instantiating a DRBG within an RBG3 Construction 843 

The RBG3_DRBG_Instantiate function is used to instantiate the DRBG within the RBG3 844 
construction using the following call: 845 

(status, state_handle) = RBG3_DRBG_Instantiate(prediction_resistance_flag, 846 
personalization_string). 847 

 848 
Fig. 9. RBG3 DRBG_Instantiate function 849 

The RBG3’s instantiate function (shown in Figure 9) will result in a call to the DRBG’s 850 
Instantiate_function (provided in Section 2.8.1.1). An optional but recommended 851 
personalization_string (see Section 2.4.1) may be provided as an input parameter. If included, the 852 
personalization_string shall be passed to the DRBG that is instantiated in the 853 
Instantiate_function request. See Sections 6.2.1.1 and 6.3.1.1 for more specificity. 854 
If the returned status code indicates a success, a state handle may be returned to indicate the 855 
particular DRBG instance that is to be used by the construction. Note that if multiple instances of 856 
the DRBG are used, a separate state handle shall be returned for each instance. When provided, 857 
the state handle shall be used in subsequent calls to that RBG (e.g., during a call to the generate 858 
function) when multiple instances of the DRBG have been instantiated. If the status code indicates 859 
an error (e.g., entropy is not currently available, or the entropy source has failed), an invalid (e.g., 860 
Null) state handle shall be returned. 861 

2.8.3.2. Generation Using an RBG3 Construction 862 

The RBG3(XOR) and RBG3(RS) generate functions are different because of the difference in their 863 
designs (see Sections 6.2.1.2 and 6.3.1.2). 864 
For the RBG3(XOR) construction, the generate function is invoked using the following call: 865 

(status, returned_bits) = RBG3(XOR)_Generate(state_handle, requested_number_of_bits, 866 
prediction_resistance_request, additional_input). 867 
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 868 
Fig. 10. RBG3(XOR)_Generate function 869 

For the RBG3(RS) construction, the generate function is invoked using the following call: 870 
(status, returned_bits) = RBG3(RS)_Generate(state_handle, 871 

requested_number_of_bits, additional_input). 872 

 873 
Fig. 11. RBG3(RS)_Generate function 874 

The RBG3(XOR)_Generate function (shown in Figure 10) includes a 875 
prediction_resistance_request parameter to request a reseed of the RBG3(XOR)’s DRBG 876 
instantiation, when desired. This parameter is not included as a parameter for the 877 
RBG3(RS)_Generate function (shown in Figure 11) since this design always reseeds itself during 878 
execution. 879 
The generate functions result in calls to the entropy sources and the DRBG instantiation used by 880 
the RBG3 construction. This call accesses the DRBG using the Generate_function call provided 881 
in Section 2.8.1.2. The input parameters to the two generate functions are used when calling the 882 
DRBG instantiation used by that RBG3 construction. 883 
If the returned status code indicates a success, a bitstring that contains the newly generated bits is 884 
returned. The RBG then uses the resulting bitstring as specified for each RBG3 construction (see 885 
Section 6). 886 
If the status code indicates an error (e.g., the entropy source has failed), an invalid (e.g., Null) 887 
bitstring shall be returned as the returned_bits.  888 
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 Accessing Entropy Source Output 889 

The security provided by an RBG is based on the use of validated entropy sources. Section 3.1 890 
discusses the use of the Get_ES_Bitstring function to request entropy from one or more entropy 891 
sources. Section 3.2 discusses the behavior required by an entropy source. Section 3.3 discusses 892 
the conditioning of the output of one or more entropy sources to obtain a bitstring with full entropy 893 
before further use by an RBG. 894 

 The Get_ES_Bitstring Function 895 

The Get_ES_Bitstring function specified in Section 2.8.2.2 is used within an RBG to obtain 896 
entropy from one or more validated entropy sources using one or more GetEntropy calls (see 897 
Sections 2.8.2.1 and 3.2) in whatever manner is required (e.g., by polling the entropy sources or 898 
by extracting bits containing entropy from a pool of collected bits). The Get_ES_Bitstring 899 
function shall only be used to access validated entropy sources to obtain the entropy for seeding 900 
and reseeding a DRBG and for providing input for the exclusive-or operation of an RBG3(XOR) 901 
construction (see Section 6.2). 902 
In many cases, the Get_ES_Bitstring function will need to query an entropy source (or a set of 903 
entropy sources) multiple times to obtain the amount of entropy requested. For the most part, the 904 
construction of the Get_ES_Bitstring function itself is not specified in this document but is left 905 
to the developer to implement appropriately for the selected entropy sources. 906 
The behavior of the Get_ES_Bitstring function shall be as follows: 907 

1. A Get_ES_Bitstring function shall only be used to access one or more validated entropy 908 
sources. 909 

2. The entropy bitstrings produced from multiple entropy-source calls to a single validated 910 
entropy source or by calls to multiple validated entropy sources shall be concatenated into 911 
a single bitstring. The entropy in the bitstring is computed as the sum of the entropy 912 
produced by each call to a validated entropy source that is to be counted as contributing 913 
entropy to the bitstring (see Section 2.3).9 914 

3. If a failure is reported during an invocation of the Get_ES_Bitstring function by any 915 
physical or non-physical entropy source whose entropy is counted toward fulfilling an 916 
entropy request, the failure shall be handled as discussed in Section 7.1.2. 917 

4. If a non-physical entropy source whose entropy is not counted reports a failure, the failure 918 
shall be reported to the RBG or the consuming application. 919 

5. The Get_ES_Bitstring function shall not return an entropy_bitstring unless the bitstring 920 
contains sufficient entropy to fulfill the entropy request. The returned status shall indicate 921 
a success only when this condition is met. 922 

 
9 For Method 1 in Section 3.3, only entropy contributed by one or more validated physical entropy sources is counted. For Method 2, the entropy 
from all validated entropy sources is counted. 
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 Entropy Source Requirements 923 

This Recommendation requires the use of one or more validated entropy sources to provide 924 
entropy for seeding and reseeding a DRBG and for input to the XOR operation in the RBG3(XOR) 925 
construction specified in Section 6.2. In addition to the assumptions and assertions concerning 926 
entropy sources in Section 2.6, the following conditions shall be met when using these entropy 927 
sources: 928 

1. Only validated entropy sources shall be used to provide the entropy bitstring for seeding 929 
and reseeding a DRBG and for providing input to the XOR operation in the RBG3(XOR) 930 
construction. 931 
Non-validated entropy sources may be used by an RBG to provide input for personalization 932 
strings and/or the additional input in DRBG function calls (see Section 2.4.1). 933 

2. Each validated entropy source shall be independent of all other validated or non-validated 934 
entropy sources used by the RBG. 935 

3. The outputs from an entropy source shall not be reused (e.g., the value in the entropy 936 
source is erased after being output). 937 

4. When queried for entropy, the validated entropy sources must respond as follows: 938 
a. The requested output must be returned only if the returned status indicates a 939 

success. In this case, the ES-output bitstring must contain the requested amount of 940 
entropy. (Note that the ES-output bitstring may be longer than the amount of 941 
entropy requested, i.e., the bitstring may not have full entropy.) 942 

b. If an indication of a failure is returned by a validated entropy source as the status, 943 
an invalid (e.g., Null) bitstring shall be returned as ES_output. 944 

5. If the validated entropy-source components operate continuously regardless of whether 945 
requests are received and a failure is determined, the entropy source shall immediately 946 
report the failure to the RBG (see Section 7.1.2). 947 

6. If a validated entropy source reports a failure (e.g., because of a failed health test), the 948 
entropy source shall not produce output (except possibly for a failure status indication) 949 
until the failure is corrected. The entropy source shall immediately report the failure to the 950 
Get_ES_Bitstring function (see Section 3.1). If multiple validated entropy sources are 951 
used, the report shall identify the entropy source that reported the failure. 952 

7. A detected failure of any entropy source shall cause the RBG to report the failure to the 953 
consuming application and terminate the RBG operation. The RBG must not be returned 954 
to normal operation until the conditions that caused the failure have been corrected and 955 
tested for successful operation. 956 

 External Conditioning to Obtain Full-Entropy Bitstrings 957 

An RBG3(XOR) construction (see Section 6.2) and a CTR_DRBG without a derivation function 958 
in an RBG2 or RBG3 construction (see Sections 5 and 6) require bitstrings with full entropy from 959 
an entropy source. If the validated entropy source does not provide full-entropy output, a method 960 
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for conditioning the output to obtain a bitstring with full entropy is needed. Since this conditioning 961 
is performed outside an entropy source, the output is said to be externally conditioned. 962 
When external conditioning is performed, the vetted conditioning function listed in [SP800-90B] 963 
shall be used. 964 

3.3.1. Conditioning Function Calls 965 

The conditioning functions operate on bitstrings obtained from one or more calls to the entropy 966 
source(s). 967 
The following format is used in Section 3.3.2 for a conditioning-function call: 968 

conditioned_output = Conditioning_function(input_parameters), 969 
where the input_parameters for the selected conditioning function are discussed in Sections 3.3.1.2 970 
and 3.3.1.3, and conditioned_output is the output returned by the conditioning function. 971 

3.3.1.1. Keys Used in External Conditioning Functions 972 

The HMAC, CMAC, and CBC-MAC vetted conditioning functions require the input of a Key of 973 
a specific length (keylen). Unlike other cryptographic applications, keys used in these external 974 
conditioning functions do not require secrecy to accomplish their purpose so may be hard-coded, 975 
fixed, or all zeros. 976 
For the CMAC and CBC-MAC conditioning functions, the length of the key shall be an 977 
approved key length for the block cipher used (e.g., keylen = 128, 192, or 256 bits for AES). 978 
For the HMAC conditioning function, the length of the key shall be equal to the length of the hash 979 
function’s output block (i.e., output_len). 980 

Table 2. Key Lengths for the Hash-based Conditioning Functions 981 

Hash Function Length of the output block 
(output_len) and key (keylen) 

SHA-224, SHA-512/224, SHA3-224 224 
SHA-256, SHA-512/256, SHA3-256 256 
SHA-384, SHA3-384 384 
SHA-512, SHA3-512 512 

Using random keys may provide some additional security in case the input is more predictable 982 
than expected. Thus, these keys should be chosen randomly in some way (e.g., by drawing bits 983 
directly from the entropy source and inserting them into the key or by providing entropy-source 984 
bits to a conditioning function with a fixed key to derive the new key). Note that any entropy used 985 
to randomize the key shall not be used for any other purpose (e.g., as input to the conditioning 986 
function). 987 

3.3.1.2. Hash Function-based Conditioning Functions 988 

Conditioning functions may be based on approved hash functions. 989 
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One of the following calls shall be used for external conditioning when the conditioning function 990 
is based on a hash function: 991 

1. Using an approved hash function directly: 992 
conditioned_output = Hash(entropy_bitstring), 993 

where the hash function operates on the entropy_bitstring provided as input. 994 
2. Using HMAC with an approved hash function: 995 

conditioned_output = HMAC(Key, entropy_bitstring), 996 
where HMAC operates on the entropy_bitstring using a Key determined as specified in 997 
Section 3.3.1.1. 998 

3. Using Hash_df as specified in SP 800-90A: 999 
conditioned_output = Hash_df(entropy_bitstring, output_len),  1000 

where the derivation function operates on the entropy_bitstring provided as input to 1001 
produce a bitstring of output_len bits. 1002 

In all three cases, the length of the conditioned output is equal to the length of the output block of 1003 
the selected hash function (i.e., output_len). 1004 

3.3.1.3. Block Cipher-based Conditioning Functions 1005 

Conditioning functions may be based on approved block ciphers.10 TDEA shall not be used as 1006 
the block cipher (see Section 2.6). 1007 
For block cipher-based conditioning functions, one of the following calls shall be used for external 1008 
conditioning: 1009 

1. Using CMAC (as specified in [SP800-38B]) with an approved block cipher: 1010 
conditioned_output = CMAC(Key, entropy_bitstring), 1011 

where CMAC operates on the entropy_bitstring using a Key determined as specified in 1012 
Section 3.3.1.1. 1013 

2. Using CBC-MAC (specified in Appendix F of [SP800-90B]) with an approved block 1014 
cipher: 1015 

conditioned_output = CBC-MAC(Key, entropy_bitstring), 1016 
where CBC-MAC operates on the entropy_bitstring using a Key determined as specified 1017 
in Section 3.3.1.1. 1018 

 
10 At the time of publication, only AES-128, AES-192, and AES-256 were approved as block ciphers for the 

conditioning functions (see SP 800-90B). In all three cases, the block length is 128 bits. 
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CBC-MAC shall only be used as an external conditioning function under the following 1019 
conditions: 1020 

a. The length of the input is an integer multiple of the block size of the block cipher 1021 
(e.g., a multiple of 128 bits for AES) − no padding is done by CBC-MAC itself.11 1022 

b. All inputs to CBC-MAC in the same RBG shall have the same length. 1023 
c. If the CBC-MAC conditioning function is used to obtain full entropy from an 1024 

entropy source for CTR_DRBG instantiation or reseeding: 1025 
 A personalization string shall not be used during instantiation. 1026 
 Additional input shall not be used during the reseeding of the 1027 

CTR_DRBG but may be used during the generate process. 1028 
CBC-MAC is not approved for any use other than in an RBG (see [SP800-90B]). 1029 

3. Using the Block_cipher_df as specified in [SP800-90A] with an approved block cipher: 1030 
conditioned_output = Block_cipher_df(entropy_bitstring, block_length), 1031 

where Block_cipher_df operates on the entropy_bitstring using a key specified within the 1032 
function, and the block_length is 128 bits for AES. 1033 

In all three cases, the length of the conditioned output is equal to the length of the output block 1034 
(i.e., 128 bits for AES). If the requested amount of entropy is requested for subsequent use by an 1035 
RBG,12 then multiple iterations of the conditioning function may be required, each using a different 1036 
entropy_bitstring. 1037 

3.3.2. Using a Vetted Conditioning Function to Obtain Full-Entropy Bitstrings 1038 

This construction will produce a bitstring with full entropy using one of the conditioning functions 1039 
identified in Section 3.3.1.1 for an RBG2 or RBG3 construction whenever a bitstring with full 1040 
entropy is required (e.g., to seed or reseed a CTR_DRBG with no derivation function or to provide 1041 
full entropy for the RBG3(XOR) construction). This process is unnecessary if the entropy source 1042 
provides full-entropy output. 1043 
Let output_len be the length of the output block of the vetted conditioning function to be used; 1044 
output_len is the length of the hash function’s output block when a hash-based conditioning 1045 
function is used (see Section 3.3.1.2); output_len = 128 when an AES-based conditioning function 1046 
is used (see Section 3.3.1.3). 1047 
The approach used by this construction is to acquire sufficient entropy from the entropy source to 1048 
produce output_len bits with full entropy in the conditioning function’s output block, where 1049 
output_len is the length of the output block. The amount of entropy required for each use of the 1050 
conditioning function is output_len + 64 bits (see item 11 of Section 2.6). This process is repeated 1051 
until the requested number of full-entropy bits have been produced. 1052 

 
11 Any padding required could be done before submitting the entropy_bitstring to the CBC-MAC function. 
12 Since the output block of AES is only 128 bits, this will often be the case when seeding or reseeding a DRBG. 
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The Get_conditioned_full_entropy_ input function below obtains entropy from one or more 1053 
entropy sources using the Get_ES_Bitstring function discussed in Section 3.1 and conditions it 1054 
to provide an n-bit string with full entropy. 1055 
Get_conditioned_full_entropy_input: 1056 

Input: integer n. Comment: the requested number of full-entropy bits. 1057 
Output: integer status, bitstring returned_bitstring. 1058 

Process: 1059 
1. temp = the Null string. 1060 
2. ctr = 0. 1061 
3. While ctr < n, do 1062 

3.1  (status, entropy_bitstring) = Get_ES_Bitstring(output_len + 64). 1063 
3.2 If (status ≠ SUCCESS), then return (status, invalid_bitstring). 1064 
3.3 conditioned_output = Conditioning_function(input_parameters). 1065 
3.4 temp = temp || conditioned_output. 1066 
3.5 ctr = ctr + output_len. 1067 

4. returned_bitstring = leftmost(temp, n). 1068 
5. Return (SUCCESS, returned_bitstring). 1069 

Steps 1 and 2 initialize the temporary bitstring (temp) for storing the full-entropy bitstring being 1070 
assembled and the counter (ctr) that counts the number of full-entropy bits produced for each 1071 
iteration of step 3. 1072 
Step 3 obtains and processes the entropy for each iteration. 1073 

• Step 3.1 requests output_len + 64 bits from the validated entropy sources. When the output 1074 
of multiple entropy sources is used, the entropy counted for fulfilling the request for outlen 1075 
+ 64 bits is determined using Method 1 or Method 2 as specified in Section 2.3 in the 1076 
following situations: 1077 
Method 1 shall be used when: 1078 

 Instantiating and reseeding an RBG2(P) construction containing a CTR_DRBG with no 1079 
derivation function (see Section 5.2.1, item 1b, and Section 5.2.3), 1080 

 Instantiating and reseeding a CTR_DRBG with no derivation function that is used within 1081 
an RBG3 construction (see Section 6.1, requirement 1), or 1082 

  Generating bits in an RBG3(XOR) construction (see Section 6.2.1.2, step 1). 1083 
Method 2 shall be used when instantiating and reseeding an RBG2(NP) construction 1084 
containing a CTR_DRBG with no derivation function (see Section 5.2.1, item 1b, and 1085 
Section 5.2.3). 1086 
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• Step 3.2 checks whether or not the status returned in step 3.1 indicated a success. If the 1087 
status did not indicate a success, the status is returned along with an invalid bitstring as the 1088 
returned_bitstring (e.g., invalid_bitstring is Null). 1089 

• Step 3.3 invokes the conditioning function for processing the entropy_bitstring obtained 1090 
from step 3.1. The input_parameters for the selected Conditioning_function are specified 1091 
in Sections 3.3.1.2 or 3.3.1.3, depending on the conditioning function used. 1092 

• Step 3.4 concatenates the conditioned_output received in step 3.3 to the temporary bitstring 1093 
(temp), and step 3.5 increments the counter for the number of full-entropy bits that have 1094 
been produced so far. 1095 

• If at least n full-entropy bits have not been produced, repeat the process starting at step 3.1. 1096 

