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Abstract 

Fault detection often depends on the specific order of inputs that establish states which eventually lead 
to a failure. However, beyond basic structural coverage metrics, it is often difficult to determine if code 
has been exercised sufficiently to ensure confidence in its functions. Measures are needed to ensure 
that relevant combinations of input values have been tested with adequate diversity of ordering to 
ensure correct operation. Combinatorial testing and combinatorial coverage measures have been 
applied to many types of applications but have some deficiencies for verifying and testing state-based 
systems where the response depends on both input values and the current system state. In such systems, 
internal states change as input values are processed. Examples include network protocols, which may 
be in listening, partial connection, full connection, disconnected, and many other states depending on 
the values of packet fields and the order of packets received. Similarly, merchant account balances in 
credit card systems change continuously as transactions are processed. This publication introduces a 
notion of ordered t-way combinations, proves a result regarding the construction of adequate blocks of 
test inputs,  and discusses the application of the results to verify and test state-based systems.  
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1 Introduction 

Vulnerability and fault detection often depend on the 
specific order of inputs that establish states which 
eventually lead to a failure. That is, many software 
processes are not deterministic functions where an 
input produces the same output whenever the process 
is invoked irrespective of previous invocations. This 
is particularly true of real-time systems, which are 
designed to run continuously, maintain states, and 
respond to a changing series of inputs. Such systems 
are typically driven by a loop function that accepts 
input values, processes and responds to those inputs, 
and updates its current state. Examples include 
network protocols and data servers. The system state 
may change, depending on input, and the system may 
subsequently respond differently to the same input. 
That is, the response of the process to a particular set 
of input values may depend on its current state, such 
as whether a communication protocol is in a listen or 
connection-open state. The current state depends on 
the order of input values that were contained in 
previously received packets. The same sort of state-
dependent behavior occurs in many other types of 
systems as well.  

Ensuring that inputs and system states in testing are 
sufficiently representative of what will be 
encountered in practice is critical to any form of  
effective software testing. The common practice for 
evaluating how thoroughly software has been tested 
is by using some sort of structural coverage metrics, 
such as statement coverage, branch coverage, or 
MC/DC coverage [13] . Test cases selected using 
only structural coverage criteria are often not very 
effective as they are not designed to include corner 
cases with specific combinations of input values that 
may cause a failure. Looking beyond these 
commonly used metrics, it is often difficult to 
determine if the code has been adequately tested and 
even more difficult to ensure that a sufficient 
diversity of inputs has been achieved. This is 
particularly true of assertion-based testing or runtime 
verification, where program states and properties are 
monitored to verify correct processing. For runtime 
assertions to discover bugs, the software needs to be 
exercised with a set of values in a particular order that 
leads to the failure. Consequently, for strong software 
assurance, measures are needed to verify that 
combinations of input values and combinations of 
input orders in a test suite are sufficient.  

Combinatorial coverage measures provide an 
effective method for quantifying the thoroughness of 
test input values [26] . A number of measures have 
been defined for the coverage of (static) input value 
combinations. For example, with four binary 
variables, there are a total of 22 * C(4,2) = 24 possible 
settings of the four variables taken two at a time. If a 
test set includes tests that cover 19 of the 24, the 
simple combinatorial coverage is 19/24 = 0.79. These 
measures quantify the degree to which input values 
cover the potential space of parameter value 
combinations without regard for the order in which 
these inputs occur in a test set or in normal 
operations. However, if a system state is affected or 
determined by the order of inputs, even thorough 
coverage of the input space may not detect some 
failure conditions. Thus, it is desirable to supplement 
measures of input space coverage with measures of 
the input value combination ordering.  

2 Related Work 

Combinatorial aspects of input ordering have been 
studied in the context of event sequences. Sequence 
covering arrays (SCAs) were introduced in [1]  and 
[2]  and further  developed in [3] , [4] , [5] , [7] , [8]  
[9] , [10] , and [11] .   

Definition. A sequence covering array [2] , SCA(N, 
S, t) is an N x S matrix where entries are from a finite 
set S of s symbols, such that every t-way permutation 
of symbols from S occurs in at least one row. The t 
symbols in the permutation are not required to be 
adjacent.  

For example, Fig. 1 shows an event sequence a *→ b 
*→ c in test 1 and an event sequence of d* → c* → 
a in test 3, where x *→ y  denotes x is eventually 
followed by y, with possible interleaving. Note that 
the event sequence array has sequences of events in 
each row. Event sequences are made up of a value in 
a column followed by values in columns to the right.  

