NAME:WRECK | RESEARCH REPORT

<) FORESCOUT

Active Defense for the Enterprise of Things”

&
@

b @ & dv & &

H| s

€.l

L

<) FORESCOUT JSOF

NAME

Breaking and fixing DNS implementations

Published by Forescout Research Lalbs & JISOF

Forescout Research Labs
Daniel dos Santos
Stanislav Dashevskyi
Amine Amri

Jos Wetzels

JSOF
Moshe Kol
Shlomi Oberman

RESEARCH REPORT | NAME:WRECK

Contents

1. EXECULIVE SUMMIAIY oo

2. MAIN FINAINGS oo
2.1. Analyzed stacks and new vulnerabilitieSoooiiiiiii e

B XD O A ON e
3.7. ADOUL DNS MESSAGE PATSING ...
3.2, TeChNICAl ABTAIIS ... i

4. Anattack scenario leveraging NAMEWRECK .. e

5. The impact of NAME:WRECK

6. It's You Again: Recurrent Anti-Patterns ...

6.1. AP#1 — Lack of TXID validation, insufficiently random TXID and source UDP portcccccoeeeeeeeeeeennnn. .

6.2. AP#2 — Lack of domain name character Validation ...ooo.eee e .

6.3. AP#3 — Lack of label and name lengths validation ...t .

6.4. AP#4 — Lack of NULL-termination Validation ..o..o e

6.6. AP#6 — Lack of domain name compression pointer and offset validation —ccccoiiiiiinii

7. Mitigation Recommendations

8. Conclusions and Final Remarks

11

12

12

16

17

21

21

21

22

22

22

22

24

26

FORESCOUT RESEARCH LABS

RESEARCH REPORT | NAME:WRECK | Executive summary

. Executive summary

In the third study of Project Memoria — NAME:WRECK
— Forescout Research Labs and JSOF Research Labs
joined forces to understand underlying problems related
to Domain Name System (DNS) implementations, to dis-
close a set of 9 vulnerabilities affecting 4 popular TCP/
IP stacks and to propose solutions for the community.

The new vulnerabilities appear in well-known IT soft-
ware (FreeBSD) and in popular 1oT/OT firmware, such
as Siemens’ Nucleus NET. FreeBSD is widely known to
be used for high-performance servers in millions of IT
networks, including major websites such as Netflix and
Yahoo. FreeBSD is also the basis for other well-known
open-source projects. Nucleus NET has been used for
decades in several critical OT and loT devices.

Not all devices running Nucleus RTOS or FreeBSD are vul-
nerable to NAME:WRECK. However, if we conservatively
assume that 1% of the more than 10 billion deployments
are vulnerable, we can estimate that at least 100 million
devices are impacted by NAME:WRECK.

The new vulnerabilities allow for either Denial of Service
or Remote Code Execution. The widespread deployment
and often external exposure of vulnerable DNS clients
leads to a dramatically increased attack surface.

NAME:WRECK illustrates the security cost of RFC com-
plexity. We analyzed the implementation of DNS message
compression in 7 new TCP/IP stacks and found that
50% of them are vulnerable. This is in addition to similar
vulnerabilities in previous research (one in Ripple20 and
two in AMNESIA:33) and other major vulnerabilities
affecting DNS servers (SIGRed, DNSpoog, and several
others disclosed over the years).

General recommended mitigations for NAME:WRECK
include limiting the network exposure of critical vul-
nerable devices via network segmentation, relying on
internal DNS servers and patching devices whenever
vendors release advisories.

FORESCOUT RESEARCH LABS

Of particular interest is that to exploit NAME:WRECK
vulnerabilities, an attacker should adopt a similar
procedure for any TCP/IP stack. This means that the
same detection technique used to identify exploitation
of NAME:WRECK also will work to detect exploitation
on other TCP/IP stacks and products that we could not
yet analyze.

As part of the NAME:WRECK disclosure, Forescout
Research Labs shares with the cybersecurity commu-
nity the following artifacts:

« Thisreport, in which we discuss six DNS anti-pat-
terns (implementation problems common in dif-
ferent TCP/IP stacks) and provide researchers
and developers around the world with tools and
knowledge enabling them to tackle the issue in
other stacks.

* Anupdated open-source script to identify possible
vulnerable devices on a network.

Alibrary of open-source Joern gueries to be used
by researchers and software developers to (partially)

automate the finding of DNS-related vulnerabilities.