• Step 4 truncates the full-entropy bitstring to n bits. 1097 

• Step 5 returns an n-bit full-entropy bitstring as the returned_bitstring.  1098 
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 RBG1 Constructions Based on RBGs with Physical Entropy Sources 1099 

An RBG1 construction provides a source of cryptographic random bits from a device that has no 1100 
internal randomness source. Its security depends entirely on being instantiated securely from an 1101 
RBG with access to a physical entropy source that resides outside of the device. 1102 
An RBG1 construction is instantiated (i.e., seeded) only once before its first use by an RBG2(P) 1103 
construction (see Section 5) or an RBG3 construction (see Section 6). Since a randomness source 1104 
is not available after DRBG instantiation, an RBG1 construction cannot be reseeded and, therefore, 1105 
cannot provide prediction resistance. 1106 
An RBG1 construction may be useful for constrained devices in which an entropy source cannot 1107 
be implemented or in any device in which access to a suitable source of randomness is not available 1108 
after instantiation. Since an RBG1 construction cannot be reseeded, the use of the DRBG is limited 1109 
to the DRBG’s seedlife (see [SP800-90A]). 1110 
Subordinate DRBGs (sub-DRBGs) may be used within the security boundary of an RBG1 1111 
construction (see Section 4.3). The use of one or more sub-DRBGs may be useful for 1112 
implementations that use flash memory, such as when the number of write operations to the 1113 
memory is limited (resulting in short device lifetimes) or when there is a need to use different 1114 
DRBG instantiations for different purposes. The RBG1 construction is the source of the 1115 
randomness that is used to (optionally) instantiate one or more sub-DRBGs. Each sub-DRBG is a 1116 
DRBG specified in SP 800-90A and is intended to be used for a limited time and a limited purpose. 1117 
A sub-DRBG is, in fact, a different instantiation of the DRBG design implemented within the 1118 
RBG1 construction (see Section 2.4.1). 1119 

 RBG1 Description 1120 

As shown in Figure 12, an RBG1 construction consists of a DRBG contained within a DRBG 1121 
security boundary in one cryptographic module and an RBG (serving as a randomness source) 1122 
contained within a separate cryptographic module from that of the RBG1 construction. Note that 1123 
the required health tests are not shown in the figure. 1124 
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 1125 
Fig. 12. RBG1 Construction 1126 

The RBG for instantiating the DRBG within the RBG1 construction must be either an RBG2(P) 1127 
construction that has support for prediction resistance requests ( see Section 5) or an RBG3 1128 
construction (see Section 6). A physically secure channel between the randomness source and the 1129 
DRBG is used to securely transport the randomness input required for the instantiation of the 1130 
DRBG. An optional recommended personalization string and optional additional input may be 1131 
provided from within the DRBG’s cryptographic module or from outside of that module (see 1132 
Section 2.4.1). 1133 
An external conditioning function is not needed for this design because the output of the RBG has 1134 
already been cryptographically processed. 1135 
The output from an RBG1 construction may be used within the cryptographic module (e.g., to seed 1136 
a sub-DRBG as specified in Section 4.3) or by an application outside of the RBG1 security 1137 
boundary. 1138 
The security strength provided by the RBG1 construction is the minimum of the security strengths 1139 
provided by the DRBG within the construction, the secure channel, and the RBG used to seed the 1140 
DRBG. 1141 
Examples of RBG1 and sub-DRBG constructions are provided in Appendices B.2 and B.3, 1142 
respectively. 1143 

 Conceptual Interfaces 1144 

Interfaces to the DRBG within an RBG1 construction include function calls for instantiating the 1145 
DRBG and generating pseudorandom bits upon request (see Sections 4.2.1 and 4.2.2). 1146 
Note that reseeding is not included in this construction. 1147 
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4.2.1. Instantiating the DRBG in the RBG1 Construction 1148 

The DRBG within the RBG1 construction may be instantiated at any security strength possible for 1149 
the DRBG design using the Instantiate_function discussed in Section 2.8.1.1 and [SP800-90A], 1150 
subject to the maximum security strength that is supported by the RBG used as the randomness 1151 
source. 1152 

(status, RBG1_state_handle) =  1153 
Instantiate_function (s, prediction_resistance_flag = FALSE, personalization_string), 1154 

where s is the requested security strength for the DRBG in the RBG1 construction. If used, the 1155 
prediction_resistance_flag is set to FALSE since the DRBG cannot be reseeded to provide 1156 
prediction resistance. 1157 
An external RBG (i.e., the randomness source) shall be used to obtain the bitstring necessary for 1158 
establishing the DRBG’s s-bit security strength. 1159 
In SP 800-90A, the Instantiate_function specifies the use of a Get_randomness-source_input 1160 
call to obtain randomness input from the randomness source for instantiation (see Section 2.8.1.4 1161 
in this document and in [SP800-90A]). For an RBG1 construction, an approved external RBG2(P) 1162 
or RBG3 construction must be used as the randomness source (see Sections 5 and 6, respectively). 1163 
If the randomness source is an RBG2(P) construction (see Figure 13), the Get_randomness-1164 
source_input call in the Instantiate_function shall be replaced by a Generate_function call to 1165 
the RBG2(P) construction (in whatever manner is required) (see Sections 2.8.1.2 and 5.2.2). The 1166 
RBG2(P) construction must be reseeded using its internal entropy source(s) before generating bits 1167 
to be provided to the RBG1 construction. This is accomplished by setting the 1168 
prediction_resistance_request parameter in the Generate_function call to TRUE (see steps 1a 1169 
and 2a below). 1170 

 1171 
Fig. 13. Instantiation Using an RBG2(P) Construction as a Randomness Source 1172 
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If the randomness source is an RBG3 construction (as shown in Figure 14), the Get_randomness-1173 
source_input call shall be replaced by the appropriate RBG3 generate function (see Sections 1174 
2.8.3.2, 6.2.1.2, and 6.3.1.2 and steps 1b, 1c, 2b, and 2c below). 1175 

 1176 
Fig. 14. Instantiation using an RBG3(XOR) or RBG3(RS) Construction as a Randomness Source 1177 

Let s be the security strength to be instantiated. The DRBG within an RBG1 construction is 1178 
instantiated as follows: 1179 

1. When an RBG1 construction is instantiating a CTR_DRBG without a derivation function, 1180 
s + 128 bits13 shall be obtained from the randomness source as follows: 1181 

If the randomness source is an RBG2(P) construction (see Figure 13), the 1182 
Get_randomness-source_input call is replaced by: 1183 

(status, randomness-source_input) = Generate_function(RBG2_state_handle, s + 1184 
128, s, prediction_resistance_request = TRUE, additional_input). 1185 

Note that the DRBG within the RBG2(P) construction must be reseeded before 1186 
generating output.14 This may be accomplished by requesting prediction resistance 1187 
(i.e., setting prediction_resistance_request = TRUE). See Requirement 17 in Section 1188 
4.4.1. 1189 

 
13 For AES, the block length is 128 bits, and the key length is equal to the security strength s. SP 800-90A requires the randomness input from the 
randomness source to be key length + block length bits when a derivation function is not used. 
14 See Requirement 11 in Section 5.4.1. 
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If the randomness source is an RBG3(XOR) construction (see Figure 14), the 1190 
Get_randomness-source_input call is replaced by: 1191 
(status, randomness-source_input) = RBG3(XOR)_Generate(RBG3_state_handle, s 1192 

+ 128, prediction_resistance_request, additional_input). 1193 
A request for prediction resistance from the DRBG used by the RBG3(XOR) 1194 
construction is optional. 1195 

c) If the randomness source is an RBG3(RS) construction (see Figure 14), the 1196 
Get_randomness-source_input call is replaced by: 1197 

(status, randomness-source_input) = RBG3(RS)_Generate(RBG3_state_handle, 1198 
3s/2, additional_input). 1199 

2. When an RBG1 construction is instantiating any other DRBG (including a CTR_DRBG 1200 
with a derivation function), 3s/2 bits shall be obtained from a randomness source that 1201 
provides a security strength of at least s bits. 1202 
a) If the randomness source is an RBG2(P) construction (see Figure 13), the 1203 

Get_randomness-source_input call is replaced by: 1204 
(status, randomness-source_input) = Generate_function(RGB2_state_handle, 3s/2, 1205 

s, prediction_resistance_request = TRUE, additional_input). 1206 
Note that the DRBG within the RBG2(P) construction must be reseeded before 1207 
generating output. This is accomplished by requesting prediction resistance (i.e., by 1208 
setting prediction_resistance_request = TRUE). See Requirement 17 in Section 4.4. 1209 

b) If the randomness source is an RBG3(XOR) construction (see Figure 14), the 1210 
Get_randomness-source_input call is replaced by: 1211 
(status, randomness-source_input) = RBG3(XOR)_Generate(RBG3_state_handle, 1212 

3s/2, prediction_resistance_request, additional_input). 1213 
A request for prediction resistance from the DRBG used by the RBG3(XOR) 1214 
construction is optional. 1215 

c) If the randomness source is an RBG3(RS) construction (see Figure 14), the 1216 
Get_randomness_-sourceinput call is replaced by: 1217 

(status, randomness-source_input) = RBG3(RS)_Generate(RBG3_state_handle, 1218 
3s/2, additional_input). 1219 

4.2.2. Requesting Pseudorandom Bits 1220 

Pseudorandom bits from the RBG1 construction shall be requested using the following call: 1221 
(status, returned_bits) = Generate_function(RBG1_state_handle, 1222 

requested_number_of_bits, s, prediction_resistance_request = FALSE, additional_input). 1223 
The prediction_resistance_request is set to FALSE or the parameter may be omitted since a 1224 
reseeding capability is not included in an RBG1 construction. 1225 
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 Using an RBG1 Construction with Subordinate DRBGs (Sub-DRBGs) 1226 

Figure 15 depicts an example of the use of optional subordinate DRBGs (sub-DRBGs) within the 1227 
security boundary of an RBG1 construction. The RBG1 construction is used as the randomness 1228 
source to provide separate outputs to instantiate each of its sub_DRBGs. 1229 

 1230 
Fig. 15. RBG1 Construction with Sub-DRBGs 1231 

The RBG1 construction and each of its sub-DRBGs shall be implemented as separate physical or 1232 
logical entities (see Figure 15). 1233 

• When implemented as separate physical entities, the DRBG algorithms used by the RBG1 1234 
construction and a sub-DRBG shall be the same DRBG algorithm (e.g., the RBG1 1235 
construction and all of its sub_DRBGs use HMAC_DRBG and SHA-256). 1236 

• When implemented as separate logical entities, the same software or hardware 1237 
implementation of a DRBG algorithm is used but with a different internal state for each 1238 
logical entity (e.g., the RBG1 construction has an internal state whose state handle is 1239 
RBG1_state_handle, while the state handle for Sub-DRBG 1’s internal state is sub-1240 
DRBG1_state_handle). 1241 

The sub-DRBGs have the following characteristics: 1242 
1. A sub-DRBG cannot be reseeded or provide prediction resistance. 1243 
2. Sub-DRBG outputs are considered outputs from the RBG1 construction. 1244 
3. The security strength that can be provided by a sub-DRBG is no more than the security 1245 

strength of its randomness source (i.e., the RBG1 construction). 1246 
4. Each sub-DRBG has restrictions on its use (e.g., the number of outputs) as specified for its 1247 

DRBG algorithm in [SP800-90A]. 1248 
5. Sub-DRBGs cannot provide output with full entropy. 1249 
6. The number of sub-DRBGs that can be instantiated by a RBG1 construction is limited only 1250 

by practical considerations associated with the implementation or application. 1251 
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4.3.1. Instantiating a Sub-DRBG 1252 

Instantiation of the sub-DRBG is requested (e.g., by a consuming application) using the 1253 
Instantiate_function discussed in Section 2.8.1.1 and [SP800-90A]. 1254 

(status, sub-DRBG_state_handle) =  1255 
Instantiate_function(s, prediction_resistance_flag = FALSE, personalization_string), 1256 

where s is the requested security strength for the (target) sub-DRBG (note that s must be no greater 1257 
than the security strength of the RBG1 construction).15 1258 
The (target) sub-DRBG is instantiated as follows: 1259 

1. When the sub-DRBG uses CTR_DRBG without a derivation function, s + 128 bits16 shall 1260 
be obtained from the RBG1 construction as follows: 1261 

(status, randomness-source_input) = Generate_function(RBG1_state_handle, s + 1262 
128, s, prediction_resistance_request = FALSE, additional_input). 1263 

2. When the sub-DRBG uses any other DRBG (including a CTR_DRBG with a derivation 1264 
function), 3s/2 bits shall be obtained from the RBG1 construction as follows: 1265 

(status, randomness-source_input) = Generate_function(RBG1_state_handle, 3s/2, 1266 
s, prediction_resistance_request = FALSE, additional_input). 1267 

4.3.2. Requesting Random Bits 1268 

Pseudorandom bits may be requested from a sub-DRBG using the following call (see Section 1269 
2.8.1.2): 1270 

(status, returned_bits) = Generate_function(sub_DRBG_state_handle, 1271 
requested_number_of_bits, requested_security_strength, prediction_resistance_request = 1272 

FALSE, additional_input), 1273 
where sub_DRBG_state_handle (if used) was returned by the Instantiate_function (see Sections 1274 
2.8.1.1 and 4.3.1). 1275 

 Requirements 1276 

4.4.1. RBG1 Requirements 1277 

An RBG1 construction being instantiated has the following testable requirements (i.e., testable by 1278 
the validation labs): 1279 

1. An approved DRBG from [SP800-90A] whose components are capable of providing the 1280 
targeted security strength for the RBG1 construction shall be employed. 1281 

 
15 The implementation is required to check the requested security strength (for the sub-DRBG) against the security strength recorded in the internal 
state of the RBG1’s DRBG (see SP 800-90A). 
16 For AES, the block length is 128 bits, and the key length is equal to the security strength s. SP 800-90A requires the randomness input from the 
randomness source to be (key length + block length) bits when a derivation function is not used. 
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2. The RBG1 components shall be successfully validated for compliance with [SP800-90A], 1282 
SP 800-90C, [FIPS140], and the specification of any other approved algorithm used within 1283 
the RBG1 construction, as applicable. 1284 

3. The RBG1 construction shall not produce any output until it is instantiated. 1285 
4. The RBG1 construction shall not include a reseed capability. 1286 
5. The RBG1 construction shall not permit itself to be instantiated more than once.17 1287 
6. For a Hash_DRBG, HMAC_DRBG or CTR_DRBG (with a derivation function), 3s/2 bits 1288 

shall be obtained from a randomness source (see Requirements 13 - 17), where s is the 1289 
targeted security strength for the DRBG used in the RBG1 construction. 1290 

7. For a CTR_DRBG (without a derivation function), s + 128 bits18 shall be obtained from 1291 
the randomness source (see Requirements 13 - 17), where s is the targeted security strength 1292 
for the DRBG used in the RBG1 construction. 1293 

8. The internal state of the RBG1 construction shall be maintained19 and updated to produce 1294 
output on demand. 1295 

9. The RBG1 construction shall not provide output for generating requests that specify a 1296 
security strength greater than the instantiated security strength of its DRBG. 1297 

10. If the RBG1 construction is used to instantiate a sub-DRBG, the RBG1 construction may 1298 
directly produce output in addition to instantiating the sub-DRBG. 1299 

11. If the seedlife of the DRBG within the RBG1 construction is ever exceeded or a health test 1300 
of the DRBG fails, the use of the RBG1 construction shall be terminated. 1301 

12. If a health test on the RBG1 construction fails, the RBG1 construction and all of its sub-1302 
DRBGs shall be terminated. 1303 

The non-testable requirements for the RBG1 construction are listed below. If these requirements 1304 
are not met, no assurance can be obtained about the security of the implementation. 1305 

13. An approved RBG2(P) construction with support for prediction resistance requests or an 1306 
RBG3 construction must be used as the randomness source for the DRBG in the RBG1 1307 
construction. 1308 

14. The randomness source must fulfill the requirements in Section 5 (for an RBG(P) 1309 
construction) or Section 6 (for an RBG3 construction), as appropriate. 1310 

15. The randomness source must provide the requested number of bits at a security strength of 1311 
s bits or higher, where s is the targeted security strength for the RBG1 construction. 1312 

16. The specific output of the randomness source (or portion thereof) that is used for the 1313 
instantiation of an RBG1 construction must not be used for any other purpose, including 1314 
for seeding a different instantiation. 1315 

 
17 While technically possible to reseed the DRBG, doing so outside of very controlled conditions (e.g., “in the field”) might result in seeds with less 
than the required amount of randomness. 
18 Note that s + 128 = keylen + blocklen = seedlen, as specified in SP 800-90A. 
19 This means ever-changing but maintained regardless of access to power for its entire lifetime. 
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17. If an RBG2(P) construction is used as the randomness source for the RBG1 construction, 1316 
the RBG2(P) construction must be reseeded (i.e., prediction resistance must be obtained 1317 
within the RBG2(P) construction) before generating bits for each RBG1 instantiation. 1318 

18. A physically secure channel must be used to insert the randomness input from the 1319 
randomness source into the DRBG of the RBG1 construction. 1320 

19. An RBG1 construction must not be used for applications that require a higher security 1321 
strength than has been instantiated. 1322 

4.4.2. Sub-DRBG Requirements 1323 

A sub-DRBG has the following testable requirements (i.e., testable by the validation labs).  1324 
1. The randomness source for a sub-DRBG shall be an RBG1 construction; a sub-DRBG 1325 

shall not serve as a randomness source for another sub-DRBG. 1326 
2. A sub-DRBG shall employ the same DRBG components as its randomness source. 1327 
3.  A sub-DRBG shall reside in the same security boundary as the RBG1 construction that 1328 

initializes it. 1329 
4. The RBG1 construction shall fulfill the appropriate requirements of Section 4.4.1. 1330 
5. A sub-DRBG shall exist only for a limited time and purpose, as determined by the 1331 

application or developer. 1332 
6. The output from the RBG1 construction that is used for sub-DRBG instantiation shall not 1333 

be output from the security boundary of the construction and shall not be used for any 1334 
other purpose, including for seeding a different sub-DRBG. 1335 

7. A sub-DRBG shall not permit itself to be instantiated more than once.  1336 
8. A sub-DRBG shall not provide output for use by the RBG1 construction (e.g., as additional 1337 

input) or another sub-DRBG in the security boundary. 1338 
9. The security strength s requested for a target sub-DRBG instantiation shall not exceed the 1339 

security strength that is supported by the RBG1 construction. 1340 
10. For a Hash_DRBG, HMAC_DRBG or CTR_DRBG (with a derivation function), 3s/2 bits 1341 

shall be obtained from the RBG1 construction for instantiation, where s is the requested 1342 
security strength for the target sub-DRBG. 1343 

