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SECTION

01
Biometric recognition and identification technologies 
are used widely across the federal government, 
primarily by the Department of Defense (DoD), 
Department of Homeland Security (DHS), Depart-
ment of Justice (typically but not exclusively by 
the Federal Bureau of Investigation), and the 
Department of Commerce.  In the Department of 
Commerce, research by the National Institute of 
Standards and Technology (NIST) supports the 
security and interoperability of federal and military 
biometric programs.  Across the national security 
enterprise, biometric systems are a critical resource 
for forward-deployed U.S. forces as well as home-
land defense operations.  Biometrics support the 
detection and prevention of illegal border entry; 
help secure access to sensitive DoD and federal 
government networks and facilities; and aid civil-
ian law enforcement in identifying, tracking, and 
detaining criminal suspects.

Within the DoD, biometrics is a key enabling 
activity for what the Joint Force terms “identity 
activities,” which a doctrine note defines as a “col-
lection of functions and actions that appropriately 
recognize and differentiate one person or per-
sona from another person or persona to support 
decision making.” Biometric recognition systems 
allow warfighters to fix (and track) the identity of 
an individual “regardless of disguises, aliases, or 
falsified documents.” Improvements in biometric 
enrollment, detection, recognition, and verification 
technologies will improve the ability of the DoD 
to securely identify friendly forces in theater; pro-
tect and secure civilian populations; and track and 

target persons of interest, insurgents, terrorists, and 
others who would harm U.S. service members and 
their allies [1].

Figure 1-1 is the U.S. Army’s Operational Viewpoint 
(OV)-1 graphic of an automated biometric identi-
fication system.  It clearly depicts the multiple meth-
ods of biometric collection as well as the multiple 
biometric modalities (e.g., iris scan, fingerprints, 
facial recognition, palm prints), which feed into the 
system that must process, store, match, and share 
information.

For roughly a decade, researchers in academia, 
government, and the private sector have success-
fully applied artificial intelligence (AI) and machine 
learning (ML)-enabled algorithms and computa-
tional systems to biometric recognition.  ML mod-
els such as the use of advanced artificial neural 
networks (ANNs), deep learning (DL) systems, and 
other “self-learning” algorithms has reduced the 
processing time and computational load required 
of traditional biometric systems.  

Moreover, the application of AI/ML to biometrics 
since 2012 has revolutionized the field, enabling 
significant progress in overcoming the limitations 
of conducting recognition and identification tasks 
“in the wild” (i.e., in an uncontrolled, uncoopera-
tive, and unconstrained sensing environment).  For 
example, in 2018, researchers applied a DL algo-
rithm to a series of faces wearing eyeglasses, which 
deteriorate the performance of iris recognition 
systems.  Using a deep neural network (DNN), the 

INTRODUCTION
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researchers demonstrated the ability to correct 
for specular reflection, lens scratches, and other 
obstructions to improve iris recognition in the 
near-infrared spectrum [3].

However, even advanced AI/ML systems are inher-
ently limited when their analytical power is applied 
to a single source.  Whether used in unimodal (i.e., 
assessing a single modality, like face, gait, or iris), 
unisensor, single-sample, or single-instance rec-
ognition, such algorithms cannot overcome the 
constraints imposed on recognition by limited 
reference sets or degraded environmental condi-
tions.  Such limitations include poor illumination, 
high levels of occlusion, or the shortened duration 
of biometric data capture (e.g., brief presentation of 
movement for gait analysis).

This State-of-the-Art Report assesses the recent 
science of biometric data fusion, which combines 
two or more biometric data sources, typically aided 
by an AI/ML algorithm, to compensate for limita-
tions in sample capture and reference set matching 
to improve a system’s predictive power.  A major 
type of biometric data fusion is multimodal (e.g., 
periocular and gait recognition) “feature-level” 
data fusion, which provides faster reference set 
retrieval across identity templates, and significantly 
improves recognition accuracy over a unimodal 
system.

The DoD has already identified biometric data 
fusion as central to improving its capabilities in 
joint identity operations.  In particular, the U.S. 
Army has solicited information from researchers 

Figure 1-1.  Automated Biometric Identification System OV-1 [2].
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and vendors to develop “adaptive algorithms” that 
“improve single modality and fusion accuracy 
and performance” [4].  In an installation or facility 
security use case, advances in AI/ML-enabled data 
fusion may allow for faster, touchless identification 
of friendly forces to allow entry, freeing up valuable 
force protection resources.  Data fusion may also 
better resolve potential error-inducing instances 
like aging, or unanticipated changes to a biometric 
data template (e.g., a U.S. Soldier who approaches a 
base displaying an altered gait due to injury).

By improving multimodal data fusion and match-
ing, the DoD also seeks to expand its ability to 
conduct identity operations in degraded and 
unconstrained environments, especially via long-
range imaging equipment that may enable detec-
tion at stand-off or tactical distances [5].  Friendly 
forces at times only have a limited footprint or 
must rely heavily on space-based or aerial recon-
naissance assets.  However, technological break-
throughs in biometric data fusion that allow for the 
more accurate use of capture samples low in reso-
lution, fidelity, or duration, may significantly bolster 
U.S. military identity activity capabilities at home 
and abroad.
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SECTION

02
2.1 BIOMETRIC SYSTEM MODALITIES 

Biometric systems use the observed biological or 
behavioral traits (modalities) of individuals to cre-
ate unique identifiers to compare against biometric 
templates stored within a database.  The joint Inter-
national Organization for Standardization (ISO) and 
International Electrotechnical Commission (IEC) 
standardized vocabulary for biometrics defines a 
biometric characteristic as “a biological and behav-
ioral characteristic of an individual from which 
distinguishing, repeatable biometric features can 
be extracted for the purpose of biometric recogni-
tion” [6].  The most common biometric modalities 
in use today include the face, fingerprint, DNA, gait, 
palm print, and iris.  Other modalities include traits 
like voice signature, shape of the periocular region 
(around the eyes), vascular or vein patterns, cardiac 
rhythm, and skin texture [7].