Samples of malicious traffic captures (available
upon request) to be used by researchers and secu-
rity analysists to test their intrusion detection sys-
tems.

A draft of an informational REC discussing the
identified anti-patterns to guide developers in avoid-
ing making the same mistakes while writing future
DNS implementations.

This research is further proof that DNS protocol com-
plexity leads to several vulnerable implementations and
that the community should act to fix a problem that we
believe is more widespread of what we currently know.

https://www.jsof-tech.com/disclosures/ripple20/
https://www.forescout.com/research-labs/amnesia33/
https://research.checkpoint.com/2020/resolving-your-way-into-domain-admin-exploiting-a-17-year-old-bug-in-windows-dns-servers/
https://www.jsof-tech.com/disclosures/dnspooq/
https://github.com/Forescout/project-memoria-detector
https://github.com/Forescout/namewreck
https://github.com/Forescout/namewreck

RESEARCH REPORT | NAME:WRECK | Executive summary

INFORMATIONAL

A Recap on TCP/IP stacks and Project
Memoria

A TCP/IP stack is a piece of software that implements basic
network communication for all IP-connected devices, includ-
ing Internet of Things (IoT), operational technology (OT) and
information technology (IT). Not only are TCP/IP stacks wide-
spread; they also are notoriously vulnerable due to (i) codebases
created decades ago and (ii) an attractive attack surface,
including protocols that cross network perimeters and lots of
unauthenticated functionality.

Noticing the impact of these foundational components,
Forescout Research Labs has launched Project Memoria
with the goal of collaborating with industry peers and research
institutes to provide the cybersecurity community with the
largest study on the security of TCP/IP stacks.

The latest examples of TCP/IP stack vulnerabilities include:

A note on the title of this report

‘NAME:WRECK" refers to how the parsing of domain names
can break — “wreck” — DNS implementations in TCP/IP stacks,
leading to denial of service or remote code execution. However,
this research focuses not only on the “breaking” part, but also

FORESCOUT RESEARCH LABS

+ Ripple20, a set of 19 vulnerabilities on the Treck TCP/IP
stack released by JSOF in June 2020. Forescout Research
Labs worked in close collaboration with JSOF to identify
vendors and devices potentially affected by Ripple20.

+ AMNESIA:33, a set of 33 vulnerabilities affecting 4 open-
source TCP/IP stacks released in December 2020 by
Forescout Research Labs.

+ NUMBER:JACK, a set of 9 vulnerabilities affecting the Initial
Sequence Number (ISN) implementation in 9 TCP/IP stacks
disclosed in February 2021 by Forescout Research Labs.

NAME:WRECK, discussed in this report, a set of 9 vulnera-
bilities affecting DNS clients of 4 TCP/IP stacks disclosed
by Forescout Research Labs and JSOF. The vulnerabilities
included in NAME:WRECK range in potential impact from
Denial of Service to Remote Code Execution.

on “fixing" these types of issues by finding and patching similar
vulnerabilities in other stacks as well as avoiding the identified
anti-patterns in future implementations.

https://www.jsof-tech.com/disclosures/ripple20/
https://www.forescout.com/company/blog/identifying-and-protecting-devices-vulnerable-to-ripple20/
https://www.forescout.com/company/blog/identifying-and-protecting-devices-vulnerable-to-ripple20/
https://www.forescout.com/research-labs/amnesia33/
https://forescout.com/company/blog/numberjack-forescout-research-labs-finds-nine-isn-generation-vulnerabilities-affecting-tcpip-stacks/
https://www.forescout.com/research-labs/namewreck/

RESEARCH REPORT | NAME:WRECK | Main Findings

2. Main Findings

Domain names are character strings that identify assets on
the internet. The Domain Name System (DNS), informally
known as the “phonebook of the internet,” is a decentralized
system and protocol created by Paul Mockapetris in 1983
that allows a requesting device to resolve desired domain
names (such as “google.com”) to specific IP addresses
(suchas “172.217.6.78") by querying a hierarchy of servers
(such as Google’s Public DNS).

Recently, there have been major vulnerabilities on DNS
implementations that raised attention to this protocol as
an important attack vector, such as SIGRed (CVE-2020-
1350) allowing attackers to take over machines running
the Windows DNS server and SAD DNS (CVE-2020-25705),
which revived the DNS cache poisoning attack that can
redirect millions of devices to attacker-controlled domains.
The most recent example of major vulnerability on a DNS
implementation is DNSpooq, a set of 7 critical CVEs affect-
ing the DNS forwarder dnsmasg, which is used by major
networking vendors to cache the results of DNS requests.