Test p0    p1     p2     p3 
1 a d b c 
2 b a c d 
3 b d c a 
4 c a b d 
5 c d b a 
6 d a c b 

Fig. 1.  Event sequence 
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Combinatorial testing with constraints on the order in 
which values and combinations are applied in tests 
was analyzed extensively in [5] . Extended covering 
arrays that consider the sequence of values in each 
test were defined in [6] . Combination sequences 
were studied in [20] , combining configuration and 
the order of combinations while also considering 
constraints. Another structure defined as a sequence 
covering array of t-way combinations has been 
termed a multi-valued sequence covering array, 
introduced in [25] .   

3 Ordered Combination Covering  

A combination order is different from an event 
sequence. As noted in the previous section, an event 
sequence is a possibly interleaved sequence of 
symbols in a single row of a test array. A combination 
order, as defined below, is across multiple rows, 
given in the order in which tests will be executed. A 
t-way permutation of symbols is referred to as a t-way 
order, which will be called a t-order for brevity. 
The t events in the order may be interleaved with 
others (i.e., the order a→b→c covers three 2-event 
orders: a followed by b and b followed by c, and a 
followed by c). Denoting event a eventually followed 
by event b, possibly with other events interleaved, is 
written as a*→b. 
 
Consider the notion of an s-order of t-way 
combinations of the input parameters as a series of 
rows of test data that contain a particular set of t-way 
combinations in a specified order, with possibly 
interleaved rows.  
 
Definition 1. The notation a*→b denotes the 
presence of combination a eventually followed by 
combination b, possibly with other rows interleaved. 
A combination order c1 *→ c2 *→ …*→cs of s 
sequence of t-way combinations, abbreviated s-order, 
is a set of t-way combinations in s rows. Each ci is a 
t-way combination of parameter values.  
 
Example.  Fig. 2 shows combination order p0p1 = ad 
*→ p0p3 = ba *→ p1p3 = ab, which is a 3-order of 2-
way combinations. Thus, the term ordered 
combinations refers to combinations in a row 
followed by combinations in rows below.  
 

Test p0    p1     p2     p3 
1 a d b c 
2 b a c d 
3 b d c a 
4 c a b d 
5 c d b a 
6 d a c b 

 

Fig. 2.  Ordered combinations 
 
When all s-orders of t-way combinations of the input 
parameters have been covered, it is referred to as an 
ordered combination cover (OCC). For the OCCs, 
the combination orders are treated across rows (i.e., 
a combination in a row followed by combinations in 
rows below). A t-way combination occurs in some 
row and is eventually followed by other t-way 
combinations in other rows. For three Boolean 
parameters a, b, c in Fig. 3, ab=00 is followed by 
ab=10 ab=00 ac=11 ac=01 bc=01 (ac=01 and bc=01 
are also followed by this group).   
 

a b c 
0  0 1 
1  0 1 
0 0 1 

Fig 3. Ordered combinations of parameter values 
 

Combinations of parameter values such as this can be 
significant in protocol verification and testing, such 
as with combinations of values in each packet 
affecting the state where later packets produce 
different responses depending on the state that 
resulted from previous packet orders. 
 
Definition 2. An ordered combination cover, 
OCC(N,s,t,p,v), covers all s-orders of t-way 
combinations of the v values of p parameters, where 
t is the number of parameters in combinations and s 
is the number of combinations in an ordered series. 
Permutations of parameter value combinations may 
appear multiple times in a combination order. For 
example, a particular 2-order of 2-way combinations 
may be (p1p2 = 01) *→ (p2p4 = 11).  
 
The utility of combination order covering can be 
illustrated with an example. Consider the covering 
array in Fig. 4, which includes all 2-way 
combinations of four Boolean variables. 
 
 



NIST CSWP 26  ORDERED T-WAY COMBINATIONS 
 

5 
 

Test p1 p2 p3 p4 
1 0 0 1 0 
2 0 1 0 1 
3 1 0 0 1 
4 1 1 1 0 
5 0 1 0 0 
6 0 0 1 1 

Fig. 4.  2-way covering array of Boolean variables. 
 
