
UNCLASSIFIED
Pre-Decisional/DRAFT

UNCLASSIFIED 1
Pre-Decisional/DRAFT

Unclassified
Pre-Decisional/DRAFT

DoD Enterprise
DevSecOps Reference
Design:
Multi-Cluster CNC F Kubernetes

September 2021

Version 0.9

This document automatically expires 1-year from publication date unless revised.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

Unclassified
Pre-Decisional/DRAFT

dkluzik
Cleared

UNCLASSIFIED
Pre-Decisional/DRAFT

Document Set Reference

UNCLASSIFIED
Pre-Decisional/DRAFT

i

__

__

UNCLASSIFIED
Pre-Decisional/DRAFT

Document Approvals

Approved by:

Paul B. Puckett III
Director, Enterprise Cloud Management Agency
HQDA CIO

Jason R. Weiss
DoD CIO – Information Enterprise Directorate

UNCLASSIFIED
Pre-Decisional/DRAFT

ii

UNCLASSIFIED
Pre-Decisional/DRAFT

Trademark Information
Names, products, and services referenced within this document may be the trade names,
trademarks, or service marks of their respective owners. References to commercial vendors and
their products or services are provided strictly as a convenience to our readers, and do not
constitute or imply endorsement by the Department of any non-Federal entity, event, product,
service, or enterprise.

UNCLASSIFIED
Pre-Decisional/DRAFT

iii

UNCLASSIFIED
Pre-Decisional/DRAFT

Contents
1 Introduction... 1

1.1 Background.. 1

1.2 Purpose.. 1

1.3 DevSecOps Compatibility .. 2

1.4 Scope... 3

1.5 Document Overview... 3

2 Assumptions and Principles.. 4

3 Software Factory Interconnects .. 5

3.1 Immutable Infrastructure .. 7

3.2 Continuous Reconciliation of Components .. 9

3.3 Multi-Cluster Kubernetes.. 11

3.4 Secure Supply Chain Provenance ... 13

3.5 Production Ready Kubernetes, even in Development...................................... 15

4 Additional Tools and Activities .. 17

UNCLASSIFIED
Pre-Decisional/DRAFT

iv

UNCLASSIFIED
Pre-Decisional/DRAFT

Figures
Figure 1: Multi-Cluster Kubernetes Reference Design Interconnects.............................. 7

Figure 2: Cluster Creation and Enforcement via Continuous Reconciliation 10

Figure 3: Multi-Cluster Kubernetes relies on a Global Control Plane 12

Tables
Table 1: Tools Spanning all Phases.. 18

Table 2: Security Activities Summary and Cross-Reference ... 19

Table 3: Build Phase Tools ... 21

Table 4: Build Phase Activities .. 23

Table 5: Test Phase Tools .. 24

Table 6: Test Phase Activities ... 25

Table 7: Release and Delivery Phase Tools ... 26

Table 8: Release and Delivery Phase Activities .. 26

Table 9: Deploy Phase Tools .. 27

Table 10: Deploy Phase Activities... 29

UNCLASSIFIED
Pre-Decisional/DRAFT

v

UNCLASSIFIED
Pre-Decisional/DRAFT

1 Introduction

1.1 Background
The Department of Defense (DoD) is at a defining moment as the services pivot to deliver
cloud-based services, adopt cloud-native software development practices, and DevSecOps
methodologies that serve to modernize the DoD in preparation for the digital battlefield and
competition with near-peer threats. The CNCF Multi-Cluster Kubernetes Reference Design
provides the DoD with a model and guidance on building and deploying cloud-native software
on Kubernetes to deliver measurable software-based outcomes to the mission with resilience
and at the speed of relevance.

1.2 Purpose
The CNCF Multi-Cluster Kubernetes Reference Design is part of the DoD Enterprise
DevSecOps Reference Design family and adheres to the structure of other DoD Reference
Design documents. This reference design is intended to serve as architectural and design
guidance to DoD organizations that intend to build and deploy cloud-native software on
Kubernetes. This reference design describes the verifiable attributes and lists the preferred and
required set of tools and activities across all phases of the DevSecOps lifecycle.

For brevity, the use of the term ‘Kubernetes’ or ‘K8s’ throughout the remainder of this
document must be interpreted as a Kubernetes implementation that properly submitted
software conformance testing results to the CNCF for review and corresponding
certification. The CNCF lists over 90 Certified Kubernetes offerings that meet software
conformation expectations. 1

The target audiences for this document include:

• DoD Enterprise DevSecOps capability providers who build DoD Enterprise DevSecOps
hardened containers and provide a DevSecOps hardened container access service.

• DoD Enterprise DevSecOps capability providers who build DoD Enterprise DevSecOps
platforms and platform baselines and provide a DevSecOps platform service.

• DoD organization DevSecOps teams who manage (instantiate and maintain)
DevSecOps software factories and associated pipelines for its programs.

• DoD program application teams who use DevSecOps software factories to develop,
secure, and operate mission applications.

• Authorizing Officials (AOs).

1 Cloud Native Computing Foundation, “Software conformance (Certified Kubernetes,” [ONLINE] Available:
https://www.cncf.io/certification/software-conformance/. [Accessed 8 February 2021].

UNCLASSIFIED
Pre-Decisional/DRAFT

1

https://www.cncf.io/certification/software-conformance/

UNCLASSIFIED
Pre-Decisional/DRAFT

This reference design aligns with these reference documents:

• DoD Digital Modernization Strategy.2

• DoD Cloud Computing Strategy.3

• DISA Cloud Computing Security Requirements Guide.4

• DISA Secure Cloud Computing Architecture (SCCA).5

• Presidential Executive Order on Strengthening the Cybersecurity of Federal Networks
and Critical Infrastructure (Executive Order (EO) 1380).6

• National Institute of Standards and Technology (NIST) Cybersecurity Framework.7

• NIST Application Container Security Guide.8

• Kubernetes STIG.9

• DISA Container Hardening Process Guide.10

1.3 DevSecOps Compatibility
This reference design asserts version compatibility with these supporting DevSecOps
documents:

• DoD Enterprise DevSecOps Strategy Guide, Version 2.1.

• DevSecOps Tools and Activities Guidebook, Version 2.1.