For a modality to be considered a usable biometric 
trait for identification or recognition in a biometric  

system, it must display seven fundamental qual-
ities, which allow it to yield high accuracy and 
performance rates:  universality (qualities per user); 
uniqueness (a subject’s distinguishing features); 
permanence (its inability or unlikelihood to change 
over time); measurability (ease of acquisition of the 
biometric data sample); performance (functional 
and robust properties of the trait); acceptability 
(acceptability by the system user); and circumven-
tion (the ability to spoof or deceive the recognition 
system).  Biometric identification systems built 
around a single characteristic are known as uni-
modal systems, whereas those that employ two or 
more characteristics are termed multimodal [8, 9].

2.2 THE BIOMETRIC IDENTIFICATION PROCESS

Enrollment and recognition are the two stages 
central to most biometric systems (Figure 2-1).  The 
capture and storage of individual biometric char-
acteristics occur in the enrollment stage, where 
key features of a biometric sample are extracted 

CURRENT USE OF AI 
AND ML IN BIOMETRIC 

IDENTIFICATION 
SYSTEMS

Figure 2-1.  Biometric System Operation [7].



2-2

State-of-the-A
rt Report: SEC

TIO
N

 2

Homeland Defense & Security Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release:  distribution unlimited.

and stored in a reference database.  Recognition or 
identification occurs when a new biometric sample 
is extracted into the template form and compared 
against the reference set to determine an identity 
or provide a match.  A biometric feature set is a 
representation of extracted features that are quality 
checked prior to storage in the template database.  
These feature sets are processed during enrollment, 
leading to a usable digital representation of the 
extracted traits.  Recognition is facilitated through 
the comparison of acquired biometric capture data 
against previously stored templates to return any 
matches.

2.2.1 The Enrollment Phase

Figure 2-2 depicts the function of a traditional 
biometric recognition, sample capture, and iden-
tification system.  A biometric capture subject’s 
characteristics are scanned by the sensor, after 
which a second system module conducts prepro-
cessing steps (i.e., treatment or enhancement of the 
data).  Feature extraction is conducted by the next 
module, which optimizes certain data qualities, and 
a template (a standardized representation of an 
extracted modality dataset for an individual) is then 
produced.

This biometric recognition process is typically 
referred to as the enrollment phase, in which the 
biometric data of a subject are obtained (whether 
cooperatively [voluntarily] or noncooperatively 
[nonvoluntarily]) and stored for later matching 
attempts.  Figure 2-3 shows a cooperative enroll-
ment (far left photograph) versus a noncooperative 
enrollment (right three photographs).  Cooperative 
enrollments are voluntary and are accompanied 
by a verified name and identity, which typically 
results in near-perfect reference templates (such 
as a driver’s license photograph) [6].  Noncoop-
erative enrollments may establish a template 
for an unknown subject for use in tracking, but 
not-yet-positive identification tasks.  

2.2.2 The Recognition Phase

The recognition phase occurs when a modality is 
presented to the biometric system and is compared 
against the database of enrolled images. This phase 
involves a large amount of computation power, 
growing larger as the enrollment database is filled 
and as more biometric modalities can be measured.  
 

Figure 2-2.  Simple Diagram of a Biometric Recognition System, Including Matching to Database of Template References [10].
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2.3 ML METHODS 

There are several models of ML that may be imple-
mented to increase the efficiency of the recognition 
phase. This section will discuss several of those 
models.  

2.3.1 DNNs

DL-based biometric models [12] provide an end-to-
end learning framework, which jointly learns the 
feature representation process while performing 
classification/regression.  Learning and classifica-
tion are achieved via the application of multilayer 
neural networks called DNNs to learn multiple 
levels of representations that correspond to differ-
ent levels of abstraction, which is better suited to 
uncover underlying patterns within the data.  

Prior to the use of AI/ML in face recognition, for 
example, discrete facial points were applied to 
a processed facial image to determine and clas-
sify the face and identify the person [11].  Early 
methods explicitly modeled the geometric shape 
or texture of faces, marking coordinates of facial 
landmarks such as the eyes, ears, nose, and chin.  
This process is relatively slow, computationally 

resource-intensive, and its utility is limited when 
variables such as pose, illumination, facial expres-
sion, image orientation, and imaging conditions 
vary from the strict standards used in a traditional 
enrollment reference template.

To address these challenges, researchers began 
applying AI and ML algorithms and systems to a 
variety of approaches well known to the biomet-
rics field, including Eigenfaces, Distribution-Based 
Methods, Support Vector Machines (SVMs), Sparse 
Network of Winnows (SNoW), Naïve Bayes Classifier, 
Hidden Markov Models (HMMs), Information The-
oretic Approaches, and Inductive Learning.  When 
used in the absence of AI/ML, such approaches 
require extensive tuning and remain largely statis-
tical, limiting their ultimate usefulness in advanced 
recognition tasks (e.g., principal component analysis 
[PCA]) [13].  These methods, while beneficial, lack 
the analytical strength necessary to produce accu-
rate results in unstable or unpredictable capture 
environments.

The application of DNNs to the field of biometrics 
began in 2012, with promising results attained 
first in face recognition tasks [14].  A major mile-
stone was achieved in 2014, when Taigman and 

Figure 2-3.  Cooperative Versus Noncooperative Enrollment [11].