This kind of research shows that DNS is a complex protocol
that tends to yield vulnerable implementations, and these
vulnerabilities can often be leveraged by external attackers
to take control of millions of devices simultaneously.

One particularly interesting class of vulnerabilities in DNS
implementations is related to a protocol feature called
‘message compression.” Since DNS response packets often
include the same domain name or a part of it several times,
REC 1035 ("“Domain Names — Implementation and Spec-
ification”) specifies a compression mechanism to reduce
the size of DNS messages in its section 4.1.4 (“Message
compression"). This type of encoding is used not only in DNS
resolvers but also in multicast DNS (mDNS), DHCP clients
as specified in REC 3397 (“Dynamic Host Configuration
Protocol (DHCP) Domain Search Option”) and IPv6 router
advertisements as specified in REC8106 (“IPv6 Router

FORESCOUT RESEARCH LABS

Advertisement Options for DNS Configuration”). Also, while
some protocols do not officially support compression, many
implementations still do support it because of code reuse
or a specific understanding of the specifications.

DNS compression is neither the most efficient compression
method nor the easiest to implement. As evidenced by the
historical vulnerabilities shown in Table 1, this compression
mechanism has been problematic to implement for 20 years
on a diverse range of products, such as DNS servers, enter-
prise devices (e.g., the Cisco IP phone) and, more recently,
the TCP/IP stacks Treck, ulP and PicoTCP.

https://en.wikipedia.org/wiki/Domain_Name_System
https://internethalloffame.org/inductees/paul-mockapetris
https://dns.google.com/
https://research.checkpoint.com/2020/resolving-your-way-into-domain-admin-exploiting-a-17-year-old-bug-in-windows-dns-servers/
https://research.checkpoint.com/2020/resolving-your-way-into-domain-admin-exploiting-a-17-year-old-bug-in-windows-dns-servers/
https://www.saddns.net/
https://www.jsof-tech.com/disclosures/dnspooq/
http://www.thekelleys.org.uk/dnsmasq/doc.html
https://tools.ietf.org/html/rfc1035
https://en.wikipedia.org/wiki/Multicast_DNS
https://tools.ietf.org/html/rfc3397
https://tools.ietf.org/html/rfc8106
https://cr.yp.to/djbdns/notes.html
https://cr.yp.to/djbdns/notes.html

RESEARCH REPORT | NAME:WRECK | Main Findings

Table 1T — 20 years of vulnerabilities related to DNS message compression

CVE-2000-0333 tcpdump, ethereal 2000
2 CVE-2002-0163 Squid 2002
3 CVE-2004-0445 Symantec DNS client 2004
4 CVE-2005-0036 Cisco IP Phone+ 2005
5 CVE-2006-6870 Avahi 2006
6 CVE-2011-0520 MaraDNS 2011
7 CVE-2017-2909 Mongoose 2017
8 CVE-2018-20994 TrustDNS 2018
9 CVE-2020-6071 VLC 2020
10 CVE-2020-6072 VLC 2020
11 CVE-2020-12663 Unbound 2020
12 CVE-2020-11907 Treck TCP/IP stack (Ripple20) 2020
13 CVE-2020-24335 ulP TCP/IP stack (AMNESIA:33) 2020
14 CVE-2020-24339 PicoTCP TCP/IP stack (AMNESIA:33) 2020

2.1. Analyzed stacks and new
vulnerabilities

While working on Ripple20 and AMNESIA:33, we had already
found and disclosed three vulnerabilities related to message
compression (see Table 1). During that research, we hypoth-
esized that this type of vulnerability could represent a general
problem that is common to other stacks as well. For this rea-
son, we decided to focus on other TCP/IP stacks. Including
some of our previous work and this research, we evaluated
15 stacks for message compression vulnerabilities: 1 stack
under Ripple20 (Treck), 7 stacks under AMNESIA:33 (ulP,
PicoTCP, FNET, Nut/Net, IwIP, cycloneTCP and uC/TCP-IP)
and 7 new stacks under NAME:WRECK (FreeBSD's DHCP,
IPnet, NetX, Nucleus NET, FreeRTOS+TCP, OpenThread and
Zephyr). We found 7 of the analyzed stacks to be vulnerable.