• U.S. Army DevSecOps Playbook, Version 1.1.11

2 DoD CIO, DoD Digital Modernization Strategy, Pentagon: Department of Defense, 2019.
3 Department of Defense, "DoD Cloud Computing Strategy," December 2018.
4 Defense Information Systems Agency, “Department of Defense Cloud Computing Security Requirements Guide,
Version 1, Release 3,” March 6, 2017
5 Defense Information Systems Agency, "DoD Secure Cloud Computing Architecture (SCCA) Functional
Requirements," January 31, 2017.
6 White House, "Presidential Executive Order on Strengthening the Cybersecurity of Federal Networks and Critical
Infrastructure (EO 1380)," May 11, 2017.
7 National Institute of Standards and Technology, Framework for Improving Critical Infrastructure Cybersecurity,
2018.
8 National Institute of Standards and Technology, "NIST Special Publication 800-190, Application Container Security
Guide," September 2017.
9 Defense Information Systems Agency, “Kubernetes STIG, Version 1, Release 2,” July 26, 2021.
10 Defense Information Systems Agency, “Container Hardening Process Guide, Version 1, Release 1,” October 15,
2020
11 Army Enterprise Cloud Management Agency, “Army DevSecOps Playbook, v1.1,” [Online] Available at:
https://www.milsuite.mil/book/docs/DOC-1050076.

UNCLASSIFIED
Pre-Decisional/DRAFT

2

https://www.milsuite.mil/book/docs/DOC-1050076

UNCLASSIFIED
Pre-Decisional/DRAFT

1.4 Scope
The CNCF Multi-Cluster Kubernetes Reference Design is a blue-print for designing a secure
application platform for DoD organizations. This platform will allow these organizations to
interconnect and share infrastructure services while maintaining the independence and flexibility
to enact on their unique missions. While this design provides options to centralize management
services, such management plane points can be forward deployed based on the needs of the
truly unique and organic composition of DoD networks, which includes disconnected, hard to
access, and highly secured networks. By allowing flexibility for Authorizing Officials (AO) and
mission owners to own, share, or borrow components of this design, the design naturally
enables progressive adoption for workloads that might be in a state of migration, both in their
hosting locations and technical architectures.

All components of this design can be elastically provisioned and dynamically scaled in their
installation while also taking advantage of building upon existing installations, either in service
capabilities or workload hosting. The design accommodates for workload mobility, cloud
migration, on-premises migration, and continued portability across various hosting locations
(with special consideration including edge and tactical networks).

Each recommendation in this design relies heavily on the concept of cloud native computing,
which “empowers organizations to build and run scalable applications in modern, dynamic
environments such as public, private, and hybrid clouds.”12 The platform utilizes containers, a
software packaging abstraction that focuses on application components and their
dependencies. To run distributed applications at scale using containers, Kubernetes is used as
a foundational substrate across the environments. In addition to providing a consistent
abstraction for computing resource allocation, Kubernetes has become the industry standard for
orchestration and operation of modern distributed applications. Alternative form factors to
containers can also be hosted if required.

This document does not address strategy, policy, or acquisition.

1.5 Document Overview
The documentation is organized as follows:

• Section 1 describes the background, purpose and scope of this document.

• Section 2 identifies the assumptions relating to this design.

• Section 3 describes the DevSecOps software factory interconnects unique to a multi-
cluster Kubernetes architecture.

• Section 4 describes the software factory design.

• Section 5 captures the additional required and preferred tools and activities, building
upon the DevSecOps Tools and Activities Guidebook as a baseline.

12 CNCF Technical Oversight Committee, “CNCF Cloud Native Definition, v1.0,” [Online] Available at:
https://github.com/cncf/toc/blob/main/DEFINITION.md.

UNCLASSIFIED
Pre-Decisional/DRAFT

3

https://github.com/cncf/toc/blob/main/DEFINITION.md

UNCLASSIFIED
Pre-Decisional/DRAFT

2 Assumptions and Principles
This reference design makes the following assumptions:

• Network boundaries are within an existing accreditation boundary with a private IP
space.

• Communication through network boundaries, especially on DoD networks, might require
additional cybersecurity, coordination and configuration.

• Existing accreditation boundaries should have an accredited Virtual Data Center
Managed Services (VDMS), this is also referred to as delegated authentication and this
VDMS providing industry standard authentication is assumed. Alternative technologies
that leverage industry standard authentication can also be used if they meet Defense
Information Systems Agency’s (DISA) Secure Cloud Computing Architecture (SCCA)
requirements.13

• Adoption of the ecosystem design can in some instances be achieved through different
alternative choices of software tools. The reference design makes an effort to
recommend the most mature and suitable tools for the core design principles as of the
time of this writing, along with tradeoffs and decision making criteria when evaluating a
particular technology selection over the other.

• This reference design will be updated as tools and design principles evolve in industry.

• The Software Factory Interconnects and Detailed Descriptions of Core Principles are not
fully prescriptive about tool selection and are presented as the means to adopt the
model. The later section on Creating an Ecosystem will illustrate how the Army set about
building out an implementation that is compliant with this reference design, and offer the
reader recommendations of some open source tooling that is not required for adoption of
the design.

• Common shared services within an existing network boundary can be leveraged to
reduce the overall burden of accreditation and maintenance. This is encouraged for
Foundational Services and Enterprise Services (see the Army Cloud Plan, Appendix A
for examples of some of these services).14

• The selected Kubernetes implementation must pass the Kubernetes conformance test
suite and support lifecycle management through the Kubernetes SIG Cluster Lifecycle
Cluster API project in order to fully benefit from certain control mappings.

13 Defense Information Systems Agency, “Secure Cloud Computing Architecture,” [Online] Available at:
https://storefront.disa.mil/kinetic/disa/service-catalog#/forms/secure-cloud-computing-architecture.
14 US Army Chief Information Officer, “U.S. Army Cloud Plan,” [Online] Available at:
https://www.army.mil/standto/archive/2020/10/09/.

UNCLASSIFIED 4
Pre-Decisional/DRAFT

https://storefront.disa.mil/kinetic/disa/service-catalog#/forms/secure-cloud-computing-architecture
https://www.army.mil/standto/archive/2020/10/09/

UNCLASSIFIED
Pre-Decisional/DRAFT

• Product lock-in into the Kubernetes API and its overall ecosystem is openly recognized.