T = 1 secs T = 2 secs T = 3 secs

COOPERATIVE ENROLLMENT NONCOOPERATIVE ENROLLMENT
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colleagues proposed one of the earliest DL-based 
tasks for face recognition in a paper titled “Deep-
Face” [15], achieving what was then a state-of-the-
art level of accuracy when applied to the “Labeled 
Faces in the Wild” (LFW) database benchmark (a 
public benchmark for face verification).  The accu-
racy of Taigman’s algorithm approached that of 
humans for the first time (DeepFace:  97.35% vs. 
human:  97.53%).  This work set a milestone in 
face recognition, and researchers began applying 
DL-based approaches to other components of the 
face recognition task and soon to other modalities 
as well.  The occurrence of this effort just 7 years 
ago indicates the recency of DL within biometrics.

Hardware-based advances have also played a 
role in the successful use of DL.  These advances 
have included improved Graphics Processing 
Units (GPUs) (computer video cards) and the 
development of General-Purpose GPUs (GPG-
PUs).  These improvements in turn have enabled 
the development of new techniques for training 
neural networks (such as the Dropout regulariza-
tion method), which is added to each layer of the 
network [16]. These techniques result in a lower 
chance of over-fitting, enabling researchers to train 
very deep neural networks much faster.  Relevant 
types of DL-based biometric recognition algo-
rithmic approaches include convolutional neural 
networks (CNNs); recurrent neural networks (RNNs); 
autoencoders; and generative adversarial networks 
(GANs).  A brief assessment of each algorithm type 
is provided in the following subsections.

2.3.2 CNNs

A CNN is a type of DL algorithm primed to receive 
input images and assign importance (i.e., learn-
able weights and biases) to various aspects and/
or objects in the image.  CNNs also differentiate 
among features between images.  A key benefit of 
employing a CNN is the smaller preprocessing load 
it requires compared to other classifiers.  The CNN 
architecture is analogous to that of the connectiv-
ity pattern of neurons found in the human brain.  
Indeed, the design of CNNs is comparable to the 

organization of the visual cortex, in which individ-
ual neurons respond to stimuli only in a restricted 
region of the visual field, known as the “receptive 
field.”  A collection of such fields in the artificial neu-
ral map overlaps in a network to cover the entire 
visual area.

2.3.3 RNNs

RNNs are a class of ANNs where connections 
between nodes form a directed graph along a 
temporal sequence [17].  This graphing allows the 
RNN to exhibit temporal, dynamic behavior.  Tem-
poral sequences are not more difficult to analyze 
simply because they address a sequence of images 
in time; rather, together with spatially separated 
measurements, they are “spatio-temporal” and are 
extremely complex.  The directed graphs within 
RNNs use arrows to imply causality, which is neces-
sary for coding.

2.3.4 Self-Autoencoders (Self-Organizing Maps)

An autoencoder is a type of ANN used to learn effi-
cient codings of unlabeled data (a process known 
as unsupervised learning).  The encoding is validated 
and refined by attempting to regenerate the input 
from the encoding [12].  The autoencoder learns 
a representation (or encoding) for a set of data, 
typically for dimensionality reduction, by training 
the neural network to ignore insignificant data, or 
“noise.”

2.3.5 GANs

GANs create new data instances that resemble 
training data.  For example, GANs can create images 
that look like photographs of human faces, even 
though the faces are fully artificial and do not corre-
spond to any real person.  GANs achieve this level of 
realism by pairing a generator (which learns to pro-
duce the target output), with a discriminator (which 
learns to distinguish true data from the output of 
the generator).  In a sense, the generator tries to 
“fool” the discriminator, and the discriminator tries 
to keep from “being fooled.” Although it may seem 
like this capability of GANs makes them unsuitable 
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for face recognition of real individuals, GANs pro-
vide an expanded data set for training, and aid in 
deciding whether two images of a face belong to 
the same individual.  GANs can resolve issues like 
pose or illumination in face images, making them 
uniquely suited to application in constrained or 
degraded sample capture conditions.

While research and development on the use of AI/
ML in biometrics remain popular within the domain 
of face recognition in large part because its refer-
ence database is the largest, some lines of inquiry 
suggest that gait recognition may be more accurate 
and powerful when conducting the match function 
[7].  DL-enabled systems are likely to decrease the 
number of pixels and duration needed on a subject 
to capture a gait sample.  For the challenge of rec-
ognizing and identifying faces that are disguised, 
occluded, at turned-pose, or captured in low-illu-
mination environments, DNNs have already signifi-
cantly improved the ability of biometric systems to 
extract a standardized and “comparable” face image 
to match against a reference set.
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SECTION

03
The prospect of data fusion is attractive to bio-
metrics researchers because early AI/ML-enabled 
recognition systems, while powerful, were trained 
on massive, web-based datasets that were gen-
erally invariant to effects like pose, illumination, 
resolution, and facial occlusion [6].  This section 
explores recent research contributions towards 
the efficient fusion of multimodal biometrics to 
improve identification and recognition tasks across 
multiple modalities and sensor types.  In particular, 
the application of DL methods to biometric data 
fusion holds promise to overcome the limitations of 
traditional, unimodal methods [18].

Prior DL approaches have relied on weight combi-
nation, or feature concatenation, which constructs 
representation layers for recognition stages [19].  
Due to the difficulty of fusing multiple modalities 
for recognition based on inherent modality incon-
sistencies and technical fusion obstacles [7, 20, 
21], these early DL methods are generally under-
stood to be inefficient.  The use of CNNs can over-
come these challenges in that they enable highly 

improved recognition via multifusion network 
layers that drive robust and informative model 
learning [19, 21, 22, 23].  Furthermore, the broad 
applicability of these CNNs to modality fusion 
supports more compact and discriminative feature 
representations.  This improvement then increases 
the predictive power in multibiometric systems  
[21, 23].