Table 2 lists all the stacks analyzed for message com-

FORESCOUT RESEARCH LABS

pression vulnerabilities under Ripple20, AMNESIA:33 and
NAME:WRECK, as well as whether or not they are vulner-
able. As shown in the table, Treck TCP/IP, ulP. PicoTCP,
FreeBSD, IPNet, NetX and Nucleus NET are vulnerable to
the DNS compression bug. FNET, cycloneTCP, uC/TCP-IR,
FreeRTOS+TCP, Zephyr and OpenThread were found to
implement message compression securely, hence, not to
be vulnerable. Nut/Net and IwlIP did not support message
compression, which makes them not vulnerable by design.

Table 3 focuses on the new vulnerabilities found under
NAME:WRECK. As shown in Table 3, these vulnerabilities
can be exploited by attackers to achieve Remote Code
Execution (RCE) via out-of-bounds write or Denial of Service
(DoS) via out-of-bounds read.

RESEARCH REPORT | NAME:WRECK | Main Findings

Table 2 — Overview of the TCP/IP stacks scrutinized for DNS message compression vulnerabilities. Rows are colored according to whether the stack
is vulnerable: @ yellow for known vulnerable from previous research, @ red for found vulnerable in NAME:WRECK and @ green for not vulnerable.

TCP/IP stack actively developed by Treck Inc. since
Treck TCP/IP 1997 for real-time embedded devices. The stack is also 6.0.1.66 Vulnerable
known as Elmic KASAGO in Asia.

Released in 2001 as an open-source project and uP 1.0
extended by Cisco in 2008 with IPv6. Its development .
. . . . Contiki 3.0
ulP (microlP) has been halted as a standalone project, but it continues Contiki-NG Vulnerable
as part of the Contiki OS, which in turn has a new version 45
called Contiki-NG. '

Developed by Altran Intelligent Systems and made open picoTCP 1.7.0
PicoTCP source in 2013. The stack continues to be developed as picoTCP-NG Vulnerable
picoTCP-NG, which is no longer supported by Altran. 2.0.0

Open-source Unix-like operating system with its own
FreeBSD TCP/IP stack, developed since 1993. Currently the most 12.1 Vulnerable BINAVIEAVEE]S
popular OS in the BSD family. DHCP stack analyzed.

Embedded TCP/IP stack developed originally by
Interpeak and acquired by Wind River in 2006. It is used

[Pnet . VxWorks 6. Vul | NAME:WRECK
He commonly by the VxWorks RTOS and was previously xWorks 6.6 ulnerable
used with other OSes, such as OSE and INTEGRITY.
Developed by Express Logic as part of the ThreadX
NetX RTOS since 1997 and purchased by Microsoft in 2019. 6.0.1 Vulnerable ATANIENTaReR

It is currently an open-source project maintained by
Microsoft and has been renamed Azure RTOS NetX.

TCP/IP stack of the Nucleus RTOS, maintained by
Nucleus NET = Siemens EDA. Developed since 1993, originally by 4.3 Vulnerable BNAW/SAWIR{=0]4
Accelerated Technology.

Developed originally at Freescale in 2003 and made

o : _— Not
ENET public in 2009. It is currently maintained by Andrey 46.3 © AMNESIA:33
Vulnerable
Butok.
TCP/IP stack used by NutOS, which has been Not
Nut/Net : . 5.1 AMNESIA:33
LIRS developed by the Ethernut project since 2002. Vulnerable
Developed in 2000 by Adam Dunkels and now
maintained by a large group of developers. IwIP has Not
lwIP 2.1.2 AMNESIA:33
become very popular as part of FreeRTOS or as a Vulnerable

standalone stack.

FORESCOUT RESEARCH LABS

~

https://treck.com/
https://github.com/adamdunkels/uip
https://github.com/tass-belgium/picotcp
https://www.freebsd.org/
https://www.windriver.com/security/announcements/tcp-ip-network-stack-ipnet-urgent11/
https://docs.microsoft.com/en-us/azure/rtos/netx/overview-netx
https://www.mentor.com/embedded-software/nucleus/
https://sourceforge.net/p/fnet/
https://ethernut.de/
https://savannah.nongnu.org/projects/lwip/

RESEARCH REPORT | NAME:WRECK | Main Findings

Developed by Oryx Embedded and distributed in source
code form since 2013. o Vulnerable

Not
196

AMNESIA:33

cycloneTCP

Developed originally by Micrium in 2002 and open Not
UC/TCP-IP sourced in February 2020. uC/Q0S, which typically relies 3.06.00 AMNESIA:33

. o e . Vulnerable
on the stack, is very popular in mission-critical devices..
FreeRTOS Open-source stack developed as part of the widely Not
. 222 NAME:WRECK
+TCP used FreeRTOS project. Vulnerable
Open-source implementation of the Thread networking Not
OpenThread technology developed by Google originally for Nest 20191113 Vulnerable NAME:WRECK
products.
Modern RTOS with its own TCP/IP stack (originally
based on ulP). Developed by Wind River in 2015 Not
Zephy . . . 2.3.0 NAME:WRECK
Pyt and open sourced in 2016 as a project of the Linux Vulnerable

Foundation.