Suppose these six tests are applied to the system 
modeled with a finite state machine diagram in Fig. 
5, and tests are run in the order 1..6. If condition A = 
“p1 ∧ p2” and condition B = “p1 ∧ ~p2”, then the error 
in state 2 will not be discovered. The system returns 
to state 0 for tests 1 through 3, then enters state 1 with 
test 4 and moves to state 3 with test 5. Because the 
test array does not include the ordered combinations 
p1, p2 = 11 *→  p1, p2 = 10, the error is not exposed. 
However, if the tests are run in the order [1, 2, 4, 3, 
5, 6], then the error in state 2 will be discovered 
because the third test (row 4 in Fig. 4) leads to state 
1, the fourth test (row 3) causes condition B to 
evaluate to true, and the system enters state 2, 
exposing the error.  
 

 
Fig. 5.  Example Finite State Machine.  

 
Note that the definition includes the repetition of a 
value combination in the OCC. The possibility of 
repeated occurrences of a value combination in an 
order is allowed based on the assumption that a 
particular combination may occur in multiple tests, 
and this sequence may be relevant to the system or 
software under test (SUT). For example, a function 
call to create a new file ‘f1’ followed by a duplicate 
call to create ‘f1’ may trigger some behavior other 
than an expected error message. So the 3-way 
combination (create, f1, 256) may be desirable 
to include more than once in a series of test inputs.  

Returning to the example in Fig. 4 and Fig. 5, 
suppose that a file system is being tested, where p1 is 
function with values {0 = read, 1 = write}, and p2 is 
rewind, which indicates if the pointer to the starting 
block is reset to 0 {0 = start from last position, 1 = 
start from block 0}. A read or write test processes 
from the starting block indicated by p2 and continues 
to the end of the file. So tests 1 to 4 represent ‘read 
from last read position,’ ‘read from start,’ ‘write from 
last write position,’ and ‘write from start.’ State 1 is 
entered when the file is filled by writing to the end 
after rewinding to start. The failure represented by 
state 2 is only exposed when a write is attempted on 
a file starting from the end. Then, as noted 
previously, running tests in the order 1..6 will not 
detect the error. However, when test 4 is run before 
test 3, the error will be detected because a write is 
attempted from the last position (end of file), as 
indicated by the value of p2.  
 
When tests are executed in sequence with each 
individual t-way combination considered an event, an 
order of t-way combinations containing s 
combinations input in sequence with possible 
interleaving is an s-sequence of t-way combinations. 
For example, a 2-sequence of 3-way combinations 
could be 

abd = 001 *→ bcd = 100, 
 

and a 3-sequence of 2-way combinations could be 
 

bc = 01 *→ ad = 11 *→ bc = 10. 
 
An OCC covers all s-sequences of t-way 
combinations of the v values of the p parameters. 
Because a t-tuple is included s times in an s-sequence, 
and the number of t-way combinations of p 
parameters is 𝐶𝐶(𝑝𝑝, 𝑡𝑡), for vt settings of each 
combination, the total number of combination 
sequence tuples to be covered is  
 

(𝑣𝑣𝑡𝑡𝐶𝐶(𝑝𝑝, 𝑡𝑡))𝑠𝑠.     (1) 
 

The number of combination sequences to be covered 
grows rapidly with s and t, so methods for the 
efficient construction of OCCs are of interest.  
 
Example. Fig. 6  shows a test array that covers all 2-
way combinations of values for four parameters, as 
well as all 2-sequences of 2-way parameter 
combinations.  
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 p1 p2 p3 p4 

1 1 1 1 0 
2 0 0 0 0 
3 1 1 0 1 
4 0 0 1 1 
5 1 1 0 0 
6 1 1 1 1 
7 0 1 1 0 
8 0 1 1 0 
9 0 1 0 1 

10 1 1 1 1 
11 1 0 1 0 
12 1 1 0 1 
13 0 1 1 1 
14 0 0 0 0 
15 0 0 0 1 
16 0 0 1 0 
17 1 1 1 0 
18 0 1 0 1 
19 1 1 1 0 
20 1 0 1 1 

Fig.6.  Tests for four parameters, OCC(20,2,4,2) 
 

That is, the test array includes every solution of (pwpx 
= v1v2) *→ (pypz = v1v2), of which there are 
(𝐶𝐶(4,2)𝑥𝑥 22)2= 576 instances. For example, each of 
the four possible settings of p1p2 is followed by each 
of the four possible settings of p3p4 somewhere in the 
table (distinguished by color). That is, (p1p2 = 11) in 
line 1 is followed by (p3p4 = 01), (p3p4 = 01), (p3p4 = 
11), (p3p4 = 00), (p3p4 = 10) in lines 3, 4, 5, and 7, 
respectively, highlighted in yellow (also  for (p1p2 = 
00)). Sequences for (p1p2 = 01) are shown in green, 
plus line 14, which provides a (p3p4 = 00) for both 
(p1p2 = 01) and (p1p2 = 10). Sequences for (p1p2 = 10) 
are highlighted in blue.  