It is critically important to avoid the proprietary APIs that are sometimes added
by vendors on top of the existing CNCF Kubernetes APIs. These APIs are not
portable and may create vendor lock-in at the application level, not just at the
software factory level!

3 Software Factory Interconnects
The DoD Enterprise DevSecOps Fundamentals describes a DevSecOps platform as: “a
multi-tenant environment consisting of three distinct layers: Infrastructure,
Platform/Software Factory, and Application(s). Each reference design is expected to
identify its unique set of tools and activities that exist at the boundaries between the
discrete layers, known as Reference Design Interconnects. Well-defined interconnects
in a reference design enable tailoring of the software factory design, while ensuring that
core capabilities of the software factory remain intact.”

The core principles of the platform for the CNCF Multi-Cluster Kubernetes Reference
Design are designed to be further enhanced with future reference designs for higher
levels of abstraction on top of Kubernetes, and therefore this design focuses on the
foundational layers rather than those closer to the application level.

A DevSecOps Ecosystem on Kubernetes must demonstrate that the following verifiable
attributes have been programmatically implemented:

● Immutable Infrastructure: Create infrastructure that is scaled up, destroyed,
and recreated rather than persisted.

● Continuous Reconciliation: Microservices and software components are
installed to enable rapid patching, prevent configuration drift, and alignment with
approved baselines. The configuration is policy-driven to enable guardrails and
self-service layering.

● Multi-Cluster Kubernetes: The principle of multiple relatively small clusters
compared to a single super cluster further reduces blast radiuses, allows better
isolation, and enables better distribution of resources. Distributed resources allow
better collaboration across organizations and disparate environments. Multiple
clusters thrive on composable toolchains; when setup and configuration of the
environment is done declaratively through intent driven APIs, additional
management burden is not created. Clusters effectively communicate workloads
running on top to coordinate more complex deployment requirements.

○ Smaller production locations and minimalist edge environments: The
ability to distribute workloads means production environments can be

UNCLASSIFIED 5
Pre-Decisional/DRAFT

UNCLASSIFIED
Pre-Decisional/DRAFT

disconnected, in a different location from development, and still have high
confidence on consistent environments.

○ Secure inter-service communications: Communications between and
within clusters are authenticated and encrypted.

● Provenance in Secure Supply Chain: Third party software is verified and
documented; containers and software originating from upstream locations meet
DoD requirements that include vendor-support where applicable, continually
maintained from upstream, updated repeatedly, and strive to have binding
agreements that software is maintained. Stewardship of this supply chain is
assured to meet DoD ongoing maintenance needs.

○ Scanned and verified images: No in-place patching. All artifacts to be
deployed with special consideration to container images are to be
modularly built with layers that can be individually updated, scanned, and
verified.

Production Ready Kubernetes, even in Development: Complete operating
environments: clusters that possess the necessary additional components deployed in a
thoughtful way to achieve compliance needs, even when deployed into development or
lab environments, to create a consistent environment with the necessary oversight for
authorizing officials and security teams. Minimize operational overheads and complexity
while going above and beyond.

Figure 1: Multi-Cluster Kubernetes Reference Design Interconnects visually depicts these
specific interconnects.

UNCLASSIFIED
Pre-Decisional/DRAFT

6

UNCLASSIFIED
Pre-Decisional/DRAFT

Figure 1: Multi-Cluster Kubernetes Reference Design Interconnects

Each of these interconnects will be described fully next.

3.1 Immutable Infrastructure

In a modern platform there are numerous layers of infrastructure and abstraction that
teams can operate at - from all the way down to the bare metal to virtual constructs like
Kubernetes services. Shrinking this sphere of concern is of utmost importance for
operations teams to be able to effectively maintain and harden their environments.
Immutable infrastructure creates the basis on which consistent underlying environments
can be provisioned for the platform to operate on and deliver mission value.

Kubernetes runs on top of worker machines, called nodes, that run traditional operating
systems to provide the underlying capabilities containerized applications need. Since
containers are not operating systems, an environment still has to take care of proper
hardening, compliance, and maintenance on these underlying nodes. Cluster API is a
Kubernetes sub-project focused on providing declarative APIs and tooling to simplify
provisioning, upgrading, and operating multiple Kubernetes clusters. Cluster API
facilitates provisioning the underlying nodes in a declarative, immutable manner that
greatly facilitates immutable approaches to infrastructure management.

Mutating operating systems in place creates risk that changes will impact running
workloads, allow configuration drift, or permit advanced persistent threats. Leveraging
Kubernetes ability to cordon and remove underlying nodes, along with proper

UNCLASSIFIED
Pre-Decisional/DRAFT

7

UNCLASSIFIED
Pre-Decisional/DRAFT

accountability for disruption budgets across tenants, enables delegating of upgrading
underlying systems more readily to the environment’s control. As a result, operating
systems are more easily patched while providing necessary assurances that any drift in
configuration is periodically reconciled.

New Virtual Machines are instantiated from a known good state template that has been
cleaned, including the latest updated packages, General Purpose Operating System
Security Requirements Guide (SRG, and any relevant Security Technical
Implementation Guides (STIG) baselines, and brought in to replace the old virtual
machines.15 This operation occurs prior to removing the old virtual machines, creating a
scale up operation prior to scaling down, so running workloads are given the necessary
time to schedule over to a new machine. By managing this from a central source, even
when multiple Kubernetes clusters are deployed, every Virtual Machine across the
entire network can be properly updated on a prearranged scheduled basis to meet the
requirements of a given Authorizing Official’s posture.

Kubernetes running on top of these nodes follows a similar pattern with the higher level
abstractions, like Deployments, StatefulSets, Jobs, and DaemonSets. These constructs
leverage immutable container images instantiated with similar security controls applied
to prevent mutability of running workloads. By mounting configuration into these
ephemeral environments as read-only there is significantly better control over what is
visible from the requester and the resources are given access to the information on a
per-session basis. Nodes that do not require access to secrets or other environment
variables relevant to the workloads the node is running are not able to access that
information.

As virtual machines are rotated in this fashion, the underlying authentication credentials
that allow nodes to communicate with the Kubernetes control plane are similarly
refreshed. Newly scheduled pods on these nodes authenticate through these refreshed
credentials. The node's credentials provide access to the underlying storage for the
configuration necessary for all workloads.