3.1 BIOMETRIC SYSTEMS CHALLENGES

An acquired biometric signal from a capture sub-
ject may exhibit variations in quality due to “noise” 
(Figure 3-1).  Stability across acquired trait mea-
surements, that is, across intrasubject variations, 
may require optimization to reduce noise across 
five areas according to Jain, Nandakumar, and Ross 
[7]:  (1) sensor limitations, (2) intrinsic aging of the 
biometric trait, (3) variations in user interaction, (4) 
changes in the acquisition environment, and (5) 
all other factors affecting the biometric trait [18].  
Figure 3-1 demonstrates the aging in the biometric 
trait, changes in the acquisition environment  

AI AND ML FOR 
MULTISENSOR AND 

MULTIMODAL DATA 
FUSION

Figure 3-1.  Noise Areas in Biometric Capture [13].
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(lighting, background), and variations in user inter-
action (eyes closed, open).

3.2 THE NEED FOR DATA FUSION IN 
BIOMETRICS

The potential drawbacks of a unimodal biometric 
system pertain to its data quality, information resil-
ience, identity overlap, and limited discriminability 
[7, 19].  Therefore, other modalities need to be inte-
grated into a concurrent system to increase accu-
racy in recognition.  This need highlights the critical 
importance of techniques for the fusion of biomet-
ric modalities in a multibiometric system [24].

The development of a multibiometric system 
focuses on three fundamental questions:  (1) what 
to fuse, (2) when to fuse, and (3) how to fuse [25].  
According to Singh, Singh, and Ross,

What to fuse involves selecting the different 
sources of information to be combined, such 
as multiple algorithms or multiple modalities.  
When to fuse is answered by analyzing the 
different levels of fusion, that is, the various 
stages in the biometric recognition pipeline 

at which information can be fused.  How to 
fuse refers to the fusion method that is used to 
consolidate the multiple sources of informa-
tion [25].

3.2.1 What to Fuse:  Sources of Information for 
Fusion

In many instances, the addition of contextual 
metadata and subject demographics into a rec-
ognition system may greatly increase its accuracy.  
All relevant data can be captured from an area of 
interest, such as a corridor or battlefield, whether 
it is from one sensor used repeatedly; one sensor 
with two different views of the subject; or multiple 
sensors on one subject.  Effective functioning of the 
algorithm only requires optimal data vectors at the 
preclassification level and/or more than one classi-
fication result for merging.  AI/ML DL relies less on 
the meaning of a particular piece of data and more 
on its ability to compute using it.  Figure 3-2 depicts 
the five sources of information for fusion:  (1) mul-
tisensor, (2) multi-algorithm, (3) multi-instance, (4) 
multisample, or (5) multimodal [25].

 

Figure 3-2. Five Sources of Information Fusion in a Multibiometric System [25].
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Multisensor.  Multisensor systems combine raw 
data of the same biometric modality captured 
through multiple sensors [25].  Facial data, fin-
gerprints, the iris, and the gait can be sensed, but 
if more than one modality is used, the approach 
qualifies as multimodal data fusion.

Multi-algorithm.  Multi-algorithm systems use 
different algorithms to process the input data of 
a single biometric modality [25].  This processing 
occurs during the feature extraction and matching 
steps [26].

Multi-instance.  Multi-instance systems capture 
multiple instances of the same biometric modal-
ity [26].  RNNs are ideal for this type of time series 
data.  Note that each image in the time series may 
be strongly dependent on the previously captured 
image.  Long-short-term memory (LSTM) is an RNN 
architecture including memory to model temporal 
dependencies in time series problems.  As Ordonez 
and Roggen explain,

[T]he combination of CNNs and LSTMs in a 
unified framework has already offered state-
of-the-art results in the speech recognition 
domain, where modelling temporal informa-
tion is required.  This kind of architecture is 
able to capture time dependencies on features 
extracted by convolutional operations [27].

LSTM RNNs take advantage of the correlation 
between images at different times, assuming that 
the sensor is not undersampling significantly.

Multisample.  Multisample systems collect a 
variety of samples for the same biometric modality 
[25].  The samples are not necessarily independent.  
For instance, two images of the same face from 
different angles could display similar results; if the 
eye is shown in each, the periocular region would 
be present in each.  The fusion step, therefore, 
might involve a classic 3D transformation before AI/
ML techniques commence.  This step distinguishes 
multisample from multimodal data capture in 
which the streams of data are independent.

Multimodal.  Multimodal systems combine multi-
ple biometric characteristics [25].  This is the most 
relevant sort of data fusion to next-generation 
sensing and control systems, as it can leverage two 
or more biometric modalities such as the face, fin-
ger, hand, legs, iris, voice, etc., yielding face recog-
nition, fingerprints, hand geometry, gait, iris scan, 
and voice recognition [28].

A preferred AI/ML method for multimodal fusion 
is the CNN.  A notable example in the literature is 
a dual stream (or two-mode) approach described 
by Tiong, Lee, and Teoh, which “accepts [Red Green 
Blue] RGB ocular image and a novel color-based 
texture descriptor, known as Orthogonal Combi-
nation-Local Binary Coded Pattern (OCLBCP)” [29].  
This periocular recognition in the wild exploits the 
color information in the periocular texture to better 
represent the periocular features for recognition in 
the wild.  Fusion occurs late in the process, in the 
last convolutional layer before the fully connected 
layer; the networks would otherwise share the 
same parameters.