 

3.1 Combination Sequence Covering 
Arrays in Testing 

 

As seen in Fig. 6, the numbers of combination 
sequences to be covered will become very large with 
realistic testing problems as a result of the exponents 
in expression (1). Consequently, measuring 
combination sequence coverage can be inefficient 
and resource intensive. Fortunately, the problem of 
ensuring combination sequence coverage can be 
reduced to ensuring coverage of t-way covering 
arrays, as shown in the following proof. Checking 
that a test array is a covering array can be done 
efficiently, making it practical to ensure s-sequences 
of t-way combinations in large-scale testing.  

Theorem: A test set covers s-orders of t-way 
combinations if and only if it includes an ordered 
series containing a total of s covering arrays, each of 
strength t.  
 
Proof: From Definition 2, a sufficient process for 
generating an s-order t-way OCC is to concatenate s 
covering arrays of strength t, as shown below in Fig. 
7. Because a covering array includes every t-way 
combination, any order of at least s combinations will 
occur by taking the rows of s covering arrays from 
CA1, CA2, …, CAs., where CAi are t-way covering 
arrays. Clearly, for any s-order of s combinations, c1 
*→ c2 *→ …*→cs , c1 must be present in CA1, c2 in 
CA2, etc. because they cover all t-way value 
combinations by definition, giving the required 
order.  
 

 
CA1 

 
   A1 … A2   …    Ak             row  i 
                                      row  i+1 

CA2 
 
   B1 … B2   …   Bl               row x 
… 
 

CAs 
 

Fig.7.  OCC constructed from covering arrays. 
 
To show necessity, consider a series of rows in a test 
array. There must be at least one combination order 
that can only exist if the test array can be divided into 
subarrays, each of which is a covering array. Each 
row covers some number of t-way combinations. For 
each row, add the combinations covered to a set, and 
continue adding non-covered combinations from 
each successive row. Eventually, a row will be 
reached that covers the last remaining previously 
uncovered combinations. Label these previously 
uncovered combinations A1 … A2  …  Ak and the row 
containing these combinations as row i.  A1 … A2  …  Ak 
do not occur in any row prior to row i. The subarray 
of rows from the first row to and including row i 
forms a covering array that will be labeled CA1. With 
the inclusion of row i, CA1 includes all t-way 
combinations, so it is a t-way covering array.   
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At row i+1, start a new set of combinations covered 
in rows i+1 and following rows. Continue adding 
combinations covered in each successive row until a 
row is reached that covers the last remaining 
previously uncovered combinations after row i+1.  
Label these previously uncovered combinations B1 … 
B2  …  Bl and the row containing these combinations 
as row x. B1 … B2  …  Bl do not occur in any row after 
row i and prior to row x.  The subarray beginning with 
row i+1 and ending with row x forms a covering array 
that will be labeled CA2. CA2 includes all t-way 
combinations, with the inclusion of row x, so it is a t-
way covering array. Any combination in A1 … A2  …  Ak 

must be followed by any t-way combination in some 
row of CA2.  
 
Note that any 2-order c1 *→ c2 where c1 is one of Ai 

and c2 is one of Bi  could not have been covered until 
row x of CA2 because the Bi tuples are those that had 
not been covered in CA2 before row x (and after row 
i). Assume that c1 *→ c2 is covered before row x in 
the combined array CA1 || CA2. Since c2 is not in 
subarray CA2 before row x, it must be in subarray 
CA1. However, c1 is in the last row of CA1, so c2 must 
be in a row of CA1 following the last row of CA1, 
which is a contradiction.  
 
Therefore c1 *→ c2 can be covered only if CA1 and 
CA2 are covering arrays. Continuing in this manner 
shows that orders of s combinations of strength t can 
be covered only if the subarrays of the set of test rows 
form s covering arrays (end proof). 
 