This process also greatly enhances the security posture of Configuration Management
(CM) and Contingency Planning (CP) in the NIST SP 800-53 family. Combining this
capability with continuous reconciliation of components gives the organization fully
patched systems on regular intervals. A lot of the concepts mentioned in this section are

15 Defense Information Systems Agency, “General Purpose Operating System Security Requirements
Guide Technology Overview, v2.1” [Online] Available at: https://dl.dod.cyber.mil/wp-
content/uploads/stigs/zip/U_General_Purpose_Operating_System_V2R1_SRG.zip.

UNCLASSIFIED
Pre-Decisional/DRAFT

8

https://dl.dod.cyber.mil/wp-content/uploads/stigs/zip/U_General_Purpose_Operating_System_V2R1_SRG.zip
https://dl.dod.cyber.mil/wp-content/uploads/stigs/zip/U_General_Purpose_Operating_System_V2R1_SRG.zip

UNCLASSIFIED
Pre-Decisional/DRAFT

also requirements for proper implementations of Zero-Trust Architectures based on
16,17 NIST SP 800-207.

3.2 Continuous Reconciliation of Components

Modern distributed systems, especially those leveraging microservices, typically have a
larger deployment topology than a single binary. For example, a Source Code
Repository may include databases, caching mechanisms, proxy servers, etc. Installation
and configuration of these components is a complicated and error prone process. A
successful deployment (and maintenance) process needs to address the following
concerns:

● There must be an obvious, single, trusted process to run the
deployment/updates, complete with appropriate access controls. This can be
called the Control Plane.

● There must be a means to validate the processes and artifacts used in the
deployment.

● There must be a method to allow granular configuration on where the
components are deployed.

● There must be a method to allow per-deployment customization of the installed
software beyond vendor-provided templates.

Recent trends in industry guide organizations towards concepts such as Infrastructure
as Code (IaC) or Configuration as Code. These trends, while useful, fail to consider the
end user. For example, a playbook, written in some automation framework, that stands
up a given environment is of little use to an end user who doesn’t know where or how to
run that playbook (i.e. there is no obvious answer to the question “How do I run this?”).
It is also difficult to ascertain the level, and duration of, permissions required to run the
playbook.

A better approach is one in which we are continuously enforcing the state of the system,
a process known as Continuous Reconciliation. Figure 2 visualizes cluster creation and
enforcement using continuous reconciliation. If we place the Kubernetes component
configurations in a central repository (considered as a “source of truth”), we can

16 National Institute of Standards and Technology, “Security and Privacy Controls for Information Systems and
Organizations (SP 800-53, Revision 5),” [Online] Available at: https://csrc.nist.gov/publications/detail/sp/800-53/rev-
5/final.
17 National Institute of Standards and Technology, “Zero Trust Architecture (SP 800-207),” [Online] Available at:
https://csrc.nist.gov/publications/detail/sp/800-207/final.

UNCLASSIFIED
Pre-Decisional/DRAFT

9

https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/final
https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/final
https://csrc.nist.gov/publications/detail/sp/800-207/final

UNCLASSIFIED
Pre-Decisional/DRAFT

configure each cluster to refer to this central configuration repository. Each cluster,
independently, will work to ensure that its own configuration is the same as that defined
in the central repository. When clusters are created, the standard baseline deployment
and configuration is pulled from the central repository. After creation, the same central
repository is continuously referenced and the central configurations are enforced on the
cluster. This arrangement means troubleshooting and customization is easier to
achieve, while still maintaining compliance with a central set of instructions. Such an
approach also provides a more reliable mechanism to facilitate upgrades and ownership
of those components' health while preventing unauthorized modification.

Figure 2: Cluster Creation and Enforcement via Continuous Reconciliation

Continuous Reconciliation accounts for the deployment and maintenance steps better
than a repository that simply holds configuration (i.e. a standalone playbook), and forces
an organization to centralize and automate the process for running their configuration
on the environment. By automating this process, it can be repeated and leveraged to
prevent configuration drift.

Configuration of components can be bundled with the Kubernetes manifests necessary
to run those configurations, whether they are custom built, vendor provided, or open
source. Additionally, these bundles can be validated, signed, and stored in a repository.
The repository can be relocated to different environments while maintaining the
signature for validation in a decentralized manner.

Finally, while vendor-provided hooks exist for customization, the author of a given
Kubernetes component cannot predict the needs of every end user. There will be cases
where customization is needed but the author-supplied manifest does not allow for this.
In order to address this concern, the same workflow mentioned above can inject, or
overlay, additional configurations on top of the manifests. This per-site customization

UNCLASSIFIED
Pre-Decisional/DRAFT

10

UNCLASSIFIED
Pre-Decisional/DRAFT

strikes the balance of honoring central management while providing an agile method for
responding to unknown circumstances in the field.

Continuous Reconciliation of Components can occur from multiple focal points in an
environment, as by design it is decentralized in nature. For individual teams or areas of
responsibility within this environment, the centralizing of these components naturally
becomes a regional control plane, or a team centered control plane. If a single team
has responsibility for the majority of the components in a given environment (for small
footprint, or small teams) then that centralized control plane would form a regional
control plane.

3.3 Multi-Cluster Kubernetes

DoD environments are numerous and complicated: some enclaves have limited or zero
connectivity to egress out to the public internet. These restrictions are emphasized for
enclaves on the Department of Defense Information Network (DODIN). Due to the
sensitive nature of the data that resides inside of these environments, there is higher
regulation for any requests to egress or ingress into the network, further complicated by
the confusing Ports, Protocols, and Services Management (PPSM) process.18

Additional regulations create friction and barriers to entry for new organizations trying to
stand up development environments, operational environments, and create additional
hurdles for timely patching and maintenance on environments.

Multi-Cluster Kubernetes is a design paradigm to provide reduced friction on bringing
the correct tools to the correct environments. Figure 3 depicts the use of a Global
Control Plane alongside a secure supply chain process to continuously reconcile one or
more regional management clusters. By creating a global view across all of the
enclaves, workloads and developer tooling can be instantiated into the areas that make
the most sense, and establish peering and connectivity around the complexity of the
DoD environments. Leveraging industry standard caching and information transfer for
artifacts and fully secured connections when possible, workloads are able to follow a
path to production that might result in workloads running in disconnected or limited
connectivity environments. Developers are able to develop code, visualize testing, and
push workloads through numerous services that might be hosted in cloud environments,
data centers, or tactical networks. Using a common substrate across these
environments enables elasticity and better efficiency, while at the same time enabling
Authorizing Officials (AO) to maintain full control over their enclaves.