An interesting application of multimodal data 
fusion is to avoid spoofing/jamming of signals.  If 
the fusion is based on one signal, perhaps one 
mode is less susceptible to noise than another 
[30].  If two signals are used, one signal may be lost 
to jamming without jeopardizing the classifica-
tion.  This concept can be extended to suppressing 
less-desirable modes by amplifying the desirable 
mode’s influence in the classification.  One under-
represented mode in the literature is voice [31].  The 
voice mode may be particularly useful for military 
applications because of the ability to identify an 
individual using stand-off or cyberspace-based 
sensors.  The approach described by Kusmierczyk 
et al. [31] draws features from the iris and combines 
them with voice recognition, both of which could 
be valuable for military applications.

Hybrid Data Fusion.  Hybrid biometric systems 
combine more than one source of fusion; for exam-
ple, a single system could combine multisample 
periocular sample captures with gait recognition [26].
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3.2.2 When to Fuse:  Data Fusion Levels or Stages  

Postmapping fusion using a matching-score 
approach requires combining scores from biomet-
rics of varying characteristics.  This approach largely 
depends on feature vector proximity, as depicted in 
Figure 3-3.  

Processed scores are sent to adjacent decision 
modules, where simplicity contributes to good 
performance.  Score-level fusion (also referred to 
as measurement level or confidence level) is used 
when the output data includes a set of matches 
along with the quality of each match [7].  There are 
two different types of postmapping fusion:

•	 Score-level: In score-level fusion, the classifier 
(matcher) compares each enrolled biometric 
trait against all the identities stored in the data-
base. 

•	 Decision-level:  Decision-level fusion (also 
referred to as the abstract level) fuses together 
information taken from different sources after 
each has been classified individually; it then 
makes the final decision based on methods 
such as the “AND” and “OR” rules, using weight-

ed voting.  This is a later-stage approach for 
fusing data for each biometric and is the least 
powerful [33]. 

Premapping fusion involves using feature vectors 
originating from multiple biometric sources or 
feature vectors from the same source using mul-
tiple feature extraction.  Feature vectors are fused 
to create a new, single feature that represents an 
individual [25].  This fusion is accomplished via 
appropriate feature normalization, transformation, 
and reduction schemes [34].  Feature-level fusion 
occurs prior to matching or classification [26]. 

3.3 SOURCES OF DATA FUSION ERRORS

Data fusion errors may arise based on varying 
conditions when different modalities are fused to 
support identification.  It is important to note that 
these errors describe aspects of future systems and 
how their architectures may be designed to address 
them.  In general, four types of errors may be admit-
ted in a biometric recognition system [32, 35]:

•	 False Acceptance (FA):  System can accept an 
impostor.

Figure 3-3.  Sensor, Feature, Score, and Decision Level Biometric Data Fusion Levels [32].
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•	 False Rejection (FR):  System rejects a client.

•	 Failure to Capture (FTC):  Inability to capture 
biometric modality.

•	 Failure to Enroll (FTE):  Inability to enroll a user.

There are some unique characteristics of error 
within biometric systems pertaining to data avail-
ability or performance issues:

•	 When a signal of a biometric is not able to be 
located due to weakness in the signal (like a 
weak fingerprint), an FTC error occurs.

•	 When a user cannot be enrolled into the recog-
nition system, an FTE error occurs.

•	 The Equal Error Rate (ERR) provides a measure 
of system performance in verifying identities 
[32].

•	 Open Set Identification (OSI) involves identifi-
cation and verification processes.

•	 In the verification process for OSI, the perfor-
mance of the system can be measured by OSI 
ERRs under certain conditions.

•	 The performance of the identification process is 
measured by the Identification Error Rate (IER), 
which occurs when a person is misidentified in 
a database.

3.4 SOURCES OF DATA VARIATION

Biometric system performance is often metered 
by variations in data.  There are two types of data 
variation:  1) data arising from uncontrolled oper-
ating conditions and 2) data arising from data 
degradation [32].  Some examples of uncontrolled 
operating conditions include poor resolution of the 
face due to improper illumination, or substantial 
background noise that contributes to the inability 
to perform proper voice recognition [35].  Sources 
of data degradation are usually attributed to poor 
performance of the biometric capture device or 
malfunctions in the sensor(s).  In this way, data 
variation due to an uncontrolled environment can 
be attributed to sources of degradation within the 
environment or close to the user (e.g., white-noise 
generation) [32].
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SECTION

04
4.1 CNNS USING TEXTURE DESCRIPTORS AND 
RGB DATA

Image processing and computer vision have ben-
efitted from tremendous strides made in DL in 
recent years [23].  The architecture of these neural 
networks uses an image’s RGB raw data pixels for 
the input layers to facilitate (model) learning inside 
these network layers (typically a very difficult task 
[19]).  Illuminations and occlusions are the primary 
products of filtering by DL models and are usually 
viewed as the key confounding factors.

Hence, persona recognition remains a difficult task 
driven by challenges from occlusions, poses, illu-
minations, and loss of distinctiveness.  The use of 
a CNN minimizes these drawbacks by using more 
than a single modality within the DL architecture.  
Two stream inputs are used:  the texture descriptor 
and RGB data.  Texture descriptors support discrim-
inatory feature extraction to distinguish against 
any variation in illumination.  Assembly of the 
model using these RGB and texture descriptor data 
into a two-stream CNN supports compensation of 
any hidden information, thereby making it more 
robust than other approaches.  The inputs explic-
itly describe the “hidden layers” of data, enabling 
easier recognition (which differs from alternative 
approaches centered on biometric feature esti-
mation).  Removal of single-source dependencies 
through this approach to CNNs improves upon 
single-source feature modalities, thereby making 
them better candidates for facial recognition.