Example. Fig. 8 shows the concatenation of two 2-
way covering arrays for four binary parameters. Any 
2-order of 2-way combinations occurs somewhere in 
the rows of Fig. 6. For example, (p1p2 = 10) (row 3) 
is followed by p1p3 = 00, 01, 10, 11 in rows 5, 6, 9, 
and 4, respectively. If row 12 is removed, there must 
be at least one combination order c1 *→ c2 where c2 

= (p3p4 = 11) that is not covered because (p3p4 = 11)  
is covered only in the last row of CA1 and CA2 (row 
12). Removing row 12 would result in losing (p3p4 = 
11) *→ (p3p4 = 11). Similarly, (p1p4 = 10)  is covered 
only in the third-to-last row (row 10) of CA1 and CA2, 
so there must be at least one combination order c1 *→ 
c2 where c2= (p1p4 = 10) that is not covered if row 10 
is removed. Removing row 10 would result in losing 
(p1p3 = 11) *→ (p1p4 = 10), (p3p4 = 00) *→ (p1p4 = 
10), and others.    

The practical utility of this result is that it shows one 
can efficiently produce tests that cover all orders of t-
way combinations up to any necessary order length 
by concatenating t-way covering arrays. It also shows 
that the minimum size of the OCC is determined by 
the minimum size of the relevant t-way covering 
arrays. From a testing perspective, producing full 
coverage of t-way combinations in s length orders 
makes it possible to detect faults that are only 
detectable when a system is in a particular state that 
can only be reached by an order of input 
combinations.  
 

 p1 p2 p3 p4 
1 0 0 1 0 
2 0 1 0 1 
3 1 0 0 1 
4 1 1 1 0 
5 0 1 0 0 
6 0 0 1 1 
7 0 0 1 0 
8 0 1 0 1 
9 1 0 0 1 

10 1 1 1 0 
11 0 1 0 0 
12 0 0 1 1 

Fig. 8.  Two concatenated covering arrays. 
 
This result can also be useful for runtime verification, 
assertion monitoring, and other methods that rely on 
checking program properties and states as code is 
executed. If inputs are monitored and recorded, then 
it is possible to verify whether a covering array series 
of desired length has been applied in testing. The 
system should run long enough to enter all major 
states and allow detection of errors that occur only in 
particular states. The use of covering arrays gives 
stronger assurance that relevant states have been 
reached, as program states depend on the order of 
inputs, and the coverage of input value combinations 
can be measured.  
 
3.2 Combination Order Coverage 

Measurement 
      
A combination order tool for OCCs, Corder, has been 
developed, allowing for the order coverage of any 
test set to be measured. It may also be used in 
generating OCCs using random test generation, 
measuring coverage, and extending the test array 
until sufficient coverage is achieved.  
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In its current form, the tool assumes that all single 
values of input variables have been included in the 
input test array and computes t-way coverage for t = 
2..4 in the same manner as the CCM tool for 
combination coverage [26] . This is referred to in the 
output report as static coverage and measures the 
coverage of combinations in each row of the array 
where any t-way covering array will have 100 % 
coverage of t-way combinations. A second output 
provides coverage, referred to as dynamic, of s-orders 
of t-way combinations in the test array.  
 
For example, the test array in Fig. 9 (a) shows 12 tests 
with four binary parameters or variables. If these are 
executed in order, the first test includes C(4,2) = 6 
events defined as 2-way combinations: ab = 00, ac = 
01, ad = 00, bc = 01, bd = 00, and cd = 10. For 2-
orders containing ab, there are four possible settings 
of ab. Each of these may followed by value 
combinations of ab, ac, ad, bc, bd, and cd. 
Completely covering all 2-way 2-orders (i.e., orders 
of length 2 of 2-way combinations) would produce 4 
* C(4,2) * 4 * C(4,2) orders. One can measure the 
degree to which these orders are covered and output 
any missing orders, as shown in Fig. 4(b). Note that 
ab = 11 is followed by cd = 01 and cd = 10, but cd = 
00 and cd = 11 do not follow ab = 11 in the test series, 
as shown in Fig 5(c), which shows <parameter 
numbers> : <order> → <parameter numbers> : 

<order> for 2-way orders.  
 

a b c d 
0 0 1 0 
0 1 0 1 
1 0 0 1 
0 0 1 1 
1 1 0 0 
1 1 1 0 
1 0 0 1 
0 1 0 1 
0 0 1 0 
1 0 0 1 
0 1 0 1 
0 0 1 0 

(a) 

a b c d 
0 0 1 0 
0 1 0 1 
1 0 0 1 
0 0 1 1 
1 1 0 0 
1 1 1 0 
1 0 0 1 
0 1 0 1 
0 0 1 0 
1 0 0 1 
0 1 0 1 
0 0 1 0 