18 Defense Information Systems Agency, “Enterprise Connections Ports, Protocols, and Services
Management,” [Online] Available at: https://public.cyber.mil/connect/ppsm/.

UNCLASSIFIED
Pre-Decisional/DRAFT

11

https://public.cyber.mil/connect/ppsm/

UNCLASSIFIED
Pre-Decisional/DRAFT

Kubernetes is a distributed system, meaning that elasticity and on-demand capabilities
are possible in a localized fashion (in a single cloud environment or a single
datacenter). Kubernetes provides an Application Programming Interfaces (API) that
enables consumption of these on-demand capabilities. In addition, the declarative and
intent driven nature of the Kubernetes API means that work can be described at rest
more efficiently, so that when a cluster becomes available it can be equipped with the
information needed to perform a task. More on this is described in the previous section
on Continuous Reconciliation of Components. While environments that have
nonstandard forms of communication cannot be continuously reconciled against, a
fallback pattern is to relocate this information effectively (see next section on
Provenance in Secure Supply Chain) so that the environments can still stand up and
participate in a larger ecosystem of capabilities.

Figure 3: Multi-Cluster Kubernetes relies on a Global Control Plane

Kubernetes APIs are exposed to different users based on Role-Based Access Control
(RBAC) through the delegated authentication, enabling a self-service and API driven
ecosystem. This enables a larger classification of users, rather than just privileged and
non-privileged. For example, the Army DevSecOps Playbook asserts enough controls
and guardrails can be implemented to enable non-privileged developers appropriate
access to their source code and the path to production to reach all security and
compliance requirements. Engineers are able to push new changes to subsequent
environments because there is enough visibility, testing, and predictability for security
and authorizing officials to understand the risk posture each push to the next
environment would create.

UNCLASSIFIED
Pre-Decisional/DRAFT

12

UNCLASSIFIED
Pre-Decisional/DRAFT

This design structure posits that the individual secure components of a software factory
can be scaled and instantiated independently if those services are able to maintain
secure connectivity. For example, containers require a hosting cluster for various stages
in a software development cycle, but the creation of those containers could occur in a
central location. This would allow certain mission owners that operate in a Denied,
Disrupted, Intermittent, and Limited (DDIL) environments for production to build and
develop their containers in a cloud environment while deploying production workloads
onto a cluster hosted in that DDIL environment. As a direct result, mission owners
reduce duplication of software factory development areas and gain the benefit of
flexibility. This also contributes to a much smaller footprint for production environments,
which is sometimes crucial when that environment is DDIL.

Secure Inter-Service Communication

It is critically important to avoid the proprietary APIs that are sometimes added by vendors on
top of the existing CNCF Kubernetes APIs. These APIs are not portable and may create
vendor lock-in at the application level, not just at the software factory level.

3.4 Secure Supply Chain Provenance

One of the critical aspects of modern application security is understanding all of the
components that come together to create a distributed application. Recent security
breaches have been caused by everything from misconfigured data service interfaces to
maliciously altered code injected into an application build. DoD applications are
especially sensitive to security vulnerabilities, and require stringent guardrails against
risk that do not stifle developer productivity and innovation. NIST has a large effort on
informing guidance on the entirety of supply chain securit and this section is meant as
supplemental guidance in the frame of DoD DevSecOps methodologies19. Provenance
in Secure Supply Chain is meant to address specifically the origins of components when
taken in an immutable environment and making sure that what is being written earlier in
the process is preserved, scanned, and verified through to the later steps in the
software development process.

Most existing software environments rely on a combination of developer discipline and
“review by committee” to create a safe supply chain. Unfortunately, even with the best
of intentions, this approach runs counter to the needs of agile software development

19 National Institute of Standards and Technology, “Improving the Nation’s Cybersecurity: NIST’s
Responsibilities under the Executive Order,” [Online] Available at: https://www.nist.gov/itl/executive-order-
improving-nations-cybersecurity.

UNCLASSIFIED
Pre-Decisional/DRAFT

13

https://www.nist.gov/itl/executive-order-improving-nations-cybersecurity
https://www.nist.gov/itl/executive-order-improving-nations-cybersecurity

UNCLASSIFIED
Pre-Decisional/DRAFT

approaches. In many large organizations, security acceptance reviews can be—by far—
the biggest constraint in the software release process.

The CNCF Multi-Cluster Kubernetes Reference Design provides additional secure
supply chain guidelines beyond existing guidance:

● Source curation: Components such as application source code, libraries, and
shared services, must be vetted before the component is integrated into the
application. Curated repositories of software build components and approved
services (such as database or messaging services) can be combined with
application code and image scanning to help automatically shift key security
activity to the beginning of the application development process. Furthermore, an
advanced software supply chain can make sure security patches are applied
quickly and automatically across a large and complex application portfolio.

● Artifact protection: Elements moving through the supply chain must be
immutable and verifiable, through techniques such as source code and container
image signing. The supply chain system must protect against malicious parties
modifying code or images, without the application team’s knowledge. The supply
chain should also protect against alteration of software process attestations (see
next bullet), configuration files, and anything else that might make the application
more vulnerable to a breach or attack.

● Attestation: One of the really powerful things a modern secure software supply
chain can do is provide verifiable documentation of application composition,
process steps taken to build and deploy the application, and test and vulnerability
scanning output. These artifacts are then always instantly available for audit and
review at any point during or after the application lifecycle. In fact, some aspects
of auditing and verification can be automated using supply chain attestation
artifacts.

To address these needs, additional guidelines to the software supply chain will consist
of:

● Curated inputs from commercial vendors, open source communities, and even
the DoD itself (and its agency partners).

● Process automation for both development and operations processes, including
building, testing, scanning, and deploying software components.

● Observability and verification tools (including security tools such as the
aforementioned vulnerability scanners, governance automation, etc.)