FORESCOUT RESEARCH LABS 8

https://www.oryx-embedded.com/products/CycloneTCP
https://github.com/Micrium/uC-TCP-IP/
https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/index.html
https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/index.html
https://openthread.io/
https://zephyrproject.org/

RESEARCH REPORT | NAME:WRECK | Main Findings

Table 3 — New vulnerabilities in NAME:WRECK. Rows are colored according to the CVSS score: yellow for medium or high and red for critical.

Affected Potential | CVSSvV3.l
CVE ID Stack Description : ¥
feature Impact Score

2020-

7461 FreeBSD
2016-
20009 [Pnet

2020- Nucleus
15795 NET

2020- Nucleus
27009 NET

2020- Nucleus
27736 NET

FORESCOUT RESEARCH LABS

The vulnerability exists due to a boundary error when parsing
option 119 data in DHCP packets in dhclient(8). A remote
attacker on the local network can send specially crafted data
to the DHCP client, trigger heap-based buffer overflow and
execute arbitrary code on the target system.

The DNS client has a stack-based overflow on the message
decompression function leading to a potential RCE. We found
this independently but it turned out to be a bug collision with
an issue previously reported by Exodus Intelligence, fixed
by Wind River in 2016 and that never got assigned a CVE.
We discussed the matter with Wind River and the CERT CC
in November 2020, who agreed that CVE IDs with an end-
of-life tag should be issued. After months without further
action from Wind River, we asked the original finders of the
vulnerability to request the IDs in January 2021.

The DNS domain name label parsing functionality does not
properly validate the names in DNS responses. The parsing
of malformed responses could result in a write past the
end of an allocated structure. An attacker with a privileged
position in the network could leverage this vulnerability to
execute code in the context of the current process or cause a
denial-of-service condition.

The DNS domain name record decompression functionality
does not properly validate the pointer offset values. The
parsing of malformed responses could result in a write past
the end of an allocated structure. An attacker with a privileged
position in the network could leverage this vulnerability to
execute code in the context of the current process or cause a
denial-of-service condition.

The DNS domain name label parsing functionality does not
properly validate the name in DNS responses. The parsing of
malformed responses could result in a read past the end of
an allocated structure. An attacker with a privileged position
in the network could leverage this vulnerability to cause a
denial-of-service condition.

Message
compression

Message
compression

Domain name
label parsing

Message
compression

VDomain
name label
parsing

RCE

RCE

RCE

RCE

DoS

https://blog.exodusintel.com/2016/08/09/vxworks-execute-my-packets/
https://blog.exodusintel.com/2016/08/09/vxworks-execute-my-packets/
https://cve.mitre.org/cve/cna/CVE_Program_End_of_Life_EOL_Assignment_Process.html
https://cve.mitre.org/cve/cna/CVE_Program_End_of_Life_EOL_Assignment_Process.html

RESEARCH REPORT | NAME:WRECK | Main Findings

. Affected Potential | CVSSv3.l
CVE ID Stack Description
feature Impact Score

The DNS response parsing functionality does not properly
validate various length and counts of the records. The
2020- Nucleus parsing of malformed responses could result in a read Domain name
27737 NET past the end of an allocated structure. An attacker with label parsing
a privileged position in the network could leverage this
vulnerability to cause a denial-of-service condition.

DoS

The DNS domain namerecord decompression functionality
does not properly validate the pointer offset values. The
2020- Nucleus parsing of malformed responses could result in a read Message
27738 NET access past the end of an allocated structure. An attacker compression
with a privileged position in the network could leverage
this vulnerability cause a denial-of-service condition.

DoS

The DNS client does not properly randomize DNS
2021- Nucleus transaction ID (TXID) and UDP port numbers, allowing
25677 NET attackers to perform DNS cache poisoning/spoofing
attacks.

