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Software Memory Safety 

Executive summary 

Modern society relies heavily on software-based automation, implicitly trusting 

developers to write software that operates in the expected way and cannot be 

compromised for malicious purposes. While developers often perform rigorous testing to 

prepare the logic in software for surprising conditions, exploitable software 

vulnerabilities are still frequently based on memory issues. Examples include 

overflowing a memory buffer and leveraging issues with how software allocates and de-

allocates memory. Microsoft® revealed at a conference in 2019 that from 2006 to 2018 

70 percent of their vulnerabilities were due to memory safety issues. [1] Google® also 

found a similar percentage of memory safety vulnerabilities over several years in 

Chrome®. [2] Malicious cyber actors can exploit these vulnerabilities for remote code 

execution or other adverse effects, which can often compromise a device and be the 

first step in large-scale network intrusions.  

Commonly used languages, such as C and C++, provide a lot of freedom and flexibility 

in memory management while relying heavily on the programmer to perform the needed 

checks on memory references. Simple mistakes can lead to exploitable memory-based 

vulnerabilities. Software analysis tools can detect many instances of memory 

management issues and operating environment options can also provide some 

protection, but inherent protections offered by memory safe software languages can 

prevent or mitigate most memory management issues. NSA recommends using a 

memory safe language when possible. While the use of added protections to non-

memory safe languages and the use of memory safe languages do not provide absolute 

protection against exploitable memory issues, they do provide considerable protection. 

Therefore, the overarching software community across the private sector, academia, 

and the U.S. Government have begun initiatives to drive the culture of software 

development towards utilizing memory safe languages. [3] [4] [5] 
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The memory safety problem 

How a software program manages memory is core to preventing many vulnerabilities 

and ensuring a program is robust. Exploiting poor or careless memory management can 

allow a malicious cyber actor to perform nefarious acts, such as crashing the program at 

will or changing the instructions of the executing program to do whatever the actor 

desires. Even un-exploitable issues with memory management can result in incorrect 

program results, degradation of the program’s performance over time, or seemingly 

random program crashes. 

Memory safety is a broad category of issues related to how a program manages 

memory. One common issue is called a “buffer overflow” where data is accessed 

outside the bounds of an array. Other common issues relate to memory allocation. 

Languages can allocate new memory locations as a program is executing and then 

deallocate the memory, also called releasing or freeing the memory, later when the 

memory is no longer needed. But if this is not done carefully by the developer, new 

memory may be allocated again and again as the program executes. Consequently, 

memory is not always freed when it is no longer needed, resulting in a memory leak that 

could cause the program to eventually run out of available memory. Due to logic errors, 

programs can also attempt to use memory that has been freed, or even free memory 

that has already been freed. Another issue can arise when languages allow the use of a 

variable that has not been initialized, resulting in the variable using the value that was 

previously set at that location in memory. Finally, another challenging issue is called a 

race condition. This issue can occur when a program’s results depend on the order of 

operation of two parts of the program accessing the same data. All of these memory 

issues are much too common occurrences.  

By exploiting these types of memory issues, malicious actors—who are not bound by 

normal expectations of software use—may find that they can enter unusual inputs into 

the program, causing memory to be accessed, written, allocated, or deallocated in 

unexpected ways. In some cases, a malicious actor can exploit these memory 

management mistakes to access sensitive information, execute unauthorized code, or 

cause other negative impacts. Since it may take a lot of experimenting with unusual 

inputs to find one that causes an unexpected response, actors may use a technique 

called “fuzzing” to either randomly or intelligently craft multitudes of input values to the 

program until one is found that causes the program to crash. Advances in fuzzing tools 
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and techniques have made finding problematic inputs easier for malicious actors in 

recent years. Once an actor discovers they can crash the program with a particular 

input, they examine the code and work to determine what a specially crafted input could 

do. In the worst case, such an input could allow the actor to take control of the system 

on which the program is running. 

Memory safe languages 

Using a memory safe language can help prevent programmers from introducing certain 

types of memory-related issues. Memory is managed automatically as part of the 

computer language; it does not rely on the programmer adding code to implement 

memory protections. The language institutes automatic protections using a combination 

of compile time and runtime checks. These inherent language features protect the 

programmer from introducing memory management mistakes unintentionally. Examples 

of memory safe language include Python®, Java®, C#, Go, Delphi/Object Pascal, Swift®, 

Ruby™, Rust®, and Ada.  

Even with a memory safe language, memory management is not entirely memory safe. 

Most memory safe languages recognize that software sometimes needs to perform an 

unsafe memory management function to accomplish certain tasks. As a result, classes 

or functions are available that are recognized as non-memory safe and allow the 

programmer to perform a potentially unsafe memory management task. Some 

languages require anything memory unsafe to be explicitly annotated as such to make 

the programmer and any reviewers of the program aware that it is unsafe. Memory safe 

languages can also use libraries written in non-memory safe languages and thus can 

contain unsafe memory functionality. Although these ways of including memory unsafe 

mechanisms subvert the inherent memory safety, they help to localize where memory 

problems could exist, allowing for extra scrutiny on those sections of code. 

Languages vary in their degree of memory safety instituted through inherent protections 

and mitigations. Some languages provide only relatively minimal memory safety 

whereas some languages are very strict and provide considerable protections by 

controlling how memory is allocated, accessed, and managed. For languages with an 

extreme level of inherent protection, considerable work may be needed to simply get the 

program to compile due to the checks and protections.  
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Memory safety can be costly in performance and flexibility. Most memory safe 

languages require some sort of garbage collection to reclaim memory that has been 

allocated, but is no longer needed by the program. There is also considerable 

performance overhead associated with checking the bounds on every array access that 

could potentially be outside of the array.  