UNCLASSIFIED
Pre-Decisional/DRAFT

14

UNCLASSIFIED
Pre-Decisional/DRAFT

Curated inputs can be handled a number of ways, but the selective use of cloud native
buildpacks, service brokers, and private source code management repositories (such as
git) enable the DoD to mitigate risk without having to manage every single input
individually. When managing these inputs consideration should be taken for
compliance needs like NIST SP 800-53 and NIST SP 800-190. 20 There are other DISA
references that apply NIST 800-53 controls to containers, such as section 2 and 3 in the
DevSecOps Enterprise Container Image Creation and Deployment Guide, but this
reference design does not expect adherence to the other examples in that guide and
supports following any process that aligns with the intended outputs of OCI
containers.21 Similar guidance can be found in the FedRAMP Vulnerability Scanning
Requirements for Containers22.

Process automation is typically applied to the source code build-test-deploy cycle, but
the larger supply chain can include everything from buildpack management to
vulnerability patching in production. Tools that orchestrate steps can be combined with
a good supply chain platform to compose an optimal flow for any given application.

Finally, verifying the artifact integrity of the software lifecycle requires collecting data on
both the software supply chain tools and the application itself. Analysis and visualization
of this data should be as close to real-time as possible, enabling developers and
operators alike to respond to anomalies quickly. This allows faster recovery times for
issues discovered as early in the software lifecycle as possible.

These tools also allow the software development process to remain largely self-service,
which is critical to developer productivity and experimentation. The DoD strives to
minimize developer toil while also removing as much risk as possible from the software
development lifecycle.

3.5 Production Ready Kubernetes, even in Development

Kubernetes offers a primitive for building platforms within an organization. Most
organizations within the DoD prefer to operate at a higher turn-key solution level and

20 National Institute of Standards and Technology, “Application Container Security Guide (SP 800-190),”
[Online] Available at: https://csrc.nist.gov/publications/detail/sp/800-190/final.
21 Defense Information Systems Agency, “Container Image Creation and Deployment Guide, Version 2,
Release 0.6,” [Online] Available at: https://dl.dod.cyber.mil/wp-
content/uploads/devsecops/pdf/DevSecOps_Enterprise_Container_Image_Creation_and_Deployment_G
uide_2.6-Public-Release.pdf.
22 General Services Administration & FedRAMP, “FedRAMP Vulnerability Scanning Requirements for
Containers, Version 1.0, [Online] Available at:
https://www.fedramp.gov/assets/resources/documents/Vulnerability_Scanning_Requirements_for_Contai
ners.pdf.

UNCLASSIFIED
Pre-Decisional/DRAFT

15

https://csrc.nist.gov/publications/detail/sp/800-190/final
https://dl.dod.cyber.mil/wp-content/uploads/devsecops/pdf/DevSecOps_Enterprise_Container_Image_Creation_and_Deployment_Guide_2.6-Public-Release.pdf
https://dl.dod.cyber.mil/wp-content/uploads/devsecops/pdf/DevSecOps_Enterprise_Container_Image_Creation_and_Deployment_Guide_2.6-Public-Release.pdf
https://dl.dod.cyber.mil/wp-content/uploads/devsecops/pdf/DevSecOps_Enterprise_Container_Image_Creation_and_Deployment_Guide_2.6-Public-Release.pdf
https://www.fedramp.gov/assets/resources/documents/Vulnerability_Scanning_Requirements_for_Containers.pdf
https://www.fedramp.gov/assets/resources/documents/Vulnerability_Scanning_Requirements_for_Containers.pdf

UNCLASSIFIED
Pre-Decisional/DRAFT

need compliance, security, and stability more readily available to growing organizations.
By injecting additional capabilities into each Kubernetes cluster as it is created, and
continually reconciling those capabilities to prevent configuration drift, clusters can be
spun up on-demand to meet the needs of a growing ecosystem. Applying these
capabilities into Kubernetes in thoughtful places, like as additional workloads (such as
Daemon Sets), Service API extensions, or Admission Controllers, Kubernetes can meet
all compliance needs from a security technical implementation guide (STIG) or security
requirements guide (SRG) need.

These additional capabilities consist of:

● Storage Integrations, making sure requisitioned storage is properly encrypted
for data at rest for both platform components, the underlying VMs, and critical
supporting databases (like etcd). This is also expandable to secrets at rest being
properly encrypted and in a readily rotatable position.

● Container Networking, making sure the container overlay networking complies
with necessary encryption at transit requirements and conforms to the underlying
network topology. This networking also integrates with policies at the cluster level
to isolate workloads and prevent unnecessary routing internally (allow listing,
internal cluster traffic, and egress).

● Service Routing, used for exposing workloads securely for ingress while making
sure proper certificates and TLS are employed.

● Observability, visibility into logging and metrics of running workloads, but also
forwarding necessary audit logging to the enclave’s audit and logging solution.

● Identity, Credential, and Access Management, providing secured, credentialed
access to users, services, applications, and interaction with the underlying
infrastructure. Limiting this access to the least privileged and making sure
sessions are validated.

● Admission and Validation, scheduling new workloads should be validated
against best practices, and mutating those workloads when possible to meet
those requirements. This provides additional gates prior to entry into a cluster,
some non-exhaustive examples: enforcing only signed images, validating images
against vulnerabilities, applying DoD issued certificate authorities, or inserting
proxy settings. These processes, implemented as controllers running on the
clusters, can provide additional security, governance, and configuration
management.

Implementing these capabilities makes adhering to the compliance guidance laid out in
the Kubernetes STIG distinctly more manageable. Additionally, these capabilities have
a high overlap with the guidance in the Kubernetes Hardening Guidance provided by
the National Security Agency (NSA) and the Cybersecurity and Infrastructure Security

UNCLASSIFIED
Pre-Decisional/DRAFT

16

UNCLASSIFIED
Pre-Decisional/DRAFT

Agency (CISA), which all result in a more secure, authorizable, production ready
Kubernetes platform.23

4 Additional Tools and Activities

The DevSecOps Tools and Activities Guidebook, part of the DevSecOps Fundamentals,
establishes common DevSecOps tools and activities. The guidebook recognizes that specific
reference designs may elevate a specific tool from PREFERRED to REQUIRED, as well as add
additional tools and/or activities that specifically support the nuances of a given reference
design. The following sections identify those tools and activities unique to this reference design
across the Deploy and Monitor phases of the DevSecOps lifecycle.