DNS
Transaction ID cache
poisoning

In the DNS resolver component, functions
_nx_dns_name_string_unencode and
_nx_dns_resource_name_real_size_calculate

do not check that the compression pointer does

not equal the same offset currently being parsed,

which could lead to an infinite loop. In the function Message
_nx_dns_resource_name_real_size calculate compression
the pointer can also point forward and there is no out-of-

bounds check on the packet buffer.

* NetX DoS

Microsoft has classified these issues as leading to DoS. We
believe they could lead to a difficult to exploit RCE.

*We are waiting for a CVE ID to be assigned to this issue.

FORESCOUT RESEARCH LABS 10

RESEARCH REPORT | NAME:WRECK | Exploitation

INFORMATIONAL

A note on the Nucleus NET vulnerabilities

Notice that CVE-2020-15795, CVE-2020-27736, CVE-
2020-27737 and CVE-2021-25677 on Nucleus NET are
not related to message compression. These vulnerabilities
were found as by-products of the analysis of the imple-
mentation of message compression and, as discussed
in Section 3, they can be used in conjunction with CVE-
2020-27009 or CVE-2020-27738 to amplify their effects.
This is representative of the facts that compression vulnera-

A note on the Nordic nRF5 Software
Development Kit

We also analyzed the DNS implementation of the Nordic nRF5
SDK v15.2.0 (file dns6.c in amazon-freertos/vendors/
nordic/nRF5_SDK_ 15.2.0/components/iot/ipv6_stack/
dns6). We found two out-of-bounds reads, potentially leading to
denial-of-service, in the DNSv6 resolver component within func-
tions skip_compressed _hostname and server_response.

3. Exploitation

In this section, we discuss how an attacker could get remote
control of a device by leveraging three vulnerabilities in
NAME:WRECK to inject malicious code on a target.

With the first vulnerability, CVE-2020-27009, the attacker can
craft a DNS response packet with a combination of invalid
compression pointer offsets that allows them to write arbi-
trary data into sensitive parts of a device's memory, where
they will then inject the code. The second vulnerability, CVE-

FORESCOUT RESEARCH LABS

bilities are often found with other DNS-related issues in TCP/
IP stacks and that typically a combination of vulnerabilities
can be exploited together to achieve an RCE. For example,
we previously used a combination of CVE-2020-25107 (lack
of NULL-termination validations) and CVE-2020-25108 (lack
of length validation) to create a proof-of-concept for Remote
Code Execution in the Nut/Net stack (see our AMNESIA:33
report for more details).

These issues were reported to Nordic, acknowledged and
patched, but never issued CVE IDs because the vendor con-
sidered that this is experimental code that should not be used
in production devices. We believe this is dangerous since,
in many cases, reference code included with SDKs ends up
forming the basis for products developed with that SDK.

2020-15795, allows the attacker to craft meaningful code to
be injected by abusing very large domain name records in
the malicious packet. Finally, to deliver the malicious packet
to the target, the attacker can bypass DNS query-response
matching using CVE-2021-25667.

In Section 4, we discuss how this exploitation fits in a real-
istic attack scenario.

https://github.com/aws/amazon-freertos/blob/master/vendors/nordic/nRF5_SDK_15.2.0/components/iot/ipv6_stack/dns6/dns6.c
https://github.com/aws/amazon-freertos/blob/master/vendors/nordic/nRF5_SDK_15.2.0/components/iot/ipv6_stack/dns6/dns6.c
https://github.com/aws/amazon-freertos/blob/master/vendors/nordic/nRF5_SDK_15.2.0/components/iot/ipv6_stack/dns6/dns6.c
https://www.forescout.com/research-labs/amnesia33/
https://www.forescout.com/research-labs/amnesia33/

RESEARCH REPORT | NAME:WRECK | Exploitation

TECHNICAL DIVE IN

3.1. About DNS message parsing

Before discussing the technical details of the exploitation,
we briefly present the format of domain names transmitted
in network packets. This is mostly specified in REC 1035.