         (b) 

 
 

(c) 

Fig. 9  Missing combination orders 
 
Fig. 8 illustrates the output of the Corder tool for the 
matrix shown in Fig. 4. Basic static coverage 
measures are shown in the top half of the results to 
provide an overview of input space coverage. For 
more detailed data on input space coverage, the CCM 

tool measuring combination coverage can be used 
[26] . An example is shown in Fig. 11 for a larger, 
more realistic array of 10 parameters with 6 values 
each in a file of 263 tests.  
 
 
file = t9.csv     Nvars:  4   Nrows:  12  
___________________________________________________________ 
Static - input space coverage 
              t|       covered |   max possible |coverage|  
              1|              8|               8|  1.0000| 
              2|             24|              24|  1.0000| 
              3|             22|              32|  0.6875| 
              4|              6|              16|  0.3750| 
___________________________________________________________ 
Dynamic - order coverage 
               |      covered  |   max possible |coverage|  
 1-way | 2-seq |            64 |             64 |  1.0000|  
 1-way | 3-seq |           512 |            512 |  1.0000|  
 2-way | 2-seq |           553 |            576 |  0.9601|  
 2-way | 3-seq |        11,069 |         13,824 |  0.8007|  
__________________________________________________________ 

Fig. 9. Output of Corder tool for matrix shown in Fig. 4 
 
The Corder tool provides the following output: 
• file = input file name containing the test vectors 

to be analyzed 
• Nvars = number of variables; each column of the 

input .csv file corresponds to a single variable 
• Nrows = number of rows of input file 
• Static-input space coverage: coverage statistics 

for t-way combination coverage of the input file 
for levels of t specified in first column 

• Dynamic-order coverage: coverage statistics for 
orders of combinations as described in this 
section 

 
___________________________________________________________ 
file = g10.6.263.csv     Nvars:  10   Nrows:  263  
___________________________________________________________ 
Static - input space coverage 
              t|       covered |    max possible |coverage|  
              1|             60|               60|  1.0000| 
              2|          1,618|            1,620|  0.9988| 
              3|         18,268|           25,920|  0.7048| 
              4|         50,044|          272,160|  0.1839| 
___________________________________________________________ 
Dynamic - order coverage 
               |      covered  |    max possible |coverage|  
 1-way | 2-seq |         3,600 |           3,600 |  1.0000|  
 1-way | 3-seq |       216,000 |         216,000 |  1.0000|  
 2-way | 2-seq |     2,606,616 |       2,617,924 |  0.9957|  
 2-way | 3-seq | 4,143,537,228 |   4,235,801,032 |  0.9782|  
___________________________________________________________ 
Fig. 11. 10-parameter combination order cover measurement 
 
It is important to understand the difference between 
static and dynamic coverage as defined here. 
Essentially, static coverage is based on the presence 
or absence of t-way settings of the input variables, 
and dynamic coverage refers to the coverage of 
possible orders of these combinations.  
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Static coverage corresponds to combination coverage 
measures defined in [26]  and other publications. In 
this case, there are four variables with two values 
each, so for single-variable coverage (t=1), there are 
4x2 = 8 possible settings. The tool assumes that all 
single values of variables are included in the input 
file. For 2-way combinations, there are C(4,2) = 6 
possible combinations, each of which has 2x2 = 4 
possible settings, so the number of combinations to 
be covered is 24, all of which are covered at least 
once. Similarly, for 3-way combinations there are 
C(4,3) = 4 combinations, which may have 2x2x2 = 8 
settings for a total of 32 possible settings to be 
covered. Of the possible settings, there are 22 
covered  (for example, abc = 000 is missing, as is acd 
= 000) for a coverage figure of .6875.  
 
For dynamic coverage, the interaction strength (level 
of t) for the combinations included in orders and the 
number of combinations in an order need to be 
specified.  
 

4 Conclusions 

This report considers practical methods for testing 
complex orders of all t-way combinations up to some 
specified level of t. It is shown that the test set covers 
s-orders of t-way combinations if and only if it 
includes an ordered series of s covering arrays of 
strength t. This result can efficiently produce tests 
that cover all orders of t-way combinations up to any 
necessary order length by concatenating t-way 
covering arrays. The notion of ordered combination 
covers may be applied in runtime verification, 
assertion monitoring, and other verification and test 
methods that rely on checking program properties 
and states as code is executed.  
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