23 National Security Agency, “Kubernetes Hardening Guidance,” [Online] Available at:
https://media.defense.gov/2021/Aug/03/2002820425/-1/-1/1/CTR_KUBERNETESHARDENINGGUIDANCE.PDF.

UNCLASSIFIED
Pre-Decisional/DRAFT

17

https://media.defense.gov/2021/Aug/03/2002820425/-1/-1/1/CTR_KUBERNETESHARDENINGGUIDANCE.PDF

UNCLASSIFIED
Pre-Decisional/DRAFT

Table 1: Tools Spanning all Phases

Tool Features Benefits Inputs Outputs Baseline

CI/CD Creation and execution of The underpinning to A set of A visible set of REQUIRED
Orchestrator automated tasks, jobs, and the CNCF Multi Cluster processes, out outputs to

workflows. Does not have Kubernetes phase workflows, include, but not
to be a single orchestrator, operations. and/or stages limited to:
but can be.

Preferred to be managed
by the Global Control
Plane, but not a hard
requirement.

that are run
based on some
trigger - a code
push, timeline,
etc.

- Status
- Resultin

g
outcome

- Logs

Identity, Provide RBAC and other Allows for A notion of roles Decisions on REQUIRED
Credential, identity/authorization segmentation and and/or allowing or
and Access services to the cluster and scoping of capabilities. permissions. permitting an
Management its operations Requests from

users.
action

Common The concept here is that Creates mechanisms A request for a Access to a PREFERRE
service/bund there is a shared interface for the various clusters running provisioned, D
le repository for organizations to request and organizations to service/connecti hardened,

common services and/or interface on common on/appliance. authorized
“bundles” - examples can abstractions, instance of the
be applications, network minimizing the requested
connections, databases, workload of any given entity.
etc. team and reducing

redundant work.

UNCLASSIFIED
Pre-Decisional/DRAFT

18

UNCLASSIFIED
Pre-Decisional/DRAFT

Table 2: Security Activities Summary and Cross-Reference

Activities Phase Activities Table
Reference Tool Dependencies Tool Table

Reference

Enforce node immutability Build Table 4 Node mutation prevention tool Table 3

Artifact signing/validation Build Table 4 Release packaging tool Table 3

Container image security
scan

Test Table 6 Test tool suite Table 9
(DevSecOp
s Tools and
Activities
Guidebook)

Bundle compliance scan Test Table 6 Test tool suite Table 9
(DevSecOp
s Tools and
Activities
Guidebook)

Admission control Test Table 6 Admission controller Table 5

Node rotation Deploy Table 10 Rotation
automation tools

Table 9

UNCLASSIFIED
Pre-Decisional/DRAFT

19

UNCLASSIFIED
Pre-Decisional/DRAFT

Activities Phase Activities Table
Reference Tool Dependencies Tool Table

Reference

Cluster network
management

Deploy Table 10 Networking service Table 9

UNCLASSIFIED
Pre-Decisional/DRAFT

20

UNCLASSIFIED
Pre-Decisional/DRAFT

Table 3: Build Phase Tools

Tools Features Benefits Inputs Outputs Baseline

Container builder Build a container
image based on
minimal and hardened
base images and
appropriate language
runtimes.

Container image
build automation

Source code,
language
runtimes,
minimal base
images

OCI compliant
container image

REQUIRED

Bundler Build a relevant
deployment bundle for
Kubernetes as a
container is not a
sufficient mechanism
to deploy standalone
and most deployments
require more than a
single container to
run.

Pairs specific
runtime
requirements in
Kubernetes
alongside the
associated
containers - also
provides a
mechanism to
indicate how
containers should
be run.

Kubernetes
configuration
and
dependent
OCI container
image

OCI compliant
container artifact:
a bundle.

REQUIRED

Node mutation Packages the Prevents Underlying Read Only PREFERRED
prevention tool underlying operating

systems Kubernetes
runs on as Read Only.

mutations to the
underlying
operating
systems making
escalations of

operating
system for the
deployed
nodes.

operating
system/runtime
on the deployed
nodes.

UNCLASSIFIED
Pre-Decisional/DRAFT

21

UNCLASSIFIED
Pre-Decisional/DRAFT

Tools Features Benefits Inputs Outputs Baseline

privilege and

Release
packaging
tool

Extends the
packaging tool
referenced in Table 11
of the DevSecOps
Tools and Activities
guidebook to strongly
encourage signing
other deployed
artifacts beyond VM’s.

Signing of
Kubernetes
deployable
artifacts.

OCI compliant
bundle of
deployable
Kubernetes
objects.

Signed bundle. PREFERRED

UNCLASSIFIED
Pre-Decisional/DRAFT

22

UNCLASSIFIED
Pre-Decisional/DRAFT

Table 4: Build Phase Activities

Activities Description Inputs Outputs Tool Dependencies

Containerize Packages all required
OS components,
developed code,
runtime libraries, etc.
into a hardened
container

Source code,
language runtimes,
minimal base images

OCI compliant
container image

Container builder

Bundle the
deployment

Build the deployable
artifact for
Kubernetes.

Kubernetes
configuration and
dependent OCI
container image

OCI compliant
container artifact in a
bundle.

Bundler

Enforce node
immutability

Harden the base
nodes so as to
prevent any
inadvertent or
malicious mutations to
the shared resource.

Underlying operating
system for the
deployed node

Read Only operating
system/runtime on the
deployed node

Node mutation
prevention tool

Artifact
signing/validation

Sign built release
bundles for non-
repudiation and
attestation.

Raw deployable
Kubernetes bundle

Signed deployable
Kubernetes bundle

Release
packaging
tool

Table 5: Test Phase Tools

UNCLASSIFIED
Pre-Decisional/DRAFT

23

UNCLASSIFIED
Pre-Decisional/DRAFT

Table 5: Test Phase Tools

Tools Features Benefits Inputs Outputs Baseline

Admission
controller

Automatically
facilitates policy
checking for
Kuberenetes bundles.

Prevents
unsuitable,
improperly
configured, or
outright malicious
bundles/compone
nts from entering
the Kubernetes
environment.