Recent research by Tiong, Kim, and Ro (2020) 
addressed the efficacy of using different texture 
descriptors versus raw RGB data for facial recogni-
tion [22].  Their investigations involved fusion-layer 
design approaches to support a robust CNN using 
dual descriptors to determine if analysis of textures 
within a CNN leads to substantial improvement in 
recognition.  These researchers used a DL approach 
for texture descriptor analysis, formalizing another 
network layer for processing texture descriptors.  
This layer served as the second multifeature DL 
network (MDLN) stream for additional explanatory 
factor extraction.  They determined uniquely that 
there is an invariance in using texture descriptors 
for complex input transformations.  

Their work also emphasized a fusion strategy based 
on features within the two-stream input, where the 
convolutional layers are considered a filter bank.  
This strategy culminates in feature representations 
that are new and helps solve for any differences in 
information that could be hidden.  

Finally, the authors describe a fusion layer based 
on scoring using a similarity measurement vec-
tor using a joint feature approach.  Such a layer 
enhances the model to support improved recogni-
tion by formulating measurement functions (perio-
cular and facial) after sampling the measurement of 
highest weight.  The model showed greater accu-
racy in recognition than unimodal DL methods.

In another work, Tiong, Kim, and Ro (2019) used 
the MDLN approach to report substantial increase 

RECENT 
RESEARCH IN DL 

FOR BIOMETRICS
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in accuracy against the ethnic facial dataset [21].  
The authors developed fusion layers for multiple 
features that support independent, dual-stream 
CNNs using texture descriptors and RGB data.  Their 
work was centered on a strategy for rank weighting 
to support multimodal biometric features from 
two networks that incorporate rank-K scores for 
improved decisions.  Using the ethnic facial data 
set, the authors were able to train and test their 
model against variations like location, uncontrolled 
distances of camera, appearances, and different 
ethnicities.  

Other research employed this dual RGB/texture 
descriptor CNN approach to support periocular 
biometric recognition from images in the wild [36].  
The validity of this approach is a substantial contri-
bution to facial recognition and proves the strength 
of using both texture descriptors and raw RGB data 
in a dual-layer network as an alternative to older, 
unimodal biometric methods for facial recognition.

4.2 IMAGE PARTITIONING

Additional data management approaches for facial 
recognition involve partitioning images for pro-
cessing [36].  Partitioning an image improves facial 
recognition system functionality and performance 
because it enables larger images to be efficiently 
stored and indexed for search and reference.  Divid-
ing images into smaller and more manageable 
units (e.g., fixed-size sub-blocks) greatly simplifies 
compression, storage, access, and retrieval [36].  
There is an inherent tradeoff between larger or 
smaller image block sizes:  smaller sizes contain 
more details but require more computation, while 
larger block sizes reduce time for computation but 
generally lack finer image detail.

Segmentation involves ignoring occluded or hid-
den parts of an image.  It is accomplished by the 
fuzzy c-means (FCM) algorithmic rule to support 
performance improvements.  Using this occlusion 
segmentation approach, Jyothi and Ramanjane-
yulu (2021) demonstrated accurate identification of 
faces with sunglasses, scarfs, or masks [36].

4.3 BIMODAL DATA FUSION

While CNNs have shown tremendous image-rec-
ognition capabilities, their utility does not imme-
diately extend to some other modalities.  (Recent 
work by Luo, Li, and Zhu in 2021 may be an excep-
tion [37].)  In the case of poor lighting and irregular 
facial angles, recognition and identification may 
be near impossible using facial recognition alone.  
In this case, other modalities could be employed 
as described in the recent work by Cuzzocrea and 
Mumolo (2021), in which fingerprints and voice 
data were fused using a weighted sum and fuzzy 
system [38].  Wang et al. (2004) also combined 
voice and fingerprint data [39].  Cuzzocrea and 
Mumolo employed a universal background model 
to address background noise contributions along 
with a Gaussian Mixture Model to represent acous-
tic features associated with voice recognition.  The 
novelty in their approach involves the application 
of the Dempster-Shafer algorithm that facilitates 
verification of decisions sourced from many data 
fusion algorithms (Figure 4-1) [38].

Fingerprint and palm print modalities were fused 
by Soviany, Pușcoci, and Săndulescu (2021) using 
a kernel SVM model and a multiclass extension 
approach that supports identification rather than 
verification [40].  Their very recent approach fusing 
these two modalities using SVM (without concate-
nation) offers additional alternatives when voice or 
facial imagery is difficult to acquire.

4.4 DEEP-FEATURE FUSION AND DL

4.4.1 Use of Periocular Regions  

Fixed-fusion schemes like element-wise feature 
sum, element-wise feature product, and simple 
feature concatenation lack adaptation and flexi-
bility.  The inability to use multimodal features for 
optimizing fused features is the primary drawback 
of fixed-fusion schemes.  Recent work by Luo, Li, 
and Zhu (2021) involves using CNNs with deep-fea-
ture fusion  to bridge these gaps for joint iris and 
periocular biometric recognition [37].  The benefits 
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of using periocular regions [41] over iris, retina, 
conjunctiva, and sclera traits provide a larger field 
depth and require less subject cooperation in their 
acquisition.  Additionally, their utility at a wide 
range of distances has advantages over using the 
full or partial face for recognition [41].  COVID-19 
mask mandates have underscored this need for 
exploring multimodal biometric identification and 
recognition by emphasizing periocular features 
with other ocular or physical traits when faces are 
covered (Figure 4-2) [42, 43].

4.4.2 Feature Descriptors

Periocular image matching was initially performed 
through development of hand-crafted features 
which were divided into global and local feature 
descriptors.  According to Kumari and Seeja (2021),

Global feature descriptors consider [the] image 
as a whole and create a single feature vector 
for the whole image, whereas local feature 
descriptor[s] [divide] the image into patches 
(group of pixels), create feature vector[s] for 
every patch and finally combine them to create 
a single feature vector [34].