11 For a CTR_DRBG (without a derivation function), s + 128 bits shall be obtained from the 1344 
RBG1 construction for instantiation, where s is the requested security strength for the target 1345 
sub-DRBG. 1346 

12. A sub-DRBG shall not produce output until it is instantiated. 1347 
13. A sub-DRBG shall not provide output for generating requests that specify a security 1348 

strength greater than the instantiated security strength of the sub-DRBG. 1349 
14. A sub-DRBG shall not include a reseed capability. 1350 
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15. If the seedlife of a sub-DRBG is ever exceeded or a health test of the sub-DRBG fails, the 1351 
use of the sub-DRBG shall be terminated. 1352 

A non-testable requirement for a sub-DRBG (not testable by the validation labs) is: 1353 
16. The output of a sub-DRBG must not be used as input to seed other DRBGs (e.g., the 1354 

DRBGs in other RBGs).  1355 



NIST SP 800-90C 3pd (Third Public Draft)  Recommendation for RBG Constructions 
September 2022   
 

37 

 

 RBG2 Constructions Based on Physical and/or Non-Physical Entropy Sources 1356 

An RBG2 construction is a cryptographically secure RBG with continuous access to one or more 1357 
validated entropy sources within its RBG security boundary. The RBG is instantiated before use, 1358 
generates outputs on demand, and can be used in an RBG3 construction (see Section 6). An RBG2 1359 
construction may support reseeding and may provide prediction resistance during generation 1360 
requests (i.e., by performing a reseed of the DRBG prior to generating output). Both reseeding and 1361 
providing prediction resistance are optional for this construction. 1362 
If full-entropy output is required by a consuming application, an RBG3 construction from Section 1363 
6 needs to be used rather than an RBG2 construction. 1364 
An RBG2 construction may be useful for all devices in which an entropy source can be 1365 
implemented. 1366 

 RBG2 Description 1367 

The DRBG for an RBG2 construction is contained within the same RBG security boundary and 1368 
cryptographic module as its validated entropy source(s) (see Figure 16). The entropy source is 1369 
used to provide the entropy bits for both DRBG instantiation and the reseeding of the DRBG used 1370 
by the construction (e.g., to provide prediction resistance). An optional recommended 1371 
personalization string and optional additional input may be provided from within the cryptographic 1372 
module or from outside of that module. 1373 

 1374 
Fig. 16. RBG2 Construction 1375 

The output from the RBG may be used within the cryptographic module or by an application 1376 
outside of the module. 1377 
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An example of an RBG2 construction is provided in Appendix B.4. 1378 
An RBG2 construction may be implemented to use one or more validated physical and/or non-1379 
physical entropy sources for instantiation and reseeding. Two variants of the RBG2 construction 1380 
may be implemented. 1381 

1. An RBG2(P) construction uses the output of one or more validated physical entropy 1382 
sources and (optionally) one or more validated non-physical entropy sources as discussed 1383 
in Method 1 of Section 2.3 (i.e., only the entropy produced by validated physical entropy 1384 
sources is counted toward the entropy required for instantiating or reseeding the RBG). 1385 
Any amount of entropy may be obtained from a non-physical entropy source as long as 1386 
sufficient entropy has been obtained from the physical entropy sources to fulfill an entropy 1387 
request. 1388 

2. An RBG2(NP) construction uses the output of any validated non-physical or physical 1389 
entropy sources as discussed in Method 2 of Section 2.3 (i.e., the entropy produced by both 1390 
validated physical and non-physical entropy sources is counted toward the entropy required 1391 
for instantiating or reseeding the RBG). 1392 

These variants affect the implementation of a Get_ES_Bitstring function (as specified in Section 1393 
2.8.2.2 and discussed in Section 3.1), either accessing the entropy source directly or via the 1394 
Get_conditioned_full_entropy_input function during instantiation and reseeding (see Sections 1395 
5.2.1 and 5.2.3). That is, when instantiating and reseeding an RBG2(P) construction (including a 1396 
DRBG within an RBG3 construction as discussed in Section 6), Method 1 in Section 2.3 is used 1397 
to combine the entropy from the entropy sources, and Method 2 is used when instantiating and 1398 
reseeding an RBG2(NP) construction. 1399 

 Conceptual Interfaces 1400 

The RBG2 construction interfaces to the DRBG include function calls for instantiating the DRBG 1401 
(see Section 5.2.1), generating pseudorandom bits on request (see Section 5.2.2), and (optionally) 1402 
reseeding the DRBG at the end of the DRBG’s seedlife and providing prediction resistance upon 1403 
request (see Section 5.2.3). 1404 
Once instantiated, an RBG2 construction with a reseed capability may be reseeded on demand or 1405 
whenever sufficient entropy is available. 1406 

5.2.1. RBG2 Instantiation 1407 

An RBG2 construction may be instantiated at any valid20 security strength possible for the DRBG 1408 
and its components using the following call: 1409 

(status, RBG2_state_handle) = Instantiate_function (s, prediction_resistance_flag, 1410 
personalization_string), 1411 

 
20 A security strength of either 128, 192, or 256 bits. 
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where s is the requested instantiation security strength for the DRBG. The 1412 
prediction_resistance_flag (if used) is set to TRUE if prediction resistance is to be supported and 1413 
FALSE otherwise. 1414 
An RBG2 construction obtains entropy for its DRBG from one or more validated entropy sources, 1415 
either directly or using a conditioning function to process the output of the entropy source to obtain 1416 
a full-entropy bitstring for instantiation (e.g., when employing a CTR_DRBG without a derivation 1417 
function using entropy sources that do not provide full-entropy output). 1418 
SP 800-90A uses a Get_randomness-source_input call to obtain the entropy needed for 1419 
instantiation (see SP 800-90A). 1420 

1. When the DRBG is a CTR_DRBG without a derivation function, full-entropy bits shall be 1421 
obtained as follows: 1422 
a) If the entropy source provides full-entropy output, the Get_randomness-source_input 1423 

call is replaced by:21, 22 1424 
(status, entropy_bitstring) = Get_ES_Bitstring (s + 128).23 1425 

For an RBG2(P) construction, only validated physical entropy sources shall be used. 1426 
The output of the entropy sources shall be concatenated to obtain the s + 128 full-1427 
entropy bits to be returned as entropy_bitstring. 1428 
(This recommendation assumes that non-physical entropy sources cannot provide full-1429 
entropy output. Therefore, the Get_ES_bitstring function shall not be used with non-1430 
physical entropy sources in this case.) 1431 

b) If the entropy sources does not provide full-entropy output, the Get_randomness-1432 
source_input call is replaced by:24, 25 1433 

(status, Full_entropy_bitstring) =  1434 
Get_conditioned_full_entropy_input(s + 128). 1435 

Validated physical and/or non-physical entropy sources shall be used to provide the 1436 
requested entropy. For an RBG2(P) construction, the requested s + 128 bits of entropy 1437 
shall be counted as specified in Method 1 of Section 2.3. For an RBG2(NP) 1438 
construction, the requested s + 128 bits of entropy shall be counted as specified in 1439 
Method 2 of Section 2.3. 1440 

2.  For the Hash_DRBG, HMAC_DRBG and CTR_DRBG (with a derivation function), the 1441 
entropy source shall provide 3s/2 bits of entropy to establish the security strength. 1442 
a) If the consuming application requires full entropy in the returned bitstring, the 1443 

Get_randomness-source_input call is replaced by: 1444 
(status, Full_entropy_bitstring) =  1445 

Get_conditioned_full_entropy_input(3s/2). 1446 

 
21 Appropriate changes may be required for the Instantiate_function in [SP800-90A] and the algorithms in Section 10 of that document. 
22 See Section 3.8.2.2 for a specification of the Get_ES_Bitstring function. 
23 For a CTR_DRBG using AES, s + 128 = the length of the key + the length of the AES block = seedlen (see Table 2 in SP 800-90A). 
24 Appropriate changes may be required for the Instantiate_function in [SP800-90A] and the algorithms in Section 10.2 of that document. 
25 See Section 4.3.2 for a specification of the Get_conditioned_full_entropy_input function. 
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b) If the consuming application does not require full entropy in the returned bitstring, the 1447 
Get_randomness-source_input call is replaced by: 1448 

(status, entropy_bitstring) = Get_ES_Bitstring(3s/2). 1449 
Validated physical and/or non-physical entropy sources shall be used to provide the 1450 
requested entropy. For an RBG2(P) construction, the requested 3s/2 bits of entropy shall 1451 
be counted as specified in Method 1 of Section 2.3. For an RBG2(NP) construction, the 1452 
requested 3s/2 bits of entropy shall be counted as specified in Method 2 of Section 3.3. 1453 

5.2.2. Requesting Pseudorandom Bits from an RBG2 Construction 1454 

Pseudorandom bits may be requested using the following call (see Section 2.8.1.2): 1455 
(status, returned_bits) = Generate_function(RBG2_state_handle, requested_number_of_bits, 1456 

requested_security_strength, prediction_resistance_request, additional_input), 1457 
where state_handle (if used) was returned by the Instantiate_function (see Sections 2.8.1.1 and 1458 
5.2.1). 1459 
Support for prediction resistance is optional. If prediction resistance is supported, its use is 1460 
optional. This RBG may be designed to always provide prediction resistance, to only provide 1461 
prediction resistance upon request, or to be unable to provide prediction resistance (i.e., to not 1462 
support prediction-resistance requests during generation). 1463 
Note that when prediction resistance is requested, the Generate_function will invoke the 1464 
Reseed_function. If sufficient entropy is not available for reseeding, an error indication shall be 1465 
returned, and the requested bits shall not be generated. 1466 

5.2.3. Reseeding an RBG2 Construction 1467 

As discussed in Section 2.4.2, when the RBG2 construction includes a reseed capability, the 1468 
reseeding of the DRBG may be performed 1) upon request from a consuming application (either 1469 
an explicit request for reseeding or a request for the generation of bits with prediction resistance); 1470 
2) on a fixed schedule based on time, number of outputs, or events; or 3) as sufficient entropy 1471 
becomes available. 1472 
An RBG2 construction is reseeded using the following call: 1473 

status = Reseed_function(RBG2_state_handle, additional_input), 1474 
where the RBG2_state_handle (when used) was obtained during the instantiation of the RBG (see 1475 
Sections 2.8.1.1 and 5.2.1). 1476 
SP 800-90A uses a Get_randomness-source_input call to obtain the entropy needed for 1477 
reseeding the DRBG (see Section 2.8.1.3 herein and in [SP800-90A]. The DRBG is reseeded at 1478 
the instantiated security strength recorded in the DRBG’s internal state. The Get_randomness-1479 
source_input call in SP 800-90A shall be replaced with the following: 1480 

1. For the CTR_DRBG without a derivation function, use the appropriate replacement as 1481 
specified in step 1 of Section 5.2.1. 1482 
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2. For the Hash_DRBG, HMAC_DRBG and CTR_DRBG (with a derivation function), 1483 
replace the Get_randomness-sourceinput call in the Reseed_function with the 1484 
following:26 1485 

a) If the consuming application requires full entropy in the returned bitstring, the 1486 
Get_randomness-source_input call is replaced by: 1487 

(status, Full_entropy_bitstring) = Get_conditioned_full_entropy_input(s). 1488 
b) If the consuming application does not require full entropy in the returned bitstring, 1489 

the Get_randomness-source_input call is replaced by: 1490 
(status, entropy_bitstring) = Get_ES_Bitstring(s). 1491 

Validated physical and/or non-physical entropy sources shall be used to provide the 1492 
requested entropy. For an RBG2(P) construction, the requested s bits of entropy shall be 1493 
counted as specified in Method 127 of Section 2.3. For an RBG2(NP) construction, the 1494 
requested s bits of entropy shall be counted as specified in Method 228 of Section 2.3. 1495 

 RBG2 Requirements 1496 

An RBG2 construction has the following requirements in addition to those specified in [SP800-1497 
90A]: 1498 

1. The RBG shall employ an approved and validated DRBG from [SP800-90A] whose 1499 
components are capable of providing the targeted security strength for the RBG. 1500 

2. The RBG and its components shall be successfully validated for compliance with [SP800-1501 
90A], [SP800-90B], SP 800-90C, [FIPS140], and the specification of any other approved 1502 
algorithm used within the RBG, as appropriate. 1503 

3. The RBG may include a reseed capability. If implemented, the reseeding of the DRBG 1504 
shall be performed either a) upon request from a consuming application (either an explicit 1505 
request for reseeding or a request for the generation of bits with prediction resistance); b) 1506 
on a fixed schedule based on time, number of outputs, or events; and/or c) as sufficient 1507 
entropy becomes available. 1508 

4. Validated entropy sources shall be used to instantiate and reseed the DRBG. A non-1509 
validated entropy sources shall not be used for this purpose. 1510 

5. The entropy sources used for the instantiation and reseeding of an RBG(P) construction 1511 
shall include one or more validated physical entropy sources; the inclusion of one or more 1512 
validated non-physical entropy sources is optional. A bitstring that contains entropy shall 1513 
be assembled and the entropy in that bitstring determined as specified in Method 1 of 1514 
Section 2.3 (i.e., only the entropy provided by validated physical entropy sources shall be 1515 
counted toward fulfilling the amount of entropy in an entropy request). 1516 

 
26 See Sections 2.8.2.2 and 3.1 for discussions of the Get_ES_bitstring function. 
27 Method 1 only counts the entropy provided by validated physical sources. 
28 Method 2 counts the entropy provided by both physical and non-physical entropy sources. 
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6. The entropy sources used for the instantiation and reseeding of an RBG2(NP) construction 1517 
shall include one or more validated non-physical entropy sources; the inclusion of one or 1518 
more validated physical entropy sources is optional. A bitstring containing entropy shall 1519 
be assembled and the entropy in that bitstring determined as specified in Method 2 of 1520 
Section 2.3 (i.e., the entropy provided by both validated non-physical entropy sources and 1521 
any validated physical entropy sources included in the implementation shall be counted 1522 
toward fulfilling the requested amount of entropy). 1523 

7. The DRBG shall be capable of being instantiated and reseeded at the maximum security 1524 
strength (s) for the DRBG design (see [SP800-90A]). 1525 

8. A specific entropy-source output (or portion thereof) shall not be reused (e.g., it is 1526 
destroyed after use). 1527 

9. When instantiating and reseeding a CTR_DRBG without a derivation function, (s + 128) 1528 
bits with full entropy shall be obtained either directly from the entropy source or from the 1529 
entropy source via an external vetted conditioning function (see Section 3.3). 1530 

10. For a Hash_DRBG, HMAC_DRBG or CTR_DRBG (with a derivation function), a 1531 
bitstring with at least 3s/2 bits of entropy shall be obtained from the entropy source to 1532 
instantiate the DRBG at a security strength of s bits. When reseeding is performed, a 1533 
bitstring with at least s bits of entropy shall be obtained from the entropy source. 1534 

11. The DRBG shall be instantiated before first use (i.e., before providing output for use by a 1535 
consuming application) and reseeded using the validated entropy sources used for 1536 
instantiation. 1537 

12. When health tests detect the failure of a validated entropy source, the failure shall be 1538 
handled as discussed in Section 7.1.2.1. 1539 

A non-testable requirement for the RBG (not testable by the validation labs) is: 1540 
13. The RBG must not be used by applications that require a higher security strength than 1541 

has been instantiated in the DRBG.  1542 
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 RBG3 Constructions Based on Physical Entropy Sources 1543 

An RBG3 construction is designed to provide full entropy (i.e., an RBG3 construction can support 1544 
all security strengths). The RBG3 constructions specified in this Recommendation include one or 1545 
more entropy sources and an approved DRBG from SP 800-90A that can and will be instantiated 1546 
at a security strength of 256 bits. If an entropy source fails in an undetected manner, the RBG 1547 
continues to operate as an RBG2(P) construction, providing outputs at the security strength of its 1548 
DRBG (256 bits) (see Section 5 and Appendix A). If a failure is detected, the RBG operation shall 1549 
be terminated. 1550 
Two RBG3 constructions are specified: 1551 

1. RBG3(XOR) − This construction is based on combining the output of one or more 1552 
validated entropy sources with the output of an instantiated, approved DRBG using an 1553 
exclusive-or operation (see Section 6.2). 1554 

2. RBG3(RS) − This construction is based on using one or more validated entropy sources to 1555 
continuously reseed the DRBG (see Section 6.3). 1556 

An RBG3 construction continually accesses its entropy sources, and its DRBG may be reseeded 1557 
whenever requested (e.g., to provide prediction resistance for the DRBG’s output). Upon receipt 1558 
of a request for random bits from a consuming application, the entropy source is accessed to obtain 1559 
sufficient bits for the request. See Sections 3.1 and 3.2 for further discussion about accessing the 1560 
entropy source(s). 1561 
An implementation may be designed so that the DRBG implementation used within an RBG3 1562 
construction can be directly accessed by a consuming application (i.e., the directly accessible 1563 
DRBG uses the same internal state as the RBG3 construction). 1564 
An RBG3 construction is useful when bits with full entropy are required or a higher security 1565 
strength than RBG1 and RBG2 constructions can support is needed. 1566 

 General Requirements 1567 

RBG3 constructions have the following general security requirements. See Sections 6.2.2 and 6.3.2 1568 
for additional requirements for the RBG3(XOR) and RBG3(RS) constructions, respectively. 1569 

1. An RBG3 construction shall be designed to provide outputs with full entropy using one or 1570 
more validated independent physical entropy sources as specified for Method 1 in Section 1571 
3.3 (i.e., only the entropy provided by validated physical entropy sources shall be counted 1572 
toward fulfilling entropy requests, although entropy provided by any validated non-1573 
physical entropy source may be used but not counted). 1574 

2. An RBG3 construction and its components shall be successfully validated for compliance 1575 
with the corresponding requirements in [SP800-90A], [SP800-90B], SP 800-90C, [FIPS 1576 
140] and the specification of any other approved algorithm used within the RBG, as 1577 
appropriate. 1578 

3. The DRBG within the RBG3 construction shall be capable of supporting a security strength 1579 
of 256 bits (i.e., a CTR_DRBG based on AES-256 or either Hash_DRBG or 1580 
HMAC_DRBG using a hash function with an output length of at least 256 bits). 1581 
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4. The DRBG shall be instantiated at a security strength of 256 bits before the first use of the 1582 
RBG3 construction or direct access of the DRBG. 1583 