A domain name is encoded as a sequence of labels ter-
minated by the NULL byte (@x0@). Each label is preceded
by a byte specifying its length (with a maximum length of
63 bytes). For example, the domain name “google.com” is
encoded as follows: it starts with the byte @x@6 that indi-
cates the length of the first label, followed by the bytes that
correspond to the first label itself (0x67 @x6f @x6f 0x67
@x6Cc @x65 == “google”), continues with the length of the
second label (@x@3), the bytes that correspond to the second
label (@x63 @x6f @x6d == “com”) and ends with the NULL
terminator byte (0x@0). Since DNS response packets often
include the same domain name several times, RFC 1035
specifies a compression mechanism to reduce the size
of DNS messages by replacing a sequence of labels with
a pointer to a previous occurrence of the same sequence.
The pointer is encoded in two bytes, the first of them begins
with two high bits 11 and the other 14 bits specify an offset
from the start of the DNS header. Continuing the example
above, and supposing there is a label “‘google.com” at offset
0x10 of a DNS response packet, the domain “www.google.
com” could be encoded as @x03 0x77 Ox77 ©x77 OxCO
ox10 (length 3, then “www”, then 8b1100000000010000,
which is the two first bits @b11 and the offset @x10). A
parser in a DNS server or client would then have to read
this packet and when encountering the bits @b11, shall
follow the pointer to offset 8x10 to be able to expand the
data into the desired result (“www.google.com”).

3.2. Technical details

Figure 1 shows the DNS_Unpack_Domain_Name () function
from Nucleus NET. Despite its small size, this function has

FORESCOUT RESEARCH LABS

several vulnerabilities that may lead to a successful Remote
Code Execution attack: CVE-2020-27736, CVE-2020-27738,
CVE-2020-15795 and CVE-2020-27009.

1 v INT DNS_Unpack Domain_Name(CHAR *dst, CHAR *src, CHAR *buf begin) {
INT16 size;
INT i, retval = 0;
CHAR *savesrc;

savesrc = src;

(*src) {

size = *src;

((size & 0xCQ) == 0xCO) {
(!retval) {
retval = src -

}

savesrc + 2;

SPC++;
src = &buf_begin[(size & 0x3f) * 256 + *src];
size = *src;

SPcH+;
(i =0; i< (size & 0x3f); i++) {

*dst++ = *src++;

b

*dst++ = '.";

}
*(--dst) = 9;
Src++;

(!retval) {
retval = src -

}

savesrc;

(retval);

Figure 1 — The DNS_Unpack_Domain_Name () function in Nucleus NET

The function is called whenever a domain name must be
retrieved from a DNS answer record. The first parameter
of the function (dst) is a pointer to a buffer into which the
parsed domain name will be copied. The second parameter
(src) initially points to the first byte of a domain name. The
third parameter (buf_begin) is a pointer to the first byte
of the DNS header.

https://tools.ietf.org/html/rfc1035

RESEARCH REPORT | NAME:WRECK | Exploitation

TECHNICAL DIVE IN

The code parses a domain name in a while loop (line 8)
moving the src pointer within the packet so that it points to
a byte currently being parsed. The while loop stops when
the src pointer encounters the NULL byte, which means
the end of the domain name. Before entering the parsing
loop, the code saves the original src pointer into a different
variable called savesrc. This pointer is used for calculating
the length of an uncompressed portion of the domain name.

Within the loop, the code fetches the first byte of the domain
name on its first iteration. This byte must be the size of
the first label of the name, which will be stored in the size
variable (line 9). Next, the most significant two bits of this
length byte are checked to determine whether it is a normal
length byte or a compression pointer (line 11). If at this
point size is a normal label length, src is moved one byte
forward (line 21) and the number of bytes equal to size are
copied into the buffer using the pointer dst (lines 23-27).
Note that the code truncates the value of size to 63 bytes
as per REC1035 (line 23). The variable retval (line 33) will
hold the total length of the retrieved domain name.

Let us consider the compression pointer check at line 11
again. If at this point size holds a compression pointer, the
code will add 2 bytes to the resulting name length retval
if it is the first compression pointer encountered (lines
12-13). Then, the compression offset will be calculated and
src will be moved from the first byte of the DNS payload
(buf_begin) according to that offset (lines 16-17); the size
variable will then hold the label length byte of a domain name
to which src now points (line 18). Then, the code should
process this domain label as shown before (lines 21-27).
The assumption here may be that a byte pointed at a com-
pression offset will be the length of an uncompressed label.
However, if it is another compression pointer, the while loop
at line 11 will perform another iteration and src will jump to
another location specified by the new compression offset.

FORESCOUT RESEARCH LABS

This directly violates REC1035 because “... [compression
pointer is] a pointer to a prior occurrence of the same name”.
The actual problem with this code is that the compres-
sion offset value is not validated and, therefore, is under
complete control of the attackers. We have reported this
vulnerability as CVE-2020-27009. This issue has several
consequences:

If we choose a compression offset such that src jumps
back to the same compression pointer, the while loop on
lines 11-18 will never terminate and the TCP/IP stack will
reach a Denial-of-Service condition. Consider the example
shown in Figure 8. In this case, we would have to set
the compression pointer and the next byte to @xc@le so
that the offset in this case will be 30, and this is exactly
the offset at which this compression pointer is located.