Additional classification of global feature descrip-
tors requires viewing them in three groups based 
on texture, color, and shape.  Zhao and Kumar 
(2018) emphasized the attention model concept 
based on a DL architecture using certain periocular 
traits, like the shape of the eye and the eyebrow.  
The model’s recognition performance improved, 
which indicates that highly feature-rich traits like 
the eyebrow and eye shape can improve a model’s 
discriminating power [44].

Feature-based descriptors based on texture have 
received a lot of attention in the field, since they are 
easy to implement due to their low-to-manageable  
computational cost.  However, their primary draw-
backs are influences from image rotation, blurring 
effects, and noise (e.g., blinking and off-angle 
poses).  Works by Tiong, Kim, and Ro (2019, 2020) 
demonstrate the value of employing texture 
along with effective use of both handcrafted and 
non-handcrafted feature creation for improved 
recognition [21, 22].

Examples of multimodal approaches including 
periocular modalities can be found in previous 
work fusing iris-periocular elements that involve 
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Figure 4-1.  Bimodal Data Fusion Combination Algorithm [38].
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Figure 4-2.  Synthetically Generated Face Masks Used in NIST Face Recognition Vendor Test Studies [43].
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feature descriptors like local binary pattern, his-
togram of oriented gradients, and scale-invariant 
feature transform via techniques like wavelets or 
ordinal measures [45].

Spatial and channel attention (types of self-atten-
tion mechanisms) were integrated into feature 
extraction to enable more learning of represen-
tative features.  Discriminative feature discovery 
substantially contributed to the highly accurate 
models developed by Tan and Kumar [45] where 
the utility of CNNs for nonfacial recognition use 
cases was successfully applied for improved recog-
nition power.

4.5 GAIT RECOGNITION

Human gait recognition (HGR) is a subdiscipline 
within computer vision.  Sharif et al. (2020) charac-
terized HGR biometric detection by using four key 
steps:

(a) enhancement of motion region in frame by 
the implementation of linear transformation 
with HSI (hue, saturation, and intensity) color 
space; (b) Region of Interest (ROI) detection 
based on parallel implementation of optical 
flow and background subtraction; (c) shape 
and geometric features extraction and parallel 
fusion; (d) multi-class support vector machine 
(MSVM) utilization for recognition features 
[46].

There are two types of HGR ML methods:  mod-
el-based and model-free.  Model-based types focus 
on structural human features without any motion, 
while model-free types are focused on examining 
the images of the body’s silhouette.  The research 
presented in Sharif et al. (2020) is novel in its ability 
to perform parallel features fusion and Euclidean 
distance-based best selection [46].  This approach 
produces highly accurate results.  Similar work in 
HGR using biometric score fusion is an alternative 
approach [47], but Sharif et al.’s (2020) work shows 
a unique difference in persona recognition due 
primarily to the four-step data processing approach 
they detail (Figure 4-3).

4.6 DATA MANAGEMENT OPTIMIZATION 
APPROACHES

Biometric identification and recognition systems 
have recently benefited from overlapping research 
contributions in the areas of big data, indexing and 
retrieval, and graph feature fusion.  Zhu and Jiang 
(2020) used Two-Dimensional Principal Component 
Analysis (2DPCA) for global feature extraction (a big 
data problem) with Local Binary Pattern-supported 
local feature extraction [48].  While the processing 
of local features was challenging, this work focused 
on fusing these two feature sources to yield optimal 
recognition results using big data methods. 

Figure 4-3.  HGR Fusion and Feature Selection [46].
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Drozdowski et al. (2021) describe an approach 
using an indexing method that focuses on facial 
parent template pairing in an intelligent configura-
tion, using similarity characteristics like nonmated 
comparison scores [49].  Their work focused on 
identification retrieval where accessed candidates 
are reduced in successive query steps.  Both studies 
leveraged standard (big) data management meth-
ods as applied to biometric identification to yield 
fusion improvements.
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SECTION

05
New technological breakthroughs will undoubtedly 
increase the speed of biometric identification while 
simultaneously increasing the number of personas 
that can be enrolled and recognized.  Some of the 
novel technologies that promise to revolutionize 
biometric processing are discussed in this section. 

5.1 DATA STORAGE AND COMPUTATIONAL 
SPEED

DL models that employ multiple layers require 
large volumes of data to significantly outperform 
traditional analytical methods based on convex 
optimizations (e.g., linear and kernel methods).  
SVM performance for both unimodal and multi-
modal biometric systems scale, but only to a certain 
point.  The use of CNNs is a natural advancement 
in model evolution driven by fusion of data and 
their increased availability.  As a result, storage and 
computational resources are often integrated into 
performance and scaling models as multicore  
architectures can offer high performance at  
smaller form factors.

Due to the physical limitations of transistors, the 
central processing unit (CPU) becomes a “core,” 
which is multiplied on the motherboard in a “multi-
core” architecture.  Computer processing speed is 
based on hardware elements such as the field-pro-
grammable gate array, CPU, GPU, and multicore 
architecture.  GPUs are optimized for the 4×4 
matrix-vector products used in a CNN [50].  Storage 
can be volatile (random-access memory) or non-
volatile (e.g., a “hard disk”).  Solid-state drive (SSD) 
technology is nonvolatile, meaning that the data 

written persist when the SSD is turned off and  
back on, and yet functions nearly as fast as random- 
access memory modules.

5.2 LATENCY REDUCTION

Latency is the delay in a process based on processing 
time or information travel.  For data access to be 
efficient, this delay must be minimized.  As noted in 
the beginning of this section, processing and memory 
hardware is becoming more effective.  Cloud and 
distributed storage is an area of active research.  
Improved indexing to support faster search drives 
Internet search, voice-activated search (e.g., Alexa, 
Siri), and social media.  Fast access to databases 
with optimally configured “shards” (predesigned 
and well-organized data partitions) provides 
speed of access to, and redundancy of, data.  For 
DoD operations, long distances between network 
nodes can add latency or delays in communication 
beyond the optimal.