5. The DRBG shall include a reseed function to support reseed requests. 1584 
6. A specific entropy-source output (or portion thereof) shall not be reused (e.g., the same 1585 

entropy-source outputs shall not be used for an RBG3 request and a request to a separate 1586 
instantiation of a DRBG). 1587 

7. If the DRBG is directly accessible, the requirements in Section 5.3 for RBG2(P) 1588 
constructions shall apply to the direct access of the DRBG. 1589 

8. When health tests detect the failure of a validated physical entropy source, the failure shall 1590 
be handled as discussed in Section 7.1.2.1. If a failure is detected in a non-physical entropy 1591 
source, the consuming application shall be notified. 1592 

 RBG3(XOR) Construction 1593 

An RBG3(XOR) construction contains one or more validated entropy sources and a DRBG whose 1594 
outputs are XORed to produce full-entropy output (see Figure 17). In order to provide the required 1595 
full-entropy output, the input to the XOR (shown as “⊕” in the figure) from the entropy-source 1596 
side of the figure shall consist of bits with full entropy (see Section 2.1).29 If the entropy sources 1597 
cannot provide full-entropy output, then an external conditioning function shall be used to 1598 
condition the output of the entropy sources to a full-entropy bitstring before XORing with the 1599 
output of the DRBG (see Section 3.3). 1600 

 
29 Note that the DRBGs themselves are not designed to inherently provide full-entropy output. 
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 1601 
Fig. 17. RBG3(XOR) Construction 1602 

When n bits of output are requested from an RBG3(XOR) construction, n bits of output from the 1603 
DRBG are XORed with n full-entropy bits obtained either directly from the entropy source or from 1604 
the entropy source after cryptographic processing by an external vetted conditioning function (see 1605 
Section 3.3). When the entropy source is working properly,30 an n-bit output from the RBG3(XOR) 1606 
construction is said to provide n bits of entropy or to support a security strength of n bits. The 1607 
DRBG used in the RBG3(XOR) construction is always required to support a 256-bit security 1608 
strength. If the entropy source fails without being detected and the DRBG has been successfully 1609 
instantiated with at least 256 bits of entropy, the DRBG continues to produce output at a security 1610 
strength of 256 bits. 1611 
An example of an RBG3(XOR) design is provided in Appendix B.5. 1612 

6.2.1. Conceptual Interfaces 1613 

The RBG interfaces include function calls for instantiating the DRBG (see Section 6.2.1.1), 1614 
generating random bits on request (see Section 6.2.1.2), and reseeding the DRBG instantiation(s) 1615 
(see Section 6.2.1.3). 1616 

6.2.1.1. Instantiation of the DRBG 1617 

The DRBG for the RBG3(XOR) construction is instantiated as follows: 1618 

 
30 The entropy source provides at least the amount of entropy determined during the entropy-source validation process. 
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RBG3(XOR)_DRBG_Instantiate: 1619 
Input: integer (prediction_resistance_flag), string personalization_string. 1620 
Output: integer status, integer state_handle. 1621 
Process: 1622 

1. (status, RBG3(XOR)_state_handle) = Instantiate_function(256, 1623 
prediction_resistance_flag, personalization_string). 1624 

2. Return (status, RBG3(XOR)_state_handle). 1625 
In step 1, the DRBG is instantiated at a security strength of 256 bits. The 1626 
prediction_resistance_flag and personalization_string (when provided as input to the 1627 
RBG3(XOR)_DRBG_Instantiate function) shall be used in step 1.  1628 
In step 2, the status and RBG3(XOR)_state_handle that were obtained in step 1 are returned. Note 1629 
that if the status does not indicate a successful instantiate process (i.e., a failure is indicated), the 1630 
returned state handle shall be invalid (e.g., a Null value). The handling of status codes is discussed 1631 
in Section 2.8.3. 1632 

6.2.1.2. Random and Pseudorandom Bit Generation 1633 

Let n be the requested number of bits to be generated, and let the RBG3(XOR)_state_handle be 1634 
the value returned by the instantiation function for RBG3’s DRBG instantiation (see Section 1635 
6.2.1.1). Random bits with full entropy shall be generated by the RBG3(XOR) construction using 1636 
the following generate function: 1637 
RBG3(XOR)_Generate: 1638 

Input: integer (RBG3(XOR)_state_handle, n, prediction_resistance_request), string 1639 
additional_input. 1640 
Output: integer status, string returned_bits. 1641 
Process: 1642 

1. (status, ES_bits) = Request_entropy(n). 1643 
2. If (status ≠ SUCCESS), then return (status, invalid_string). 1644 
3. (status, DRBG_bits) = Generate_function(RBG3(XOR)_state_handle, n, 256, 1645 

prediction_resistance_request, additional_input). 1646 
4. If (status ≠ SUCCESS), then return (status, invalid_string). 1647 

5. returned_bits = ES_bits ⊕ DRBG_bits. 1648 
6. Return (SUCCESS, returned_bits). 1649 

Step 1 requests that the entropy sources generate bits. Since full-entropy bits are required, the 1650 
(place holder) Request_entropy call shall be replaced by one of the following: 1651 
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• If full-entropy output is provided by all validated physical entropy sources used by the 1652 
RBG3(XOR) implementation, and non-physical entropy sources are not used,31 step 1 1653 
becomes: 1654 

(status, ES_bits) = Get_ES_Bitstring(n). 1655 
The Get_ES_Bitstring function32 shall use Method 1 in Section 2.3 to obtain the n full-1656 
entropy bits that were requested in order to produce the ES_bits bitstring. 1657 

• If full-entropy output is not provided by all physical entropy sources, or the output of both 1658 
physical and non-physical entropy sources is also used by the implementation, step 1 1659 
becomes: 1660 

(status, ES_bits) = Get_conditioned_full_entopy_input(n). 1661 
The Get_conditioned_full_entropy_input construction is specified in Section 3.3.2. It 1662 
requests entropy from the entropy sources in step 3.1 of that construction with a 1663 
Get_ES_Bitstring call. The Get_ES_Bitstring call shall use Method 1 (as specified in 1664 
Section 3.3) when collecting the output of the entropy sources (i.e., only the entropy 1665 
provided by physical entropy sources is counted). 1666 

In step 2, if the request in step 1 is not successful, abort the RBG3(XOR)_Generate function, 1667 
returning the status received in step 1 and an invalid bitstring as the returned_bits (e.g., a Null 1668 
bitstring). If status indicates a success, ES_bits is the full-entropy bitstring to be used in step 5. 1669 
In step 3, the RBG3(XOR)’s DRBG instantiation is requested to generate n bits at a security 1670 
strength of 256 bits. The DRBG instantiation is indicated by the RBG3(XOR)_state_handle, which 1671 
was obtained during instantiation (see Section 6.2.1.1). If a prediction-resistance request and/or 1672 
additional input are provided in the RBG.3(XOR)_Generate call, they shall be included in the 1673 
Generate_function call. 1674 
Note that it is possible that the DRBG would require reseeding during the Generate_function call 1675 
in step 3 (e.g., because of a prediction-resistance request, or the end of the seedlife of the DRBG 1676 
has been reached). If a reseed of the DRBG is required during Generate-function execution, the 1677 
DRBG shall be reseeded as specified in Section 6.2.1.3 with bits not otherwise used by the RBG. 1678 
In step 4, if the Generate_function request is not successful, the RBG3(XOR)_Generate 1679 
function is aborted, and the status received in step 3 and an invalid bitstring (e.g., a Null bitstring) 1680 
are returned to the consuming application. If status indicates a success, DRBG_bits is the 1681 
pseudorandom bitstring to be used in step 5. 1682 
Step 5 combines the bitstrings returned from the entropy sources (from step 1) and the DRBG 1683 
(from step 3) using an XOR operation. The resulting bitstring is returned to the consuming 1684 
application in step 6. 1685 

 
31 Since non-physical entropy sources are assumed to be incapable of providing full-entropy output, they cannot contribute to the bitstring provided 
by the Get_ES_Bitstring function. 
32 See Section 3.10.2.2. 
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6.2.1.3. Pseudorandom Bit Generation Using a Directly Accessible DRBG 1686 

Pseudorandom bit generation by a direct access of the DRBG is accomplished as specified in 1687 
Section 5.2.2 using the state handle obtained during instantiation (see Section 6.2.1.1). 1688 
When directly accessing the DRBG instantiation that is also used by the RBG3(XOR) 1689 
construction, the following function is used: 1690 

 (status, returned_bits) = Generate_function(RBG3(XOR)_state_handle, 1691 
requested_number_of_bits, requested_security_strength, prediction_resistance_request, 1692 

additional_input), 1693 
where:  1694 

• RBG3(XOR)_state_handle indicates the DRBG instantiation to be used. 1695 

• requested_security_strength ≤ 256. 1696 

• prediction-resistance-request is either TRUE or FALSE; requesting prediction resistance 1697 
during the Generate_function is optional. 1698 

• The use of additional input is optional. 1699 

Note that when prediction resistance is requested, the Generate_function will invoke the 1700 
Reseed_function (see Section 6.2.1.3). If sufficient entropy is not available for reseeding, an error 1701 
indication shall be returned, and the requested bits shall not be generated. 1702 

6.2.1.4. Reseeding the DRBG Instantiations 1703 

Reseeding is performed using the entropy sources in the same manner as an RBG2 construction 1704 
using the appropriate state handle (e.g., RBG3(XOR)_state_handle, as specified in Section 6.2.1.1). 1705 

6.2.2. RBG3(XOR) Requirements 1706 

An RBG3(XOR) construction has the following requirements in addition to those provided in 1707 
Section 6.2: 1708 

1. Bitstrings with full entropy shall be provided to the XOR operation either directly from the 1709 
concatenated output of one or more validated physical entropy sources or by an external 1710 
conditioning function using the output of one or more validated entropy sources as 1711 
specified in Method 1 of Section 2.3. In the latter case, the output of validated non-physical 1712 
entropy sources may be used without counting any entropy that they might provide. 1713 

2. The same entropy-source outputs used by the DRBG for instantiation or reseeding shall 1714 
not be used as input into the RBG’s XOR operation. 1715 

3. The DRBG instantiations shall be reseeded occasionally (e.g., after a predetermined period 1716 
of time or number of generation requests). 1717 
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 RBG3(RS) Construction 1718 

The second RBG3 construction specified in this document is the RBG3(RS) construction shown 1719 
in Figure 18, and an example of this construction is provided in Appendix B.6. 1720 
Note that external conditioning of the outputs from the entropy sources during instantiation and 1721 
reseeding is required when the DRBG is a CTR_DRBG without a derivation function and the 1722 
entropy sources do not provide a bitstring with full entropy. 1723 

 1724 
Fig. 18. RBG3(RS) Construction 1725 

6.3.1. Conceptual Interfaces 1726 

The RBG interfaces include function calls for instantiating the DRBG (see Section 6.3.1.1), 1727 
generating random bits on request (see Section 6.3.1.2), and reseeding the DRBG instantiation (see 1728 
Section 6.3.1.3). 1729 

6.3.1.1. Instantiation of the DRBG Within an RBG3(RS) Construction 1730 

DRBG instantiation is performed as follows: 1731 
RBG3(RS)_DRBG_Instantiate: 1732 

Input: integer (prediction_resistance_flag), string personalization_string. 1733 
Output: integer status, integer state_handle. 1734 
Process: 1735 

1. (status, RBG3(RS)_state_handle) = Instantiate_function(256, 1736 
prediction_resistance_flag = TRUE, personalization_string). 1737 
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2. Return (status, RBG3(RS)_state_handle). 1738 
In step 1, the DRBG is instantiated at a security strength of 256 bits. The 1739 
prediction_resistance_flag is set to TRUE, and personalization_string (when provided as input to 1740 
the RBG3(RS)_DRBG_Instantiate function) shall be used in step 1.  1741 
In step 2, the status and the RBG3(RS)_state_handle are returned. Note that if the status does not 1742 
indicate a successful instantiate process (i.e., a failure is indicated), the returned state handle shall 1743 
be invalid (e.g., a Null value). The handling of status codes is discussed in Section 2.8.3. 1744 

6.3.1.2. Random and Pseudorandom Bit Generation 1745 

6.3.1.2.1 Generation Using the RBG3(RS) Construction 1746 
When an RBG3(RS) construction receives a request for n random bits, the DRBG instantiation 1747 
used by the construction needs to be reseeded with sufficient entropy so that bits with full entropy 1748 
can be extracted from the DRBG’s output block. 1749 
Table 3 provides information for generating full-entropy output from the DRBGs in SP 800-90A 1750 
that use the cryptographic primitives listed in the table. Each primitive in the table can support a 1751 
security strength of 256 bits − the highest security strength recognized by this Recommendation. 1752 
To use the table, select the row that identifies the cryptographic primitive used by the implemented 1753 
DRBG. 1754 

• Column 1 lists the DRBGs. 1755 

• Column 2 identifies the cryptographic primitives that can be used by the DRBG(s) in 1756 
column 1 to support a security strength of 256 bits. 1757 

• Column 3 indicates the length of the output block (output_len) for the cryptographic 1758 
primitives in column 2. 1759 

• Column 4 indicates the amount of fresh entropy that is obtained by a Reseed_function 1760 
when the Generate_function is invoked with prediction resistance requested. 1761 

Table 3. Values for generating full-entropy bits by an RBG3(RS) Construction 1762 

DRBG DRBG  
Primitives 

Output Block 
Length (output_len) 

in bits 

Entropy obtained 
during a normal 
reseed operation 

CTR_DRBG 
(with no derivation 
function) 

AES-256 128 384 

CTR_DRBG (using a 
derivation function) AES-256 128 256 

Hash_DRBG 
or 
HMAC_DRBG 

SHA-256 
SHA3-256 256 256 

SHA-384  
SHA3-384 384 256 

SHA-512  
SHA3-512 512 256 
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The strategy used for obtaining full-entropy output from the RBG3(RS) construction requires 1763 
obtaining sufficient fresh entropy and subsequently extracting full entropy bits from the output 1764 
block in accordance with item 11 of Section 2.6. 1765 
For the RBG3(RS)_Generate function: 1766 

• Let n be the requested number of full-entropy bits to be generated by an RBG3(RS) 1767 
construction. 1768 

• Let RBG3(RS)_state_handle be a state handle returned from the instantiate function (see 1769 
Section 6.3.1.1). 1770 

Random bits with full entropy shall be generated as follows: 1771 
RBG3(RS)_ Generate: 1772 

Input: integer (RBG3(RS)_state_handle, n), string additional_input. 1773 
Output: integer status, bitstring returned_bits. 1774 
Process: 1775 

1. full-entropy_bits =Null. 1776 
2. sum = 0. 1777 
3. While (sum < n), 1778 

3.1 Obtain generated_bits from the entropy source. 1779 
3.2 If (status ≠ SUCCESS), then return (status, invalid_bitstring). 1780 
3.3 full-entropy_bits = full_entropy_bits || generated_bits. 1781 
3.4 sum = sum + len(generated_bits). 1782 

4. Return (SUCCESS, leftmost(full-entropy_bits, n)). 1783 
In steps 1 and 2, the bitstring intended to collect the generated bits for returning to the calling 1784 
application (i.e., full-entropy_bits) is initialized to the Null bitstring, and the counter for the number 1785 
of bits obtained for fulfilling the request is initialized to zero. 1786 
Step 3 is iterated until n bits have been generated. 1787 

In step 3.1, the DRBG is requested to obtain sufficient entropy so that a bitstring with full 1788 
entropy can be extracted from the output block. The form of the request depends on the DRBG 1789 
algorithm used in the RBG3(RS) construction and the method for obtaining a full-entropy 1790 
bitstring (see Section 2.6, item 11). Note that extracting fewer full-entropy bits from the 1791 
DRBG’s output block is permitted. 1792 
 For a CTR_DRBG (with or without a derivation function), a maximum of 128 bits with 1793 

full entropy can be provided from the AES output block for each iteration of the DRBG as 1794 
follows: 1795 

(status, generated_bits) = Generate_function(RBG3(RS)_state_handle, 128, 1796 
256, prediction_resistance_request = TRUE, additional_input). 1797 
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The Generate_function generates 128 (full entropy) bits after reseeding the 1798 
CTR_DRBG with either 256 or 384 bits of entropy (by setting 1799 
prediction_resistance_request = TRUE).33 1800 

 For a hash-based DRBG (i.e., Hash_DRBG and HMAC_DRBG), a maximum of 256 full-1801 
entropy bits can be produced from each iteration of the DRBG as follows: 1802 

3.1.1 (status, additional_entropy) = Get_ES_Bitstring (64). 1803 
3.1.2 If (status ≠ SUCCESS), then return (status, invalid_bitstring). 1804 
3.1.3 (status, generated_bits) = Generate_function(RBG3(RS)_state_handle, 1805 

256, 256, prediction_resistance_request = TRUE, additional_input || 1806 
additional_entropy). 1807 

At least 64 bits of entropy beyond the amount obtained during reseeding are required. 1808 
As shown in Table 3, the reseeding process will acquire 256 bits of entropy. The (256 1809 
+ 64 = 384) bits of entropy are inserted into the DRBG by 1) obtaining a bitstring with 1810 
at least 64 bits of entropy directly from the entropy sources (step 3.1.1), 2) 1811 
concatenating the additional entropy bits with any additional_input provided in the 1812 
RBG3(RS)_Generate call, and 3) requesting the generation of 256 bits with prediction 1813 
resistance and including the concatenated bitstring. This results in both the reseed of 1814 
the DRBG with 256 bits of entropy and the insertion of the additional 64 bits of entropy) 1815 
(step 3.1.3). 1816 

 For a hash-based DRBG (i.e., Hash_DRBG and HMAC_DRBG), a maximum of 192 full-1817 
entropy bits can be produced from each iteration of the DRBG as follows: 1818 

(status, generated_bits) = Generate_function(RBG3(RS)_state_handle, 192, 1819 
256, prediction_resistance_request = TRUE, additional_input). 1820 

The DRBG is reseeded with 256 bits of entropy by requesting generation with prediction 1821 
resistance and extracting only (256 − 64 = 192) bits from the DRBG’s output block as 1822 
full-entropy bits. 1823 