If we choose a large enough value such as exffff (the
offset will be 16383), src will jump forward within the
packet instead of pointing “to a prior occurrence of the
same name” as per RECT1035. The code at lines 23-24
will eventually read out of bounds of the packet. The
immediate impact may be a Denial-of-Service condition
and/or an information leak.

By carefully choosing a combination of invalid compres-
sion offset placed in a DNS packet, attackers can perform
controlled out-of-bounds writes into the destination buffer
dst, potentially achieving Remote Code Execution. The
exploitation nuances depend on the implementation spe-
cifics of a TCP/IP stack (e.g., how domain name buffers
are allocated, what other issues present, among others).

https://tools.ietf.org/html/rfc1035
https://tools.ietf.org/html/rfc1035
https://tools.ietf.org/html/rfc1035

RESEARCH REPORT | NAME:WRECK | Exploitation

TECHNICAL DIVE IN

Below, we discuss how the third point can be achieved by
leveraging other vulnerabilities present in Nucleus NET.

Figure 1 shows the code containing CVE-2020-15795: There
are no checks that ensure that a domain name extracted
from a DNS record is within the 255 bytes limit (as required
by REC1035).

Figure 2 shows an excerpt from the DNS_Extract_Data()

BTATUS DNS_Extract

DHS_RR rr_ptr;

function that processes DNS response packets and that
eventually calls the DNS_Unpack_Domain_Name() func-
tion shown on Figure 1 (lines 27 and 41). The buffer name
into which a domain name is copied is allocated in the
heap (line 19) with the NU_Allocate_Memory ()2 function
call. The size of the name buffer is limited to 255 bytes
with the constant DNS_MAX_NAME_SIZE (as per REC1035).

Data (DNS_PKT_HEADER *pkt, CHAR *data, UNSIGNED *ttl, INT type) {

INT nane_size, n_answers, rcode;

UINT16
CHAR
CHAR

length;
*p_ptr, “"name;
answer_received - 0

n_answers

((n_answers > 0

p_pte - ((-w.?. “)(pkt + 1);

= GET16(pkt, DNS_ANCOUNT_OFFSET);

&4 (GET16(pkt, DNS_FLAGS_OFFSET) & DNS_QR))

(MU_Allocate Memory (&System_Memory, (VOID **)Ensme,
DINS_MAX_NAME_SIZE,
NU_NO_SUSPEND) I= NU_SUCCESS) {

(NU_NO_MEMORY) ;

name_size = DNS_Unpa

p_ptr += nawa_size + 4;

((n_answers--) > @)
name_size - DNS
p_pter += name_size;

rr_ptr = (ONS_RR *)p_ptr;

Domain_Name (name, p_ptr, (CHAR *)pkt);

Inpack_Domain _Nare (name, p_ptr, (CHAR *)pkt);

length = GET16(rr_ptr, DNS_ROLENGTH OFFSET);

Figure 2 — An excerpt from the DNS_Extract_Data() function in Nucleus NET

" The way the memory allocated may be platform-specific, which may influence the exploitation nuances.

FORESCOUT RESEARCH LABS

https://tools.ietf.org/html/rfc1035
https://tools.ietf.org/html/rfc1035

RESEARCH REPORT | NAME:WRECK | Exploitation

TECHNICAL DIVE IN

The domain label length in the DNS_Unpack_Domain_
Name () function (Figure 1) is limited to 63 bytes, respect-
ing REC1035. The expression (size & @x3f) online 23
ensures that the code copies at most 63 bytes inside
name at a time. However, there is no actual check that
limits the number of bytes copied into name. Moreover,
the code of DNS_Unpack_Domain_Name() relies on the
presence of a NULL terminator in a domain name to stop
copying more bytes (Figure 1, line 8). This is a mistake
because the NULL byte can be placed at any offset within
the name (or not placed at all). We reported this issue
under CVE-2020-15795.

These two issues may lead to controlled out-of-bounds
writes causing either a Denial-of-Service condition
through dereferencing or writing to unmapped or pro-
tected memory or leading to Remote Code Execution.
Specifically, out-of-bounds writes can occur during either
of the two calls of DNS_Unpack_Domain_Name () shown
on Figure 2 (lines 27 or 41),