5.3 NEURAL COMPUTATION AND THE 
ATTENTION MECHANISM

Research in biological neural computation is 
focused on attention (or memory) for noise reduc-
tion and is based on relative focus/unfocus in human 
attention patterns.  The Attention Mechanism 
has arguably become one of the most important 
concepts in the DL field.  It is inspired by human 
biological systems, which tend to focus on sharp 
contrasts when processing large amounts of infor-
mation.  With the development of DNNs, attention 
mechanisms have been used in diverse application 

FRONTIERS 
OF BIOMETRIC 

RECOGNITION
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domains [51].  Four variables of attention mechanisms 
are the softness (soft focus, or “smoothness”) of 
attention, forms of input features, input represen-
tation, and output representation.  Neuromorphic 
computing software imitates spike signals in the 
brain and is used to create energy-efficient hard-
ware for information processing, which is capable 
of highly sophisticated tasks [52].  Combining 
attention mechanisms with neural computation 
would increase the theoretical power of a DNN.  
Systems built with standard electronics achieve 
gains in speed and energy by mimicking the  
distributed topology of the brain.  Scaling-up such 
systems and improving their energy usage, speed, 
and performance by several orders of magnitude 
require a revolution in hardware.

5.4 UPSTREAM FUSION

Upstream fusion of data from multiple sensor types 
and modalities improves target detection and 
classification by forming data vectors prior to deg-
radation due to statistical algorithms applied to the 
data.  Level-based classifications generally catego-
rize fusions as low-level, mid-level, and high-level 
sensor fusion, corresponding to the common terms 
data-level, feature-level, and decision-level fusion, 
respectively [53].  Heterogeneous data sources for 
fusion involve signals such as infrared full-motion, 
video, passive radio-frequency (P-RF), pressure, 
radar, acoustic, chemical, electromagnetic, thermal, 
proximity, optical, and electro-optical (EO) vision.  
These signals are mostly independent of each other 
and can be combined into data vectors usable by 
ML [53].

5.5 COMPETITIVE, COMPLEMENTARY, AND 
COOPERATIVE FUSION

Competitive fusion is independent classification 
from separate sources such as video or radar.  Com-
plementary fusion exploits the overlap between 
modalities such as EO/RF through methods such as 
decision-level fusion or voting.  Cooperative fusion 
of EO, RF, and other modalities provides a complete 
picture of the environment that the individual 
features and input data alone cannot, for instance, 

with triangulation [53].  An example of coopera-
tive fusion is a digital imaging and remote-sensing 
image generation (DIRSIG) simulation performed 
in 2017 by Michigan Tech Research Institute.  The 
inputs consisted of medium-wave infrared full-mo-
tion video (IR FMV) input and three emulated 
corresponding P-RF sensors.  The targets included 
automotive vehicles; and obstacles were used to 
obscure the targets at times.  The DIRSIG dataset 
contained 13 simulations that cover a variety of 
visual obscuration scenarios, while receiving RF 
signals at three different locations [53].

The researchers found that traditional ML methods 
faltered due to large amounts of data and that DL 
would work better for data fusion.  This research 
clearly indicates that for next-generation, multi-
modal, biometric data-fusion efforts, multistream, 
multisensor, and multimodal sources may be best 
fused upstream.  In addition, the application of 
DL methods is necessary to produce a complete 
biometric recognition system that integrates all 
available identity information.

5.6 QUANTUM COMPUTING

Quantum computing promises to revolutionize 
next-generation computing applications due to its 
radically different approach as compared to cur-
rent computing assets.  Quantum computers do 
not rely on bits with the value of 1 or 0; rather, they 
are designed to use quantum computing bits, or 
qubits, which can exist at intermediate values.  In 
addition, quantum computers may be superior to 
classical computers for solving certain problems, 
such as the factoring of very large numbers and 
tackling some of the long-standing challenges in 
science, such as modeling the human brain or the 
millions of objects in space.  Moret-Bonillo (2015) 
shows how “The Quantum Circuit Model” can 
point the way to increased biometric identification 
performance and lower energy consumption [54].  
However, at this time, quantum computing is still in 
the theoretical stage.  
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SECTION

06
Data fusion requires attention to causal inference:  
how the data supports the result, which might be a 
biometric identification or another biometric classi-
fication.  The problem of inference depends heavily 
on which stage of the process data are fused or 
considered together.  It is clear that different parts 
of the body and even different parts of the face are 
independent in biometric applications.  Hence, it 
follows that biometric recognition will benefit from 
AI/ML algorithms conducting postclassification 
independently, with thresholds set at the match, 
rank, or decision level.  However, some algorithms 
may run faster if data are fused into feature vectors 
at an early stage (preclassification) and run with the 
same AI/ML algorithm, such as a CNN [21, 22].

Biometric systems have been significantly 
improved by 1) the increased predictive power of 
their algorithms through using fusion methods in 
conjunction with DL techniques; 2) the ability to 
employ novel approaches to data management; 
and 3) through employing computational power 
and storage to support improvements in search, 
sort, optimization, and processing.  Note that while 
the latter two approaches contribute to improve-
ments in biometric systems, these improvements 
are not novel to other industries like cloud com-
puting or enterprise relational databases.  Further 
improvements may come from increasing a sys-
tem’s predictive power through novel applications 
of DL along with applying optimized hardware to 
support applying increased computational power 

and storage.  The unique blend of DL’s predictive 
power combined with computational and storage 
improvements may drive substantial opportunity 
to deploy extremely robust algorithms that can 
scale and perform.

 

CONCLUSION
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