In step 3.2, if the Generate_function request invoked in step 3.1 is not successful, the 1824 
RBG3(RS)_Generate function is aborted, and the status received in step 3.1 and an invalid 1825 
bitstring (e.g., a Null bitstring) are returned to the consuming application. 1826 
Step 3.3 combines the full-entropy bitstrings obtained in step 3.1 with previously generated 1827 
full-entropy bits using a concatenation operation. 1828 
Step 3.4 adds the number of full-entropy bits produced in step 3.1 to those generated in 1829 
previous iterations of step 3. 1830 
If sum is less than the requested number of bits (n), repeat step 3 starting at step 3.1. 1831 

In step 4, the leftmost n bits are selected from the collected bitstring (i.e., full-entropy_bits) and 1832 
returned to the consuming application. 1833 
6.3.1.2.2 Generation Using a Directly Accessible DRBG 1834 

 
33 The use of the prediction_resistance_request will handle the differences between the two versions of the CTR_DRBG (i.e., with or without a 
derivation function). 
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Direct access of the DRBG is accomplished as specified in Section 5.2.2 using the state handle 1835 
associated with the instantiation and internal state that was returned for the DRBG (see Section 1836 
6.3.1.1). 1837 

(status, returned_bits) = Generate_function(RBG3(RS)_state_handle, 1838 
requested_number_of_bits, requested_security_strength, prediction_resistance_request, 1839 

additional_input), 1840 
where state_handle (if used) was returned by the Instantiate_function (see Section 6.3.1.1). 1841 
When the previous generate request was made to the RBG3(RS) construction rather than directly 1842 
to the DRBG, the prediction_resistance_request parameter shall be set to TRUE. Otherwise, 1843 
requesting prediction resistance during the Generate_function is optional. 1844 

6.3.1.3. Reseeding 1845 

Reseeding is performed during a Generate_function request to a directly accessible DRBG (see 1846 
Section 6.3.1.2.2) when prediction resistance is requested or the end of the DRBG’s seedlife is 1847 
reached. The Generate_function invokes the Reseed_function specified in [SP800-90A]. 1848 
Reseeding may also be performed on demand as specified in Section 4.2.3 using the 1849 
RBG3(RS)_state_handle if provided during instantiation. 1850 

6.3.2. Requirements for a RBG3(RS) Construction 1851 

An RBG3(RS) construction has the following requirements in addition to those provided in 1852 
Section 6.1: 1853 

1. Fresh entropy shall be acquired either directly from all independent validated entropy 1854 
sources (see Section 3.2) or (in the case of a CTR_DRBG used as the DRBG when the 1855 
entropy sources do not provide full-entropy output) from an external conditioning function 1856 
that processes the output of the validated entropy sources as specified in Section 3.3.2. 1857 
Method 1 in Section 2.3 shall be used when collecting the required entropy (i.e., only the 1858 
entropy provided by validated physical entropy sources shall be counted toward fulfilling 1859 
the amount of entropy requested). 1860 

2. If the DRBG is directly accessible, a reseed of the DRBG instantiation shall be performed 1861 
before generating output in response to a request for output from the directly accessible 1862 
DRBG when the previous use of the DRBG was by the RBG3(RS) construction. This could 1863 
require an additional internal state value to record the last use of the DRBG for generation 1864 
(e.g., used by an RBG3(RS)_Generate function as specified in Section 6.3.1.2.1 or 1865 
directly accessed by a (DRBG) Generate_function as discussed in Section 6.3.1.2.2).  1866 
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 Testing 1867 

Two types of testing are specified in this Recommendation: health testing and implementation-1868 
validation testing. Health testing shall be performed on all RBGs that claim compliance with this 1869 
Recommendation (see Section 7.1). Section 7.2 provides requirements for implementation 1870 
validation. 1871 

 Health Testing 1872 

Health testing is the testing of an implementation prior to and during normal operations to 1873 
determine that the implementation continues to perform as expected and as validated. Health 1874 
testing is performed by the RBG itself (i.e., the tests are designed into the RBG implementation). 1875 
An RBG shall support the health tests specified in [SP800-90A] and [SP800-90B] as well as 1876 
perform health tests on the components of SP 800-90C (see Section 7.1.1). [FIPS 140] specifies 1877 
the testing to be performed within a cryptographic module. 1878 

7.1.1. Testing RBG Components 1879 

Whenever an RBG receives a request to start up or perform health testing, a request for health 1880 
testing shall be issued to the RBG components (e.g., the DRBG and any entropy source). 1881 

7.1.2. Handling Failures 1882 

Failures may occur during the use of entropy sources and during the operation of other components 1883 
of an RBG. 1884 
Note that [SP800-90A] and [SP800-90B] discuss the error handling for DRBGs and entropy 1885 
sources, respectively. 1886 

7.1.2.1. Entropy-Source Failures 1887 

A failure of a validated entropy source may be reported to the Get_ES_Bitstring function (see 1888 
item 3 of Section 3.1 and item 4 of Section 3.2) during entropy requests to the entropy sources or 1889 
to the RBG when the entropy sources continue to function when entropy is not requested (see item 1890 
5 of Section 3.2). 1891 

7.1.2.2. Failures by Non-Entropy-Source Components 1892 

Failures by non-entropy-source components may be caused by either hardware or software 1893 
failures. Some of these may be detected using the health testing within the RBG using known-1894 
answer tests. Failures could also be detected by the system in or on which the RBG resides. 1895 
When such failures are detected that affect the RBG, RBG operation shall be terminated. The RBG 1896 
must not be resumed until the reasons for the failure have been determined and the failures have 1897 
been repaired and successfully tested for proper operation. 1898 
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 Implementation Validation 1899 

Implementation validation is the process of verifying that an RBG and its components fulfill the 1900 
requirements of this Recommendation. Validation is accomplished by: 1901 

• Validating the components from [SP800-90A] and [SP800-90B]. 1902 

• Validating the use of the constructions in SP 800-90C via code inspection, known-answer 1903 
tests, or both, as appropriate. 1904 

• Validating that the appropriate documentation as specified in SP 800-90C has been 1905 
provided (see below). 1906 

Documentation shall be developed that will provide assurance to testers that an RBG that claims 1907 
compliance with this Recommendation has been implemented correctly. This documentation shall 1908 
include the following as a minimum: 1909 

• An identification of the constructions and components used by the RBG, including a 1910 
diagram of the interaction between the constructions and components. 1911 

• If an external conditioning function is used, an indication of the type of conditioning 1912 
function and the method for obtaining any keys that are required by that function. 1913 

• Appropriate documentation, as specified in [SP800-90A] and [SP800-90B]. The DRBG 1914 
and the entropy sources shall be validated for compliance with SP 800-90A or SP 800-1915 
90B, respectively, and the validations successfully finalized before the completion of RBG 1916 
implementation validation. 1917 

• For an RBG1 or RBG2 construction, the maximum security-strength that can be supported 1918 
by the DRBG. 1919 

• A description of all validated and non-validated entropy sources used by the RBG, 1920 
including identifying whether the entropy source is a physical or non-physical entropy 1921 
source. 1922 

• Documentation justifying the independence of all validated entropy sources from all other 1923 
validated and non-validated entropy sources. 1924 

• An identification of the features supported by the RBG (e.g., access to the underlying 1925 
DRBG of an RBG3 construction). 1926 

• A description of the health tests performed, including an identification of the periodic 1927 
intervals for performing the tests. 1928 

• A description of any support functions other than health testing. 1929 

• A description of the RBG components within the RBG security boundary (see Section 2.5). 1930 

• For an RBG1 construction, a statement indicating that the randomness source must be a 1931 
validated RBG2(P) or RBG3 construction (e.g., this could be provided in user 1932 
documentation and/or a security policy). 1933 

• If sub-DRBGs can be used in an RBG1 construction, the maximum number of sub-DRBGs 1934 
and the security strengths to be supported by the sub-DRBGs. 1935 
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• For an RBG2 construction (including a directly accessible DRBG within an RBG3 1936 
construction), a statement indicating whether prediction resistance is always provided 1937 
when a request is made by a consuming application, only provided when requested, or 1938 
never provided. 1939 

• For an RBG3 construction, a statement indicating whether the DRBG can be accessed 1940 
directly. 1941 

• Documentation specifying the guidance to users about fulfilling the non-testable 1942 
requirements for RBG1 constructions, RBG2 constructions, and sub-DRBGs, as 1943 
appropriate  (see Sections 5.4 and 6.3, respectively). 1944 
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Appendix A. Entropy vs. Security Strength (Informative) 2012 

This section of the appendix compares and contrasts entropy and security strength. 2013 

A.1. Entropy 2014 

Suppose that an entropy source produces n-bit strings with m bits of entropy in each bitstring. This 2015 
means that when an n-bit string is obtained from that entropy source, the best possible guess of the 2016 
value of the string has a probability of no more than 2−m of being correct. 2017 
Entropy can be thought of as a property of a probability distribution, like the mean or variance. 2018 
Entropy measures the unpredictability or randomness of the probability distribution on bitstrings 2019 
produced by the entropy source, not a property of any particular bitstring. However, the 2020 
terminology is sometimes slightly abused by referring to a bitstring as having m bits of entropy. 2021 
This simply means that the bitstring came from a source that ensures m bits of entropy in its output 2022 
bitstrings. 2023 
Because of the inherent variability in the process, predicting future entropy-source outputs does 2024 
not depend on an adversary’s amount of computing power. 2025 

A.2. Security Strength 2026 

A deterministic cryptographic mechanism (such as one of the DRBGs defined in [SP800-90A]) 2027 
has a security strength − a measure of how much computing power an adversary expects to need 2028 
to defeat the security of the mechanism. If a DRBG has an s-bit security strength, an adversary 2029 
who can make 2w computations of the underlying block cipher or hash function, where w < s, 2030 
expects to have about a 2w−s probability of defeating the DRBG’s security. For example, an 2031 
adversary who can perform 296 AES encryptions can expect to defeat the security of the CTR-2032 
DRBG that uses AES-128 with a probability of about 2−32 (i.e., 296−128). 2033 

A.3. A Side-by-Side Comparison 2034 

Informally, one way of thinking of the difference between security strength and entropy is the 2035 
following: suppose that an adversary somehow obtains the internal state of an entropy source (e.g., 2036 
the state of all of the ring oscillators and any internal buffer). This might allow the adversary to 2037 
predict the next few bits from the entropy source (assuming that there is some buffering of bits 2038 
within the entropy source), but the entropy source outputs will once more become unpredictable 2039 
to the adversary very quickly. For example, knowing what faces of the dice are showing on the 2040 
craps table does not allow a player to successfully predict the next roll of the dice. 2041 
In contrast, suppose that an adversary somehow obtains the internal state of a DRBG. Because the 2042 
DRBG is deterministic, the adversary can then predict all future outputs from the DRBG until the 2043 
next reseeding of the DRBG with a sufficient amount of entropy. 2044 
An entropy source provides bitstrings that are hard for an adversary to guess correctly but usually 2045 
have some detectable statistical flaws (e.g., they may have slightly biased bits, or successive bits 2046 
may be correlated). However, a well-designed DRBG provides bitstrings that exhibit none of these 2047 
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properties. Rather, they have independent and identically distributed bits, with each bit taking on 2048 
a value with a probability of exactly 0.5. These bitstrings are only unpredictable to an adversary 2049 
who does not know the DRBG’s internal state. 2050 

A.4. Entropy and Security Strength in this Recommendation 2051 

In the RBG1 construction specified in Section 4, the DRBG is instantiated from either an RBG2(P) 2052 
or an RBG3 construction. In order to instantiate the RBG1 construction at a security strength of s 2053 
bits, this Recommendation requires the source RBG to support a security strength of at least s bits 2054 
and provide a bitstring that is 3s/2 bits long for most of the DRBGs. However, for a CTR_DRBG 2055 
without a derivation function, a bitstring that is s + 128 bits long is required. (Note that an RBG3 2056 
construction supports any desired security strength.) 2057 
In the RBG2 and RBG3 constructions specified in Sections 5 and 6, respectively, the DRBG within 2058 
the construction is instantiated using a bitstring with a certain amount of entropy obtained from a 2059 
validated entropy source.34 In order to instantiate the DRBG to support an s-bit security strength, 2060 
a bitstring with at least 3s/2 bits of entropy is required for the instantiation of most of the DRBGs. 2061 
Reseeding requires a bitstring with at least s bits of entropy. However, for a CTR_DRBG without 2062 
a derivation function, a bitstring with exactly s + 128 full-entropy bits is required for instantiation 2063 
and reseeding, either obtained directly from an entropy source that provides full-entropy output or 2064 
from an entropy source via an approved (vetted) conditioning function (see Section 3.3). 2065 
The RBG3 constructions specified in Section 6 are designed to provide full-entropy outputs but 2066 
with a DRBG included in the design in case the entropy source fails undetectably. Entropy bits are 2067 
possibly obtained from an entropy source via an approved (vetted) conditioning function. When 2068 
the entropy source is working properly, an n-bit output from the RBG3 construction is said to 2069 
provide n bits of entropy. The DRBG in an RBG3 construction is always required to support a 2070 
256-bit security strength. If an entropy-source fails and the failure is undetected, the RBG3 2071 
construction outputs are generated at a security strength of 256 bits. In this case, the security 2072 
strength of a bitstring produced by the RBG is the minimum of 256 and its length (i.e., 2073 
security_strength = min(256, length)). 2074 
In conclusion, entropy sources and properly functioning RBG3 constructions provide output with 2075 
entropy. RBG1 and RBG2 constructions provide output with a security strength that depends on 2076 
the security strength of the RBG instantiation and the length of the output. Likewise, if the entropy 2077 
source used by an RBG3 construction fails undetectably, the output is then dependent on the 2078 
DRBG within the construction (an RBG(P) construction) to produce output at a security strength 2079 
of 256 bits. 2080 
Because of the difference between the use of “entropy” to describe the output of an entropy source 2081 
and the use of “security strength” to describe the output of a DRBG, the term “randomness” is 2082 
used as a general term to mean either “entropy” or “security strength,” as appropriate. A 2083 
“randomness source” is the general term for an entropy source or RBG that provides the 2084 
randomness used by an RBG. 2085 
  2086 

 
34 However, note that the entropy-source output may be cryptographically processed by an approved conditioning function before being used. 
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Appendix B. RBG Examples (Informative) 2087 

Appendix B.1 discusses and provides an example of the direct access to a DRBG used by an RBG3 2088 
construction.  2089 
Appendices B.2 – B.6 provide examples of each RBG construction. Not shown in the figures: if 2090 
an error that indicates an RBG failure (e.g., a noise source in the entropy source has failed) is 2091 
reported, RBG operation is terminated (see Section 7.1.2). For these examples, all entropy sources 2092 
are considered to be physical entropy sources. 2093 

B.1. Direct DRBG Access in an RBG3 Construction 2094 

An implementation may be designed so that the DRBG implementation used within an RBG3 2095 
construction can be directly accessed by a consuming application35 using the same or separate 2096 
instantiations from the instantiation used by the RBG3 construction (see the examples in Figure 2097 
19). 2098 

 2099 
Fig. 19. DRBG Instantiations 2100 

In the leftmost example in Figure 19, the same internal state is used by the RBG3 construction and 2101 
a directly accessible DRBG. The DRBG implementation is instantiated only once, and only a 2102 
single state handle is obtained during instantiation (e.g., RBG3_state handle).36 Generation and 2103 

 
35 Without using other components or functionality used by the RBG3 construction (see Sections 6.2 and 6.3). 
36 Because only a single instantiation has been implemented, a state handle is not required. 
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reseeding for RBG3 operations use RBG3 function calls (see Sections 6.2 and 6.3), while 2104 
generation and reseeding for direct DRBG access use RBG2 function calls (see Section 5.2) with 2105 
the RBG3_state_handle. Using the same instantiation for both RBG3 operation and direct access 2106 
to the DRBG requires additional reseeding processes in the case of an RBG3(RS) construction 2107 
(see Section 6.3.2). 2108 
In the rightmost example in Figure 19, different internal states are used by the RBG3 construction 2109 
and a directly accessible DRBG. The DRBG implementation is instantiated twice – once for RBG3 2110 
operations and a second time for direct access to the DRBG. A different state handle needs to be 2111 
obtained for each instantiation (e.g., RBG3_state_handle and DRBG_state_handle). Generation 2112 
and reseeding for RBG3 operations use RBG3 function calls and RBG3_state_handle (see Sections 2113 
6.2 and 6.3), while generation and reseeding for direct DRBG access use RBG2 function calls and 2114 
DRBG_state_handle (see Section 5.2). 2115 
Multiple directly accessible DRBGs may also be incorporated into an implementation by creating 2116 
multiple instantiations. However, no more than one directly accessible DRBG should share the 2117 
same internal state with the RBG3 construction (i.e., if n directly accessible DRBGs are required, 2118 
either n or n− 1 separate instantiations are required). 2119 
The directly accessed DRBG instantiations are in the same security boundary as the RBG3 2120 
construction. When accessed directly (rather than operating as part of the RBG3 construction), the 2121 
DRBG instantiations are considered to be operating as RBG2(P) constructions as discussed in 2122 
Section 5. 2123 

B.2. Example of an RBG1 Construction 2124 

An RBG1 construction has access to a randomness source only during instantiation when it is 2125 
seeded (see Section 4). For this example (see Figure 20), the DRBG used by the RBG1 construction 2126 
and the randomness source reside in two different cryptographic modules with a secure channel 2127 
connecting them during the instantiation process. Following DRBG instantiation, the secure 2128 
channel is not available. For this example, the randomness source is an RBG2(P) construction (see 2129 
Section 5) with a state handle of RBG2_state_handle. 2130 
The targeted security strength for the RBG1 construction is 256 bits, so a DRBG from [SP800-2131 
90A] that is able to support this security strength must be used (HMAC_DRBG using SHA-256 is 2132 
used in this example). A personalization_string is provided during instantiation, as recommended 2133 
in Section 2.4.1. 2134 
As discussed in Section 4, the randomness source (i.e., the RBG2(P) construction for this example) 2135 
is not available during normal operation, so reseeding and prediction resistance cannot be 2136 
provided. 2137 
This example provides an RBG that is instantiated at a security strength of 256 bits. 2138 
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 2139 
Fig. 20. RBG1 Construction Example 2140 

B.2.1. Instantiation of the RBG1 Construction 2141 

A physically secure channel is required to transport the entropy bits from the randomness source 2142 
(the RBG2(P) construction) to the HMAC_DRBG during instantiation; an example of an RBG2(P) 2143 
construction is provided in Appendix B.4. Thereafter, the randomness source and the secure 2144 
channel are no longer available. 2145 
The HMAC_DRBG is instantiated using the Instantiate_function, as specified in Section 2.8.1.1, 2146 
with the following call: 2147 