Policies and
rules.
Bundles to be
deployed

Decision on
whether the
bundle is
permissible to be
deployed

REQUIRED

UNCLASSIFIED
Pre-Decisional/DRAFT

24

UNCLASSIFIED
Pre-Decisional/DRAFT

Table 6: Test Phase Activities

Activities Description Inputs Outputs Tool Dependencies

Container image
security scan

Scans all layers of
container images
down to the OS for
known
misconfigurations and
CVEs

Container image Security issues for
remediation

Test tool suite

Bundle compliance
scan

Often a custom built
or configured set of
tests that validate for
adherence to
organizationally
defined controls and
known STIGs/SRGs.

Bundle and/or it’s
components

Compliance issues for
remediation

Test tool suite

Admission control Checks against
policies and rules to
allow or deny bundle
deployment.

Policies and rules.
Bundles to be
deployed.

Decision on whether
the bundle is
deployable.

Admission controller

UNCLASSIFIED
Pre-Decisional/DRAFT

25

UNCLASSIFIED
Pre-Decisional/DRAFT

Table 7: Release and Delivery Phase Tools

Tools Features Benefits Inputs Outputs Baseline

Kubernetes bundle
reconciliation tool

Enables the automated
flow of bundle/component
deployment and updating.
An example
implementation can be a
GitOps flow.

Connects the
source of truth
of declarative
Kubernetes
bundles/compon
ents
automatically to
the various
running
environments

Raw
Kubernetes
bundles (be
they
deployed
via helm,
yaml, etc.)

Deployed bundles
on running
Kubernetes
clusters.

REQUIRED

Table 8: Release and Delivery Phase Activities

Activities Description Inputs Outputs Tool Dependencies

Kubernetes bundle
reconciliation

An automated loop for
reconciling
Kubernetes
declarative sources of
truth.

Stored declarative
Kubernetes bundles

Running bundles on
Kubernetes clusters in
the appropriate
environment

Kubernetes bundle
reconciliation tool

UNCLASSIFIED
Pre-Decisional/DRAFT

26

UNCLASSIFIED
Pre-Decisional/DRAFT

Table 9: Deploy Phase Tools

Tools Features Benefits Inputs Outputs Baseline

CNCF Certified Features Benefits described Kubernetes Running cluster(s) with REQUIRED
Kubernetes described in the in the “Container deployment conformant application

“Container Deployment” model configuration deployments.
Deployment” of the DevSecOps
model of the Tools and Activities
DevSecOps Guide
Tools and
Activities Guide

Global control Ability to Enables a form of Commands or Provisioned hardened REQUIRED
plane communicate centralized requests from resources and services

with child management and child for consumption by child
deployed planning while environments environments and their
environments encouraging applications/systems.
and provided decentralized
shared execution - all from
resources like a similar base
services and substrate.
images

Rotation Automatically Allows for Node baseline Baselined and patched REQUIRED
automation
tools

cycles the
underlying
nodes beneath
Kubernetes

continuous
reconciliation of
Node state, while
reducing the risks of
potential advanced

configuration underlying nodes

UNCLASSIFIED
Pre-Decisional/DRAFT

27

UNCLASSIFIED
Pre-Decisional/DRAFT

Tools Features Benefits Inputs Outputs Baseline

persistent threats.

Service routing
tool

Ability to
administer
mutual TLS
(mTLS) and
TLS across
environments

Creates a more
secure means for
systems, services,
and applications to
communicate
across various
network
environments.

Requests for
certificates,
routing policy,
and
authentication.

Pathways for services to
communicate using the
provided mTLS/TLS
pathway.

REQUIRED

Networking Facilitate the Make a secure and Requests for Configuration of the REQUIRED
service communication

of Kubernetes
pods with both
the internal
cluster and
outside world.
Ideally this is
Kubernetes
Container
Networking
Interface (CNI)
compliant.24

configurable
mechanism to
control network
communications of
pods.

allow listing or
new connection
creation

connection and
determination on
permissibility of the new
connection request

24 Cloud Native Computing Foundation, “CNI – the Container Network Interface,” [Online] Available at: https://github.com/containernetworking/cui.

UNCLASSIFIED
Pre-Decisional/DRAFT

28

https://github.com/containernetworking/cui

UNCLASSIFIED
Pre-Decisional/DRAFT

Table 10: Deploy Phase Activities

Activities Description Inputs Outputs Tool Dependencies

Automated service
and resource requests

Requesting
Kubernetes
components,
reconciliation, and/or
usable services from
a centralized location

Request to global
control plane for some
form of resource

The requested
resource to be acted
upon

Global control plane

Node rotation Repave the
underlying nodes in
Kubernetes on a
regular interval to
reprovision all
relevant secrets,
perform updates, and
reconcile drift.

Time trigger (bi-
weekly at a minimum)

Baselined and
patched underlying
nodes

Rotation automation
tool

Service to Service
communication

Varying network
services
communicating
securely with one
another.

Requests for mTLS
communication.

Successful
communication across
diverse network
boundaries.

Service routing tool

UNCLASSIFIED
Pre-Decisional/DRAFT

29

UNCLASSIFIED
Pre-Decisional/DRAFT

Cluster network
management

Ensure that pod and
cluster communication
pathways are
secured, known, and
controlled.

Creation of new
bundles/components
and/or requests for
new interconnections
within or outside the
cluster.

A decision on the
permissibility of the
new connection
request.

Networking service

UNCLASSIFIED
Pre-Decisional/DRAFT

30

	1 Introduction
	1.1 Background
	1.2 Purpose
	1.3 DevSecOps Compatibility
	1.4 Scope
	1.5 Document Overview

	2 Assumptions and Principles
	3 Software Factory Interconnects
	3.1 Immutable Infrastructure
	3.2 Continuous Reconciliation of Components
	3.3 Multi-Cluster Kubernetes
	3.4 Secure Supply Chain Provenance
	3.5 Production Ready Kubernetes, even in Development

	4 Additional Tools and Activities

Accessibility Report

		Filename:

		DoD Enterprise DevSecOps Reference Design - Multi-Cluster Kubernetes_DoD-CIO_20211019.pdf

		Report created by:

		Marilyn Anderson, Accessibility Specialist, marilyn.l.anderson14.ctr@mail.mil

		Organization:

		DoD CIO

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 5

		Passed: 25

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Skipped		All page content is tagged

		Tagged annotations		Skipped		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Skipped		Tables should have headers

		Regularity		Skipped		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