(status, RBG1_state_handle) = Instantiate_function (256, prediction_resistance_flag = 2148 
FALSE, “Device 7056”). 2149 

A security strength of 256 bits is requested for the HMAC_DRBG used in the RBG1 2150 
construction. 2151 
Since an RBG1 construction does not provide prediction resistance (see Section 4), the 2152 
prediction_resistance_flag is set to FALSE.  2153 
The personalization string to be used for this example is “Device 7056.” 2154 
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The Get_randomness-source_input call in the Instantiate_function results in a single request 2155 
being sent to the randomness source to generate bits to establish the security strength (see Section 2156 
4.2.1, item 2.a). 2157 

The HMAC_DRBG requests 3s/2 = 384 bits from the randomness source, where s = the 2158 
256-bit targeted security strength for the DRBG: 2159 

(status, randomness_bitstring) = Generate_function(RBG2_state_handle, 384, 256, 2160 
prediction_resistance_request = TRUE). 2161 

This call requests the randomness source (indicated by RBG2_state_handle) to generate 2162 
384 bits at a security strength of 256 bits for the randomness input required for seeding the 2163 
DRBG in the RBG1 construction. Prediction resistance is requested so that the randomness 2164 
source (i.e., the RBG2(P) construction) is reseeded before generating the requested 384 2165 
bits (see Requirement 17 in Section 4.4.1). Note that optional additional_input is not 2166 
provided for this example. 2167 

2. The RBG2(P) construction checks that the request can be handled (e.g., whether a security 2168 
strength of 256 bits is supported). If the request is valid, 384 bits are generated after 2169 
reseeding the RBG2(P) construction, the internal state of the RBG2(P) construction is 2170 
updated, and status = SUCCESS is returned to the RBG1 construction along with the newly 2171 
generated randomness_bitstring. 2172 
If the request is determined to be invalid, status = FAILURE is returned along with a Null 2173 
bitstring as the randomnessy_bitstring. The FAILURE status is subsequently returned from 2174 
the Instantiate_function along with a Null value as the RBG1_state_handle, and the 2175 
instantiation process is terminated. 2176 

If a valid randomness_bitstring is returned from the RBG2(P) construction, the 2177 
randomness_bitstring is used along with the personalization_string to create the seed to 2178 
instantiate the DRBG (see [SP800-90A]).37 If the instantiation is successful, the internal state is 2179 
established, a status of SUCCESS is returned from the Instantiate_function with a state handle 2180 
of RBG1_state_handle, and the RBG can be used to generate pseudorandom bits. 2181 

B.2.2. Generation by the RBG1 Construction 2182 

Assuming that the HMAC_DRBG in the RBG1 construction has been instantiated (see Appendix 2183 
B.2.1), pseudorandom bits are requested from the RBG by a consuming application using the 2184 
Generate_function call as specified in Section 2.8.1.2: 2185 

(status, returned_bits) = Generate_function (RBG1_state_handle, 2186 
requested_number_of_bits, requested_security_strength, prediction_resistance_request = 2187 

FALSE, additional_input). 2188 
RBG1_state_handle was returned as the state handle during instantiation (see Appendix 2189 
B.2.1). 2190 

 
37 The first 256 bits of the randomness_bitstring are used as the randomness input, and the remaining 128 bits are used as the nonce in SP 800-90A, 
Revision 1. A future update of SP 800-90A will revise this process by using the entire 384-bit string as the randomness input. 
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The requested_security_strength may be any value that is less than or equal to 256 (the 2191 
instantiated security strength recorded in the DRBG’s internal state). 2192 
Since prediction resistance cannot be provided in an RBG1 construction, 2193 
prediction_resistance_request is set to FALSE. (Note that the prediction_resistance 2194 
request input parameter could be omitted from the Generate_function call for this 2195 
example).  2196 
Any additional input is optional.  2197 

The Generate_function returns an indication of the status. If status = SUCCESS, the 2198 
requested_number_of_bits are provided as the returned_bits to the consuming application. If 2199 
status = FAILURE, returned_bits is an empty (i.e., null) bitstring. 2200 

B.3. Example Using Sub-DRBGs Based on an RBG1 Construction 2201 

This example uses an RBG1 construction to instantiate two sub-DRBGs: sub-DRBG1 and sub-2202 
DRBG2 (see Figure 21). 2203 

 2204 
Fig. 21. Sub-DRBGs Based on an RBG1 Construction 2205 

The instantiation of the RBG1 construction is discussed in Appendix B.2. The RBG1 construction 2206 
that is used as the source RBG includes an HMAC_DRBG and has been instantiated to provide a 2207 
security strength of 256 bits. The state handle for the construction is RBG1_state_handle. 2208 
For this example, Sub-DRBG1 will be instantiated to provide a security strength of 128 bits, and 2209 
Sub-DRBG2 will be instantiated to provide a security strength of 256 bits. Both sub-DRBGs use 2210 
the same DRBG algorithm as the RBG1 construction.  2211 
Neither the RBG1 construction nor the sub-DRBGs can be reseeded or provide prediction 2212 
resistance. 2213 
This example provides the following capabilities: 2214 

• Access to the RBG1 construction to provide output generated at a security strength of 256 2215 
bits (see Appendix B.2 for the RBG1 example) 2216 

• Access to one sub-DRBG (Sub-DRBG1) that provides output for an application that 2217 
requires a security strength of no more than 128 bits 2218 
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• Access to a second sub-DRBG (Sub-DRBG2) that provides output for a second application 2219 
that requires a security strength of 256 bits 2220 

B.3.1. Instantiation of the Sub-DRBGs 2221 

Each sub-DRBG is instantiated using output from an RBG1 construction that is discussed in 2222 
Appendix 62B.2. 2223 

B.3.1.1. Instantiating Sub-DRBG1 2224 

Sub-DRBG1 is instantiated using the following Instantiate_function call (see Section 2.8.1.1): 2225 
(status, sub-DRBG1_state_handle) = Instantiate_function (128, prediction_resistance_flag 2226 

= FALSE, “Sub-DRBG App 1”). 2227 

• A security strength of 128 bits is requested from the DRBG indicated by the 2228 
RBG1_state_handle. 2229 

• Setting “prediction_resistance_flag = FALSE” indicates that a consuming application will 2230 
not be allowed to request prediction resistance. Optionally, the parameter can be omitted. 2231 

• The personalization string to be used for sub-DRBG1 is “Sub-DRBG App 1.” 2232 
• The returned state handle for sub-DRBG1 will be sub-DRBG1_state_handle. 2233 

The randomness input for establishing the 128-bit security strength of sub-DRBG1 is requested 2234 
using the following Generate_function call to the RBG1 construction): 2235 

(status, randomness-source_input) = Generate_function(RBG1_state_handle, 192, 128, 2236 
prediction_resistance_request = FALSE, additional_input). 2237 

• 192 bits are requested from the source RBG (indicated by RBG1_state_handle) at a security 2238 
strength of 128 bits (192 = 128 + 64 = 3s/2). 2239 

• Setting “prediction_resistance_flag = FALSE” indicates that the source RBG (the RBG1 2240 
construction) will not need to reseed itself before generating the requested output. 2241 
Alternatively, the parameter can be omitted. 2242 

• Additional input is optional. 2243 
If status = SUCCESS is returned from the Generate_function, the HMAC_DRBG in sub-DRBG1 2244 
is seeded using the randomness-source_input obtained from the RBG1 construction and the 2245 
personalization_string provided in the Instantiate_function call (i.e., “Sub-DRBG App 1”). The 2246 
internal state is recorded for Sub-DRBG1 (including the 128-bit security strength), and status = 2247 
SUCCESS is returned from the Instantiate_function along with a state handle of sub-2248 
DRBG1_state_handle. 2249 
If status = FAILURE is returned from the Generate_function call, then the internal state is not 2250 
created, status = FAILURE and a Null state handle are returned from the Instantiate_function, 2251 
and the sub-DRBG1 cannot be used to generate bits. 2252 
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B.3.1.2. Instantiating Sub-DRBG2 2253 

Sub-DRBG2 is instantiated using the following Instantiate_function call (see Section 2.8.1.1): 2254 
(status, sub-DRBG2_state_handle) = Instantiate_function (256, prediction_resistance_flag = 2255 

FALSE, “Sub-DRBG App 2”). 2256 

• A security strength of 256 bits is requested from the randomness source (the DRBG 2257 
construction indicated by RBG1_state_handle). 2258 

• Setting “prediction_resistance_flag = FALSE” indicates that a consuming application will 2259 
not be allowed to request prediction resistance. Optionally, the parameter can be omitted. 2260 

• The personalization string to be used for sub-DRBG2 is “Sub-DRBG App 2.” 2261 
• The returned state handle will be sub-DRBG2_state_handle. 2262 

The randomness input for establishing the 256-bit security strength of sub-DRBG2 is requested 2263 
using the following Generate_function call to the RBG1 construction): 2264 

(status, randomness-source_input) = Generate_function(RBG1_state_handle, 384, 256, 2265 
prediction_resistance_request = FALSE, additional_input). 2266 

• 384 bits are requested from the source RBG (indicated by RBG1_state_handle) at a security 2267 
strength of 256 bits (384 = 256 + 128 = 3s/2). 2268 

• Setting “prediction_resistance_flag = FALSE” indicates that the source RBG (the RBG1 2269 
construction) will not need to reseed itself before generating the requested output. 2270 
Alternatively, the parameter can be omitted. 2271 

• Additional input is optional. 2272 
If status = SUCCESS is returned from the Generate_function, the HMAC_DRBG in sub-DRBG2 2273 
is seeded using the randomness-source_input obtained from the RBG1 construction and the 2274 
personalization_string provided in the Instantiate_function call (i.e., “Sub-DRBG App 2”). The 2275 
internal state is recorded for Sub-DRBG2 (including the 256-bit security strength), and status = 2276 
SUCCESS is returned from the Instantiate_function along with a state handle of sub-2277 
DRBG2_state_handle. 2278 
If status = FAILURE is returned from the Generate_function call, then the internal state is not 2279 
created, status = FAILURE and a Null state handle are returned from the Instantiate_function, 2280 
and the sub-DRBG2 cannot be used to generate bits. 2281 

B.3.2. Pseudorandom Bit Generation by Sub-DRBGs 2282 

Assuming that the sub-DRBG has been successfully instantiated (see Appendix B.3.1), 2283 
pseudorandom bits are requested from the sub-DRBG by a consuming application using the 2284 
Generate_function call as specified in Section 2.8.1.2: 2285 

(status, returned_bits) = Generate_function(state_handle, requested_number_of_bits, 2286 
security_strength, prediction_resistance_request, additional input), 2287 

where: 2288 

• For sub_DRBG1, state_handle = sub-DRBG1_state_handle; 2289 
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For sub-DRBG2, state_handle = sub-DRBG2_state_handle; 2290 

• requested_number_of_bits must be ≤ 219 (see SP 800-90A for HMAC_DRBG); 2291 

• For sub_DRBG1, security strength must be ≤ 128; 2292 

• For sub_DRBG2, security strength must be ≤ 256; 2293 

• prediction_resistance_request = FALSE (or is omitted); and 2294 

• additional_input is optional. 2295 

B.4. Example of an RBG2(P) or RBG2(NP) Construction 2296 

For this example of an RBG2 construction, no conditioning function is used, and only a single 2297 
DRBG instantiation will be used (see Figure 22), so a state handle is not needed. Full-entropy 2298 
output is not provided by the entropy source, which may be either a physical or non-physical 2299 
entropy source. 2300 

 2301 
Fig. 22. RBG2 Example 2302 

The targeted security strength is 256 bits, so a DRBG from [SP800-90A] that can support this 2303 
security strength must be used; HMAC_DRBG using SHA-256 is used in this example. A 2304 
personalization_string may be provided, as recommended in Section 2.4.1. Reseeding and 2305 
prediction resistance are supported and will be available on demand. 2306 
This example provides the following capabilities:  2307 

• An RBG instantiated at a security strength of 256 bits, and 2308 

• Access to an entropy source to provide prediction resistance. 2309 
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B.4.1. Instantiation of an RBG2 Construction 2310 

The DRBG in the RBG2 construction is instantiated using an Instantiate_function call (see 2311 
Section 2.8.1.1): 2312 

(status) = Instantiate_function (256, prediction_resistance_flag = TRUE, “RBG2 42”). 2313 

• Since there is only a single instantiation, a state_handle is not used for this example. 2314 

• Using “prediction_resistance_flag = TRUE”, the RBG is notified that prediction resistance 2315 
may be requested in subsequent Generate_function calls. 2316 

• The personalization string to be used for this example is “RBG2 42.” 2317 
The entropy for establishing the security strength (s) of the DRBG (i.e., s = 256 bits) is requested 2318 
using the following Get_ES_Bitstring call to the entropy source (see Section 2.8.2.2 and item 2 2319 
in Section 5.2.1): 2320 

 (status, entropy_bitstring) = Get_ES_Bitstring(384), 2321 
where 3s/2 = 384 bits of entropy are requested from the entropy source. 2322 
If status = SUCCESS is returned from the Get_ES_Bitstring call, the HMAC_DRBG is seeded 2323 
using entropy_bitstring, and the personalization_string is “RBG2 42.” The internal state is 2324 
recorded (including the security strength of the instantiation), and status = SUCCESS is returned 2325 
to the consuming application by the Instantiate_function. 2326 
If status = FAILURE is returned from the Get_ES_Bitstring call, then the internal state is not 2327 
created, status = FAILURE and a Null state handle are returned by the Instantiate_function to 2328 
the consuming application, and the RBG cannot be used to generate bits. 2329 

B.4.2. Generation in an RBG2 Construction 2330 

Assuming that the RBG has been successfully instantiated (see Appendix B.4.1), pseudorandom 2331 
bits are requested from the RBG by a consuming application using the Generate_function call as 2332 
specified in Section 2.8.1.2: 2333 

(status, returned_bits) = Generate_function(requested_number_of_bits, security_strength, 2334 
prediction_resistance_request, additional input). 2335 

• Since there is only a single instantiation of the HMAC_DRBG, a state_handle was not 2336 
returned from the Instantiate_function (see Appendix B.4.1) and is not used during the 2337 
Generate_function call. 2338 

• The requested_security_strength may be any value that is less than or equal to 256 (the 2339 
instantiated security strength recorded in the HMAC_DRBG’s internal state). 2340 

• prediction_resistance_request = TRUE if prediction resistance is requested and FALSE 2341 
otherwise. 2342 

• Additional input is optional. 2343 
If prediction resistance is requested, a reseed of the HMAC_DRBG is requested by the 2344 
Generate_function before the requested bits are generated (see Appendix B.4). If status = 2345 
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FAILURE is returned from the Reseed_function, status = FAILURE is also returned to the 2346 
consuming application by the Generate_function, along with a Null value as the returned_bits. 2347 
Whether or not prediction resistance is requested, a status indication is returned from the 2348 
Generate_function call. If status = SUCCESS, a bitstring of at least requested_number_of_bits 2349 
is provided as the returned_bits to the consuming application. If status = FAILURE, returned_bits 2350 
is an empty bitstring. 2351 

B.4.3. Reseeding an RBG2 Construction 2352 

The HMAC_DRBG will be reseeded 1) if explicitly requested by the consuming application, 2) 2353 
whenever generation with prediction resistance is requested by the Generate_function, or 3) 2354 
automatically during a Generate_function call at the end of the DRBG’s designed seedlife (see 2355 
the Generate_function specification in [SP800-90A)]. 2356 
The Reseed_function call, as specified in Section 2.8.1.3, is: 2357 

status = Reseed_function(additional_input). 2358 

• Since there is only a single instantiation of the HMAC_DRBG, a state_handle was not 2359 
returned from the Instantiate_function (see Appendix B.4.1) and is not used during the 2360 
Reseed_function call. 2361 

• The additional_input is optional.  2362 
Since entropy is obtained directly from the entropy source (case 2 in Section 5.2.3), the 2363 
implementation has replaced the Get_randomness-source_input call used by the 2364 
Reseed_function in [SP800-90A] with a Get_ES_Bitstring call. 2365 
The HMAC_DRBG is reseeded with a security strength of 256 bits as follows: 2366 

(status, entropy_bitstring) = Get_ES_Bitstring(256). 2367 
If status = SUCCESS is returned by Get_ES_Bitstring, the entropy_bitstring contains at least 256 2368 
bits of entropy and is at least 256 bits long. Status = SUCCESS is returned to the calling application 2369 
(e.g., the Generate_function) by the Reseed_function. 2370 
If status = FAILURE, entropy_bitstring is an empty (e.g., null) bitstring. The HMAC_DRBG is 2371 
not reseeded, and status= FAILURE is returned from Reseed_function to the calling application. 2372 

B.5. Example of an RBG3(XOR) Construction 2373 

This construction is specified in Section 6.2 and requires a DRBG and a source of full-entropy 2374 
bits. For this example, the entropy source itself does not provide full-entropy output, so the vetted 2375 
Hash conditioning function listed in [SP800-90B] using SHA-256 is used as an external 2376 
conditioning function. 2377 
The Hash_DRBG specified in [SP800-90A] will be used as the DRBG, with SHA-256 used as the 2378 
underlying hash function for the DRBG (note the use of SHA-256 for both the Hash_DRBG and 2379 
the vetted conditioning function). The DRBG will obtain input directly from the RBG’s entropy 2380 
source without conditioning (as shown in Figure 23), since bits with full entropy are not required 2381 
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for input to the DRBG, even though full-entropy bits are required for input to the XOR operation 2382 
(shown as “⊕” in the figure) from the entropy source via the conditioning function. 2383 

 2384 
Fig. 23. RBG3(XOR) Construction Example 2385 

As specified in Section 6.2, the DRBG must be instantiated (and reseeded) at 256 bits, which is 2386 
possible for SHA-256. 2387 
In this example, only a single instantiation is used, and a personalization string is provided during 2388 
instantiation. The DRBG is not directly accessible. 2389 
Calls are made to the RBG using the RBG3(XOR) calls specified in Section 6.2. 2390 
The Hash_DRBG itself is not directly accessible.  2391 
This example provides the following capabilities: 2392 

• Full-entropy output by the RBG, 2393 
• Fallback to the security strength provided by the Hash_DRBG (256 bits) if the entropy 2394 

source has an undetected failure, and 2395 
• Access to an entropy source to instantiate and reseed the Hash_DRBG. 2396 

B.5.1. Instantiation of an RBG3(XOR) Construction 2397 

The Hash_DRBG is instantiated using: 2398 
status = RBG3(XOR)_DRBG_Instantiate(“RBG3(XOR)”), 2399 
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• Since the DRBG is not directly accessible, there is no need for a separate instantiation, so 2400 
there is also no need for the return of a state handle. 2401 

• The personalization string for the DRBG is “RBG3(XOR).” 2402 
The RBG3(XOR)_DRBG_Instantiate function in Section 6.2.1.1 uses a DRBG 2403 
Instantiate_function to seed the Hash_DRBG: 2404 

(status) = Instantiate_function(256, prediction_resistance_flag = FALSE, 2405 
personalization_string). 2406 

• Since the DRBG is not directly accessible, there is no need for a separate instantiation, so 2407 
there is also no need for the return of a state handle. 2408 

• The DRBG is instantiated at a security strength of 256 bits. 2409 

• The DRBG is notified that prediction resistance is not required using 2410 
prediction_resistance_flag = FALSE. Since the DRBG will not be accessed directly, 2411 
prediction_resistance will never be requested. Optionally, the implementation could omit 2412 
this parameter. 2413 

• The personalization string for the DRBG is “RBG3(XOR).” It was provided in the 2414 
RBG3(XOR)_DRBG_Instantiate call. 2415 

Section 6.2.1.1 refers to Section 5.2.1 for further information on instantiating the DRBG. 2416 
The entropy for establishing the security strength (s) of the Hash_DRBG (i.e., where s = 256 bits) 2417 
is requested using the following Get_ES_Bitstring call: 2418 

 (status, entropy_bitstring) = Get_ES_Bitstring(384), 2419 
where 3s/2 = 384 bits of entropy are requested from the entropy source. 2420 
If status = SUCCESS is returned from the Get_ES_Bitstring call, the Hash_DRBG is seeded 2421 
using the entropy_ bitstring and the personalization_string (“RBG3(XOR)”). The internal state is 2422 
recorded (including the 256-bit security strength of the instantiation), and status = SUCCESS is 2423 
returned to the consuming application by the Instantiate_function. The RBG can be used to 2424 
generate full-entropy bits. 2425 
If status = FAILURE is returned from the Get_ES_Bitstring call, status = FAILURE and a Null 2426 
state handle are returned to the consuming application from the Instantiate_function. `The 2427 
Hash_DRBG’s internal state is not established, and the RBG cannot be used to generate bits. 2428 

B.5.2. Generation by an RBG3(XOR) Construction 2429 

Assuming that the Hash_DRBG has been instantiated (see Appendix B.4.1), the RBG can be called 2430 
by a consuming application to generate output with full entropy. 2431 
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B.5.2.1. Generation 2432 

Let n indicate the requested number of bits to generate. The construction in Section 6.3.1.2 is used 2433 
as follows: 2434 
RBG3(XOR)_Generate: 2435 
Input: integer n, string additional_input. 2436 
Output: integer status, bitstring returned_bits. 2437 
Process: 2438 

1. (status, ES_bits) = Get_conditioned_full-entropy_input(n). 2439 
2. If (status ≠ SUCCESS), then return(status, Null). 2440 
3. (status, DRBG_bits) = Generate_function(n, 256, prediction_resistance_request = 2441 

FALSE, additional_input). 2442 
4. If (status ≠ SUCCESS), then return(status, Null). 2443 

5. returned_bits = ES_bits ⊕ DRBG_bits. 2444 
6. Return SUCCESS, returned_bits. 2445 

Note that the state_handle parameter is not used in the RBG3(XOR)_Generate call or the 2446 
Generate_function call (in step 3) for this example since a state_handle was not returned from 2447 
the RBG3(XOR)_DRBG_Instantiate function (see Appendix B.5.1). 2448 
In step 1, the entropy source is accessed via the conditioning function using the 2449 
Get_conditioned_full-entropy_input routine (see Appendix B.5.2.2) to obtain n bits with full 2450 
entropy. 2451 
Step 2 checks that the Get_conditioned_full-entropy_input call in step 1 was successful. If it 2452 
was not successful, the RBG3(XOR)_Generate function is aborted, returning status ≠ SUCCESS 2453 
to the consuming application along with a Null bitstring as the returned_bits. 2454 
Step 3 calls the Hash_DRBG to generate n bits to be XORed with the n-bit output of the entropy 2455 
source (ES_Bits; see step 1) in order to produce the RBG output. Note that a request for prediction 2456 
resistance is not made in the Generate_function call (i.e., prediction_resistance_request = 2457 
FALSE). Optionally, this parameter could be omitted since prediction resistance is never 2458 
requested. 2459 
Step 4 checks that the Generate_function invoked in step 3 was successful. If it was not 2460 
successful, the RBG3(XOR)_Generate function is aborted, returning status ≠ SUCCESS to the 2461 
consuming application along with a Null bitstring as the returned_bits. 2462 
If step 3 returns an indication of success, the ES_bits returned in step 1 and the DRBG_bits obtained 2463 
in step 3 are XORed together in step 5. The result is returned to the consuming application in step 2464 
6. 2465 
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B.5.2.2. Get_conditioned_full-entropy_input Function 2466 

The Get_conditioned_full-entropy_input construction is specified in Section 3.3.2. For this 2467 
example, the routine becomes the following: 2468 
Get_conditioned_full_entropy_ input: 2469 

Input: integer n. 2470 
Output: integer status, bitstring Full-entropy_bitstring. 2471 

Process: 2472 
1.  temp = the Null string. 2473 
2. ctr = 0. 2474 
3. While ctr < n, do 2475 

3.1  (status, entropy_bitstring) = Get_ES_Bitstring (320). 2476 
3.2 If (status ≠ SUCCESS), then return (status, invalid_string). 2477 
3.3 conditioned_output = HashSHA_256(entropy_bitstring). 2478 
3.4 temp =temp || conditioned_output. 2479 
3.5 ctr = ctr + 256. 2480 

4. Full-entropy_bitstring = leftmost(temp, n). 2481 
5. Return (SUCCESS, Full-entropy_bitstring). 2482 

Steps 1 and 2 initialize the temporary bitstring (temp) for holding the full-entropy bitstring being 2483 
assembled, and the counter (ctr) that counts the number of full-entropy bits produced so far. 2484 
Step 3 obtains and processes the entropy for each iteration. 2485 

• Step 3.1 requests 320 bits from the entropy source(s) (i.e., output_len + 64 bits, where 2486 
output_len = 256 for SHA-256). 2487 

• Step 3.2 checks whether or not the status returned in step 3.1 indicated a success. If the 2488 
status did not indicate a success, the status is returned along with an invalid (e.g., Null) 2489 
bitstring as the Full-entropy_bitstring. 2490 

• Step 3.3 invokes the Hash conditioning function (see Section 3.3.1.2) using SHA-256 for 2491 
processing the entropy_bitstring obtained from step 3.1. 2492 

• Step 3.4 concatenates the conditioned_output received in step 3.3 to the temporary bitstring 2493 
(temp), and step 3.5 increments the counter for the number of full-entropy bits that have 2494 
been produced so far. 2495 

After at least n bits have been produced in step 3, step 4 selects the leftmost n bits of the temporary 2496 
string (temp) to be returned as the bitstring with full entropy. 2497 
Step 5 returns the result from step 4 (Full-entropy_bitstring). 2498 
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B.5.3. Reseeding an RBG3(XOR) Construction 2499 

The Hash_DRBG must be reseeded at the end of its designed seedlife and may be reseeded on 2500 
demand (e.g., by the consuming application). Reseeding will be automatic whenever the end of 2501 
the DRBG’s seedlife is reached during a Generate_function call (see [SP800-90A]). For this 2502 
example, whether reseeding is done automatically during a Generate_function call or is 2503 
specifically requested by a consuming application, the Reseed_function call is: 2504 

status = Reseed_function(additional_input). 2505 

• The state_handle parameter is not used in the Reseed_function call since a state_handle 2506 
was not returned from the RBG3(XOR)_DRBG_Instantiate function (see Appendix 2507 
B.5.1). 2508 

• The security strength for reseeding the Hash_DRBG is recorded in the internal state as 256 2509 
bits. 2510 

• Additional input is optional. 2511 
Section 6.3.1.3 refers to Section 5.2.3 for reseeding the Hash_DRBG. Since entropy is obtained 2512 
directly from the entropy source and no conditioning function is used (case 2 in Section 6.3.2), the 2513 
implementation has replaced the Get_randomness-source_input call used by the 2514 
Reseed_function in [SP800-90A] with a Get_ES_Bitstring call. 2515 
The Hash_DRBG is reseeded with a security strength of 256 bits as follows: 2516 

(status, entropy_bitstring) = Get_ES_Bitstring(256). 2517 
If status = SUCCESS is returned by the Get_ES_Bitstring call, entropy_bitstring consists of at 2518 
least 256 bits that contain at least 256 bits of entropy. These bits are used to reseed the 2519 
Hash_DRBG. Status = SUCCESS is then returned to the calling application by the 2520 
Reseed_function. 2521 
If status = FAILURE, entropy_bitstring is an empty (e.g., null) bitstring. The Hash_DRBG is not 2522 
reseeded, and status ≠ SUCCESS is returned from the Reseed_function to the calling application 2523 
(e.g., the Generate_function). 2524 

B.6. Example of an RBG3(RS) Construction 2525 

This construction is specified in Section 6.3 and requires an entropy source and a DRBG (see the 2526 
left half of Figure 24 outlined in green). The DRBG is directly accessible using the same 2527 
instantiation that is used by the RBG3(RS) construction (i.e., they share the same internal state). 2528 
When accessed directly, the DRBG behaves as an RBG2(P) construction (see the right half of 2529 
Figure 24 outlined in blue). 2530 
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 2531 
Fig. 24. RBG3(RS) Construction Example 2532 

The CTR_DRBG specified in [SP800-90A] will be used as the DRBG with AES-256 used as the 2533 
underlying block cipher for the DRBG. The CTR_DRBG will be implemented using a derivation 2534 
function (located inside the CTR_DRBG implementation). In this case, full-entropy output will 2535 
not be required for the entropy source (see [SP800-90A]). However, an alternative example could 2536 
use the CTR_DRBG without a derivation function. In that case, either the entropy source would 2537 
need to provide full-entropy output, or a vetted conditioning function would be required to 2538 
condition the entropy to provide full-entropy bits before providing it to the DRBG. 2539 
As specified in Section 6.2, a DRBG used as part of the RBG must be instantiated (and reseeded) 2540 
at a security strength of 256 bits (which AES-256 can support). 2541 
For this example, the DRBG has a fixed security strength (256 bits), which is hard-coded into the 2542 
implementation so will not be used as an input parameter. 2543 
Calls are made to the RBG as specified in Section 6.3.1. Calls made to the directly accessible 2544 
DRBG (part of a RBG2(P) construction) use the RBG calls specified in Section 5.2. Since an 2545 
entropy source is always available, the directly accessed DRBG can be reseeded and support 2546 
prediction resistance. 2547 
If the entropy source produces output at a slow rate, a consuming application might call the 2548 
RBG3(RS) construction only when full-entropy bits are required, obtaining all other output from 2549 
the directly accessible DRBG. 2550 
This example provides the following capabilities: 2551 
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• Full-entropy output by the RBG3(RS) construction, 2552 
• Fallback to the security strength of the RBG3(RS)’s DRBG instantiation (256 bits) if the 2553 

entropy source has an undetected failure, 2554 
• Direct access to an RBG2(P) construction with a security strength of 256 bits for faster 2555 

output when full-entropy output is not required, 2556 
• Access to an entropy source to instantiate and reseed the DRBG, and 2557 

• Prediction resistance support for the directly accessed DRBG. 2558 

B.6.1. Instantiation of an RBG3(RS) Construction 2559 

Instantiation for this example consists of the instantiation of the CTR_DRBG used by the 2560 
RBG3(RS) construction. 2561 
The DRBG is initialized as follows: 2562 

(status, RBG3(RS)_state_handle) = RBG3(RS)_DRBG_Instantiate(“RBG3(RS) 2021”). 2563 

• “RBG3(RS) 2021” is to be used as the personalization string for the DRBG instantiation 2564 
used in the RBG3(RS) construction. 2565 

• RBG3(RS)_state_handle is returned as the state handle for the DRBG instantiation used 2566 
by the RBG3(RS) construction. 2567 

Appendices B.6.2 and B.6.3 will show the differences between the operation of the RBG3(RS) 2568 
and RBG2(P) constructions. 2569 

B.6.2. Generation by an RBG3(RS) Construction 2570 

Assuming that the DRBG instantiation for the RBG3(RS) construction has been instantiated (see 2571 
Appendix B.6.1), the RBG can be invoked by a consuming application to generate outputs with 2572 
full entropy. The RBG3(RS)_Generate construction in Section 6.3.1.2.1 is invoked using 2573 

(status, returned_bits) = RBG3(RS)_Generate(RBG3(RS)_state_handle, n, 2574 
additional_information). 2575 

• The RBG3(RS)_state_handle (obtained during instantiation; see Appendix B.6.1) is used 2576 
to access the internal state information for the DRBG instantiation for the RBG3(RS) 2577 
construction. 2578 

• The consuming application requests n bits. 2579 

• The input of additional_information is optional. 2580 
The process is specified in Section 6.3.1.2.1. The state handle in the Generate_function is 2581 
RBG3(RS)_state_handle, which was obtained during instantiation (see Appendix B.6.1). 2582 

B.6.3. Generation by the Directly Accessible DRBG 2583 

Assuming that the DRBG has been instantiated (see Appendix B.6.1), it can be accessed directly 2584 
by a consuming application in the same manner as the RBG2(P) example in Appendix B.4.2 using 2585 
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the RBG3(RS)_state_handle obtained during instantiation (see Appendix B.6.1) and using a 2586 
Generate_function call: 2587 

(status, returned_bits) = Generate_function(RBG3(RS)_state_handle, n, 2588 
prediction_resistance_request, additional_input). 2589 

Note that the security strength parameter (256) was omitted since its value has been hard coded. 2590 
Requirement 2 in Section 6.3.2 requires that the DRBG be reseeded whenever a request for 2591 
generation by a directly accessible DRBG follows a request for generation by the RBG3(RS) 2592 
construction. For this example, the internal state includes an indication about whether the last use 2593 
of the DRBG was as part of the RBG3(RS) construction or was directly accessible. If the 2594 
Generate_function (above) does not include a request for prediction resistance (e.g., 2595 
prediction_resistance_request was not set to TRUE), then the DRBG will be reseeded anyway 2596 
using the entropy source before generating output if the previous use of the DRBG was part of the 2597 
RBG3(RS) construction. 2598 

B.6.4. Reseeding a DRBG 2599 

When operating as part of the RBG3(RS) construction, the Reseed_function is invoked one or 2600 
more times to produce full-entropy output when the RBG3(RS)_Generate function is invoked by 2601 
a consuming application. 2602 
When operating as part of the RBG2(P) construction (the directly accessible DRBG), the DRBG 2603 
is reseeded 1) if explicitly requested by the consuming application, 2) automatically whenever a 2604 
generation with prediction resistance is requested during a direct access of the DRBG (see 2605 
Appendix B.6.3), 3) whenever the previous use of the DRBG was by the RBG3(RS)_Generate 2606 
function (see Appendix B.6.2), or 4) automatically during a Generate_function call at the end of 2607 
the seedlife of the RBG2(P) construction (see the Generate_function specification in [SP800-2608 
90A]). 2609 
The Reseed_function call is: 2610 

status = Reseed_function(RBG3(RS)_state_handle, additional_input). 2611 

• The state_handle is RBG3(RS)_state handle, and 2612 

• additional_input is optional.38 2613 
The DRBG is reseeded with a security strength of 256 bits as follows: 2614 

(status, entropy_bitstring) = Get_ES_Bitstring(256). 2615 
If status = SUCCESS is returned by Get_ES_Bitstring, entropy_bitstring consists of at least 256 2616 
bits containing at least 256 bits of entropy. Status = SUCCESS is returned to the calling application 2617 
by the Reseed_function. 2618 

 
38 Note that when the RBG3(RS) Generate function uses a Hash_DRBG, HMAC_DRBG, or CTR_DRBG with no derivation function and Method 
A, whereby 64 bits of additional entropy are required to produce output_len bits with full entropy (see Section 7.3.1,.2.1, step 3.1), the additional 
64 bits of entropy obtained in step 3.1.1 is provided to the Generate_function (in step 3.1.3) with prediction requested. In Section 9.3 of SP 800-
90A, the Generate_function reseeds the DRBG when prediction resistance is requested using entropy from the entropy source and any additional 
input that is provided – the additional 64 bits of entropy, in this case. 
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If status ≠ SUCCESS (e.g., the entropy source has failed), entropy_bitstring is an empty (e.g., null) 2619 
bitstring, the DRBG is not reseeded, and a FAILURE status is returned from Reseed_function to 2620 
the calling application (e.g., the Generate_function). 2621 

 2622 

Appendix C. Addendum to SP 800-90A: Instantiating and Reseeding a CTR_DRBG 2623 

C.1. Background and Scope 2624 

The CTR_DRBG, specified in [SP800-90A], uses the block cipher AES and has two versions that 2625 
may be implemented: with or without a derivation function. 2626 
When a derivation function is not used, SP 800-90A requires the use of bitstrings with full entropy 2627 
for instantiating and reseeding a CTR_DRBG. This addendum permits the use of an RBG 2628 
compliant with SP 800-90C to provide the required seed material for the CTR_DRBG when 2629 
implemented as specified in SP 800-90C (see Appendix C.2). 2630 
When a derivation function is used in a CTR_DRBG implementation, SP 800-90A specifies the 2631 
use of the block cipher derivation function. This addendum modifies the requirements in SP 800-2632 
90A for the CTR_DRBG by specifying two additional derivation functions that may be used 2633 
instead of the block cipher derivation function (see Appendix C.3). 2634 

C.2. CTR_DRBG without a Derivation Function 2635 

When a derivation function is not used, SP 800-90A requires that seedlen full-entropy bits be 2636 
provided as the randomness input (e.g., from an entropy source that provides full-entropy output), 2637 
where seedlen is the length of the key to be used by the CTR_DRBG plus the length of the output 2638 
block.39 SP 800-90C includes an approved method for externally conditioning the output of an 2639 
entropy source to provide a bitstring with full entropy when using an entropy source that does not 2640 
provide full-entropy output. 2641 
SP 800-90C also permits the use of seed material from an RBG when the DRBG to be instantiated 2642 
and reseeded is implemented and used as specified in SP 800-90C. 2643 

C.3. CTR_DRBG using a Derivation Function 2644 

When a derivation function is used within a CTR_DRBG, SP 800-90A specifies the use of the 2645 
Block_cipher_df included in that document during instantiation and reseeding to adjust the length 2646 
of the seed material to seedlen bits, where  2647 

seedlen = the security strength + the block length. 2648 
For AES, seedlen = 256, 320 or 384 bits (see [SP800-90A], Rev. 1). During generation, the length 2649 
of any additional input provided during the generation request is adjusted to seedlen bits as well 2650 
(see SP 800-90A). 2651 

 
39 128 bits for AES. 
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Two alternative derivation functions are specified in Appendices C.3.2 and C.3.3. Appendix C.3.1  2652 
discusses the keys and constants for use with the alternative derivation functions specified in 2653 
Appendices C.3.2 and C.3.3. 2654 

C.3.1. Derivation Keys and Constants 2655 

Both of the derivation methods specified in Appendices C.3.2 and C.3.3 an AES derivation key 2656 
(df_Key) whose length shall meet or exceed the instantiated security strength of the DRBG 2657 
instantiation. 2658 
The df_Key may be set to any value and may be the current value of a key used by the DRBG. 2659 
These alternative methods use three 128-bit constants C1, C2 and C3, which are defined as: 2660 

C1 = 000000...00 2661 
C2 = 101010...10 2662 
C3 = 010101...01 2663 

The value of B used in Appendices C.3.2 and C.3.3 depends on the length of the AES derivation 2664 
key (df_Key). When the length of df_Key = 128 bits, then B = 2. Otherwise, B = 3. 2665 

C.3.2. Derivation Function Using CMAC 2666 

CMAC is a block-cipher mode of operation specified in [SP800-38B]. The CMAC_df derivation 2667 
function is specified as follows: 2668 
CMAC_df: 2669 
Input: bitstring input_string, integer number_of_bits_to_return. 2670 
Output: bitstring Z. 2671 
Process: 2672 

1. Let C1, C2, C3 be 128-bit blocks defined as 000000...0, 101010...10, 010101...01, 2673 
respectively. 2674 

2. Get df_Key. Comment: See Appendix C.3.1. 2675 
3. Z = the Null string. 2676 
4. For i = 1 to B: 2677 
Z = Z || CMAC(df_Key, Ci || input_string). 2678 
5. Z = leftmost (Z, number_of_bits_to_return). 2679 
6. Return(Z). 2680 

C.3.3. Derivation Function Using CBC-MAC 2681 

This CBC-MAC derivation function shall only be used when the input_string has the following 2682 
properties: 2683 
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• The length of the input string is always a fixed length. 2684 

• The length of the input_string is an integer multiple of 128 bits. Let m be the number of 2685 
128-bit blocks in the input_string. 2686 

This derivation function is specified as follows: 2687 
CBC-MAC_df: 2688 
Input: bitstring input_string, integer number_of_bits_to_return. 2689 
Output: bitstring Z. 2690 
Process: 2691 

1. Let C1, C2, C3 be 128-bit blocks defined as 000000...0, 101010...10, 010101...01, 2692 
respectively. 2693 

2. Get df_Key. Comment: See Appendix C.3.1. 2694 
3. Z = the Null string. 2695 
4. Let input_string = S1 || S2 || ... || Sm, where the Si are contiguous 128-bit blocks. 2696 
5. For j = 1 to B: 2697 

5.1 S0 = Cj. 2698 
5.2 V = 128-bit block of all zeroes. 2699 
5.3 For i = 0 to m: 2700 

V = Encrypt(df_Key, V ⊕ Si). Comment: Perform the cipher operation 2701 
specified in [FIPS197]. 2702 

5.4 Z = Z || V. 2703 
6. Z = leftmost(Z, number_of_bit_to_return). 2704 
7. Return(Z). 2705 
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Appendix D. List of Symbols, Abbreviations, and Acronyms 2706 

AES 2707 
Advanced Encryption Standard40 2708 

API 2709 
Application Programming Interface 2710 

CAVP 2711 
Cryptographic Algorithm Validation Program 2712 

CDF 2713 
Cumulative Distribution Function 2714 

CMVP 2715 
Cryptographic Module Validation Program 2716 

DRBG 2717 
Deterministic Random Bit Generator41  2718 

FIPS 2719 
Federal Information Processing Standard 2720 

ITL 2721 
Information Technology Laboratory 2722 

MAC 2723 
Message Authentication Code 2724 

NIST 2725 
National Institute of Standards and Technology 2726 

RAM 2727 
Random Access Memory 2728 

RBG 2729 
Random Bit Generator 2730 

SP 2731 
(NIST) Special Publication 2732 

Sub-DRBG 2733 
Subordinate DRBG 2734 

TDEA 2735 
Triple Data Encryption Algorithm42 2736 

XOR 2737 
Exclusive-Or (operation) 2738 

0x 2739 
A string of x zeroes 2740 

x 2741 

 
40 As specified in [FIPS 197]. 
41 Mechanism specified in [SP800-90A]. 
42 As specified in [SP 800-67], Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher. 
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The ceiling of x; the least integer number that is not less than the real number x. For example, 3 = 3, and 5.5 = 6. 2742 

ε 2743 
A positive constant that is assumed to be smaller than 2−32 2744 

E(X) 2745 
The expected value of the random variable X 2746 

len(x) 2747 
The length of x in bits 2748 

min(a, b) 2749 
The minimum of a and b 2750 

output_len 2751 
The bit length of the output block of a cryptographic primitive 2752 

s 2753 
The security strength 2754 

X ⊕ Y 2755 
Boolean bitwise exclusive-or (also bitwise addition modulo 2) of two bitstrings X and Y of the same length 2756 

+ 2757 
Addition over real numbers 2758 

× 2759 
Multiplication over real numbers  2760 
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Appendix E. Glossary 2761 

adversary 2762 
A malicious entity whose goal is to determine, to guess, or to influence the output of an RBG. 2763 

approved 2764 
An algorithm or technique for a specific cryptographic use that is specified in a FIPS or NIST Recommendation, 2765 
adopted in a FIPS or NIST Recommendation, or specified in a list of NIST-approved security functions. 2766 

backtracking resistance 2767 
A property of a DRBG that provides assurance that compromising the current internal state of the DRBG does not 2768 
weaken previously generated outputs. See SP 800-90A for a more complete discussion. (Contrast with prediction 2769 
resistance.) 2770 

biased 2771 
A random variable is said to be biased if values of the finite sample space are selected with unequal probability. 2772 
Contrast with unbiased. 2773 

big-endian format 2774 
A format in which the most significant bytes (the bytes containing the high-order or leftmost bits) are stored in the 2775 
lowest address with the following bytes in sequentially higher addresses. 2776 

bitstring 2777 
An ordered sequence (string) of 0s and 1s. The leftmost bit is the most significant bit. 2778 

block cipher 2779 
A parameterized family of permutations on bitstrings of a fixed length; the parameter that determines the permutation 2780 
is a bitstring called the key. 2781 

conditioning function (external) 2782 
As used in SP 800-90C, a deterministic function that is used to produce a bitstring with full entropy. 2783 

consuming application 2784 
An application that uses random outputs from an RBG. 2785 

cryptographic boundary 2786 
An explicitly defined physical or conceptual perimeter that establishes the physical and/or logical bounds of a 2787 
cryptographic module and contains all of the hardware, software, and/or firmware components of a cryptographic 2788 
module. 2789 

cryptographic module 2790 
The set of hardware, software, and/or firmware that implements cryptographic functions (including cryptographic 2791 
algorithms and key generation) and is contained within the cryptographic boundary. 2792 

deterministic random bit generator (DRBG) 2793 
An RBG that produces random bitstrings by applying a deterministic algorithm to initial seed material. 2794 
Note: A DRBG at least has access to a randomness source initially. 2795 
Note: A portion of the seed material is secret. 2796 

digitization 2797 
The process of generating raw discrete digital values from non-deterministic events (e.g., analog noise sources) within 2798 
a noise source. 2799 

entropy 2800 
A measure of disorder, randomness, or variability in a closed system. 2801 
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Note: The entropy of a random variable X is a mathematical measure of the amount of information gained by an 2802 
observation of X. 2803 
Note: The most common concepts are Shannon entropy and min-entropy. Min-entropy is the measure used in SP 800-2804 
90. 2805 

entropy rate 2806 
The validated rate at which an entropy source provides entropy in terms of bits per entropy-source output (e.g., five 2807 
bits of entropy per eight-bit output sample). 2808 

entropy source 2809 
The combination of a noise source, health tests, and optional conditioning component that produce bitstrings 2810 
containing entropy. A distinction is made between entropy sources having physical noise sources and those having 2811 
non-physical noise sources. 2812 
Note: Health tests are comprised of continuous tests and startup tests. 2813 

fresh entropy 2814 
A bitstring that is output from a non-deterministic randomness source that has not been previously used to generate 2815 
output or has otherwise been made externally available. 2816 
Note: The randomness source should be an entropy source or RBG3 construction. 2817 

full-entropy bitstring 2818 
A bitstring with ideal randomness (i.e., the amount of entropy per bit is equal to 1). This Recommendation assumes 2819 
that a bitstring has full entropy if the entropy rate is at least 1 − ε, where ε is at most 2−32. 2820 

hash function 2821 
A (mathematical) function that maps values from a large (possibly very large) domain into a smaller range. The 2822 
function satisfies the following properties: 2823 

1. (One-way) It is computationally infeasible to find any input that maps to any pre-specified output. 2824 
2. (Collision-free) It is computationally infeasible to find any two distinct inputs that map to the same output. 2825 

health testing 2826 
Testing within an implementation immediately prior to or during normal operations to obtain assurance that the 2827 
implementation continues to perform as implemented and validated. 2828 

ideal randomness source 2829 
The source of an ideal random sequence of bits. Each bit of an ideal random sequence is unpredictable and unbiased, 2830 
with a value that is independent of the values of the other bits in the sequence. Prior to an observation of the sequence, 2831 
the value of each bit is equally likely to be 0 or 1, and the probability that a particular bit will have a particular value 2832 
is unaffected by knowledge of the values of any or all of the other bits. An ideal random sequence of n bits contains n 2833 
bits of entropy. 2834 

independent entropy sources 2835 
Two entropy sources are independent if knowledge of the output of one entropy source provides no information about 2836 
the output of the other entropy source. 2837 

instantiate 2838 
The process of initializing a DRBG with sufficient randomness to generate pseudorandom bits at the desired security 2839 
strength. 2840 

internal state (of a DRBG) 2841 
The collection of all secret and non-secret information about an RBG or entropy source that is stored in memory at a 2842 
given point in time. 2843 
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known-answer test 2844 
A test that uses a fixed input/output pair to detect whether a deterministic component was implemented correctly or 2845 
to detect whether it continues to operate correctly. 2846 

min-entropy 2847 
A lower bound on the entropy of a random variable. The precise formulation for min-entropy is (−log2 max pi) for a 2848 
discrete distribution having probabilities p1, ..., pk. Min-entropy is often used as a measure of the unpredictability of a 2849 
random variable. 2850 

must 2851 
Used in SP 800-90C to indicate a requirement that may not be testable by a CMVP testing lab. Note that must may 2852 
be coupled with not to become must not. 2853 

noise source 2854 
A source of unpredictable data that outputs raw discrete digital values. The digitization mechanism is considered part 2855 
of the noise source. A distinction is made between physical noise sources and non-physical noise sources. 2856 

non-physical entropy source 2857 
An entropy source whose primary noise source is non-physical. 2858 

non-physical noise source 2859 
A noise source that typically exploits system data and/or user interaction to produce digitized random data. 2860 

non-validated entropy source 2861 
An entropy source that has not been validated by the CMVP as conforming to SP 800-90B. 2862 

null string 2863 
An empty bitstring. 2864 

personalization string 2865 
An optional input value to a DRBG during instantiation to make one DRBG instantiation behave differently from 2866 
other instantiations. 2867 

physical entropy source 2868 
An entropy source whose primary noise source is physical. 2869 

physical noise source 2870 
A noise source that exploits physical phenomena (e.g., thermal noise, shot noise, jitter, metastability, radioactive 2871 
decay, etc.) from dedicated hardware designs (using diodes, ring oscillators, etc.) or physical experiments to produce 2872 
digitized random data. 2873 

prediction resistance 2874 
A property of a DRBG that provides assurance that compromising the current internal state of the DRBG does not 2875 
allow future DRBG outputs to be predicted past the point where the DRBG has been reseeded with sufficient entropy. 2876 
See SP 800-90A for a more complete discussion. (Contrast with backtracking resistance.) 2877 

pseudocode 2878 
An informal, high-level description of a computer program, algorithm, or function that resembles a simplified 2879 
programming language. 2880 

random bit generator (RBG) 2881 
A device or algorithm that outputs a random sequence that is effectively indistinguishable from statistically 2882 
independent and unbiased bits. 2883 

randomness 2884 
As used in this Recommendation, the unpredictability of a bitstring. If the randomness is produced by a non-deterministic 2885 
source (e.g., an entropy source or RBG3 construction), the unpredictability is dependent on the quality of the source. If 2886 
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the randomness is produced by a deterministic source (e.g., a DRBG), the unpredictability is based on the capability of 2887 
an adversary to break the cryptographic algorithm for producing the pseudorandom bitstring. 2888 

randomness input 2889 
An input bitstring from a randomness source that provides an assessed minimum amount of randomness (e.g., entropy) 2890 
for a DRBG. See min-entropy. 2891 

randomness source 2892 
A source of randomness for an RBG. The randomness source may be an entropy source or an RBG construction. 2893 

RBG1 construction 2894 
An RBG construction with the DRBG and the randomness source in separate cryptographic modules. 2895 

RBG2 construction 2896 
An RBG construction with one or more entropy sources and a DRBG within the same cryptographic module. This 2897 
RBG construction does not provide full-entropy output. 2898 

RBG2(NP) construction 2899 
A non-physical RBG2 construction. An RBG2 construction that obtains entropy from one or more validated non-2900 
physical entropy sources and possibly from one or more validated physical entropy sources. This RBG construction 2901 
does not provide full-entropy output. 2902 

RBG2(P) construction 2903 
A physical RBG2 construction. An RBG construction that includes a DRBG and one or more entropy sources in the 2904 
same cryptographic module. Only the entropy from validated physical entropy sources is counted when fulfilling an 2905 
entropy request within the RBG. This RBG construction does not provide full-entropy output. 2906 

RBG3 construction 2907 
An RBG construction that includes a DRBG and one or more entropy sources in the same cryptographic module. 2908 
When working properly, bitstrings that have full entropy are produced. Sometimes called a non-deterministic random 2909 
bit generator (NRBG) or true random number (or bit) generator. 2910 

reseed 2911 
To refresh the internal state of a DRBG with seed material. The seed material should contain sufficient entropy to 2912 
allow recovery from a possible compromise. 2913 

sample space 2914 
The set of all possible outcomes of an experiment. 2915 

secure channel 2916 
A physically protected secure path for transferring data between two cryptographic modules that ensures 2917 
confidentiality, integrity, and replay protection as well as mutual authentication between the modules. 2918 

security boundary 2919 
For an entropy source: A conceptual boundary that is used to assess the amount of entropy provided by the values 2920 
output from the entropy source. The entropy assessment is performed under the assumption that any observer 2921 
(including any adversary) is outside of that boundary during normal operation. 2922 
For a DRBG: A conceptual boundary that contains all of the DRBG functions and internal states required for a DRBG. 2923 
For an RBG: A conceptual boundary that is defined with respect to one or more threat models that includes an 2924 
assessment of the applicability of an attack and the potential harm caused by the attack. 2925 

security strength 2926 
A number associated with the amount of work (i.e., the number of basic operations of some sort) that is required to 2927 
“break” a cryptographic algorithm or system in some way. In this Recommendation, the security strength is specified 2928 
in bits and is a specific value from the set {128, 192, 256}. If the security strength associated with an algorithm or 2929 
system is s bits, then it is expected that (roughly) 2s basic operations are required to break it. 2930 
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Note: This is a classical definition that does not consider quantum attacks. This definition will be revised to address 2931 
quantum issues in the future. 2932 

seed 2933 
To initialize the internal state of a DRBG with seed material. The seed material should contain sufficient entropy to 2934 
meet security requirements. 2935 

seed material 2936 
A bitstring that is used as input to a DRBG. The seed material determines a portion of the internal state of the DRBG. 2937 

seedlife 2938 
The period of time between instantiating or reseeding a DRBG with seed material and reseeding the DRBG with seed 2939 
material containing fresh entropy or uninstantiation of the DRBG. 2940 

shall 2941 
The term used to indicate a requirement that is testable by a testing lab. Shall may be coupled with not to become 2942 
shall not. See Testable requirement. 2943 

should 2944 
The term used to indicate an important recommendation. Ignoring the recommendation could result in undesirable 2945 
results. Note that should may be coupled with not to become should not. 2946 

state handle 2947 
A pointer to the internal state information for a particular DRBG instantiation. 2948 

subordinate DRBG (sub-DRBG) 2949 
A DRBG that is instantiated by an RBG1 construction. 2950 

support a security strength (by a DRBG) 2951 
The DRBG has been instantiated at a security strength that is equal to or greater than the security strength requested 2952 
for the generation of random bits. 2953 

targeted security strength 2954 
The security strength that is intended to be supported by one or more implementation-related choices (e.g., algorithms, 2955 
cryptographic primitives, auxiliary functions, parameter sizes, and/or actual parameters). 2956 

testable requirement 2957 
A requirement that can be tested for compliance by a testing lab via operational testing, a code review, or a review of 2958 
relevant documentation provided for validation. A testable requirement is indicated using a shall statement. 2959 

threat model 2960 
A description of a set of security aspects that need to be considered. A threat model can be defined by listing a set of 2961 
possible attacks along with the probability of success and the potential harm from each attack. 2962 

unbiased 2963 
A random variable is said to be unbiased if all values of the finite sample space are chosen with the same 2964 
probability. Contrast with biased. 2965 

uninstantiate 2966 
The termination of a DRBG instantiation. 2967 

validated entropy source 2968 
An entropy source that has been successfully validated by the CAVP and CMVP for conformance to SP 800-90B. 2969 
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