Alternatively, a similar performance hit can exist in a non-memory safe language due to 

the checks a programmer adds to the program to perform bounds checking and other 

memory management protections. Additional costs of using non-memory safe 

languages include hard-to-diagnose memory corruption and occasional program 

crashes along with the potential for exploitation of memory access vulnerabilities 

It is not trivial to shift a mature software development infrastructure from one computer 

language to another. Skilled programmers need to be trained in a new language and 

there is an efficiency hit when using a new language. Programmers must endure a 

learning curve and work their way through any “newbie” mistakes. While another 

approach is to hire programmers skilled in a memory safe language, they too will have 

their own learning curve for understanding the existing code base and the domain in 

which the software will function. 

Application security testing 

Several mechanisms can be used to harden non-memory safe languages to make them 

more memory safe. Analyzing the software using static and dynamic application security 

testing (SAST and DAST) can identify memory use issues in software.  

Static analysis examines the source code to find potential security issues. Using SAST 

allows all of the code to be examined, but it can generate a considerable number of 

false positives through identifying potential issues incorrectly. However, SAST can be 

used throughout the development of the software allowing issues to be identified and 

fixed early in the software development process. Rigorous tests have shown that even 

the best-performing SAST tools only identify a portion of memory issues in even the 

simplest software programs and usually generate many false positives.  

In contrast to SAST, dynamic analysis examines the code while it is executing. DAST 

requires a running application. This means most issues will not be identified until late in 

the development cycle, making the identified problem more expensive to fix and 
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regressively test. DAST can only identify issues with code that is on the execution path 

when the tool is run, so code coverage is also an issue. However, DAST has a much 

lower percentage of false positives than SAST. Issues such as a memory leak can be 

identified by DAST, but the underlying cause of the memory issue may be very difficult 

to identify in the software. 

Neither SAST nor DAST can make non-memory safe code totally memory safe. Since 

all tools have their strengths and weaknesses, it is recommended that multiple SAST 

and DAST tools be run to increase the chances that memory or other issues are 

identified. Working through the issues identified by the tools can take considerable 

work, but will result in more robust and secure code. Vulnerability correlation tools can 

intake the results from multiple tools and integrate them into a single report to simplify 

and help prioritize analysis. 

Anti-exploitation features 

The compilation and execution environment can be used to make it more difficult for 

cyber actors to exploit memory management issues. Most of these added features 

focus on limiting where code can be executed in memory and making memory layout 

unpredictable. As a result, this reduces a malicious actor’s opportunities to use the 

exploitation tradecraft of executing data as code and overwriting a return address to 

direct program flow to a nefarious location.  

Leveraging options, such as Control Flow Guard (CFG), will place restrictions on where 

code can be executed. Similarly, Address Space Layout Randomization (ASLR) and 

Data Execution Prevention (DEP) add unpredictability to where items are located in 

memory and prevent data from being executed as code. [6] [7] Bypassing ASLR and 

DEP is not insurmountable to a malicious actor, but it makes developing an exploit 

much more difficult and lowers the odds of an exploit succeeding. Anti-exploitation 

features can help mitigate vulnerabilities in both memory safe and non-memory safe 

languages. 

The path forward 

Memory issues in software comprise a large portion of the exploitable vulnerabilities in 

existence. NSA advises organizations to consider making a strategic shift from 

programming languages that provide little or no inherent memory protection, such as 
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C/C++ and assembly, to a memory safe language when possible. Some examples of 

memory safe languages are Python, Java, C#, Go, Delphi/Object Pascal, Swift, Ruby, 

Rust, and Ada. Memory safe languages provide differing degrees of memory usage 

protections, so available code hardening defenses, such as compiler options, tool 

analysis, and operating system configurations, should be used for their protections as 

well. By using memory safe languages and available code hardening defenses, many 

memory vulnerabilities can be prevented, mitigated, or made very difficult for cyber 

actors to exploit.▪ 
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Disclaimer of endorsement 

The information and opinions contained in this document are provided "as is" and without any warranties or 

guarantees. Reference herein to any specific commercial products, process, or service by trade name, trademark, 

manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favoring by the United 

States Government, and this guidance shall not be used for advertising or product endorsement purposes. 

 
Trademarks 
Chrome™ is a trademark of Google, Inc. in the U.S. and other counties. 

Google® is a registered trademark of Google, Inc. in the United States and/or other countries. 

Java® is a registered trademark of Sun Microsystems Inc. in the United States and/or other countries. 

Linux® is a registered trademark of Linus Torvalds in the United States and/or other countries. 

Microsoft® and Windows® are registered trademarks of Microsoft Corporation in the United States and/or other 

countries. 

Python® is a registered trademark of the Python Software Foundation in the United States and/or other countries. 

Swift® is a registered trademark of Apple, Inc. in the U.S. and/or other countries. 

Ruby™ is a registered trademark of O’Reilly Media Inc. in the United States and/or other countries. 

Rust® is a registered trademark of Mozilla Foundation in the United States and/or other countries. 

Purpose 

This document was developed in furtherance of NSA’s cybersecurity missions, including its responsibilities to identify 

and disseminate threats to National Security Systems, Department of Defense, and Defense Industrial Base 

information systems, and to develop and issue cybersecurity specifications and mitigations. This information may be 

shared broadly to reach all appropriate stakeholders. 

Contact 

Cybersecurity Report Feedback: CybersecurityReports@nsa.gov 

General Cybersecurity Inquiries: Cybersecurity_Requests@nsa.gov  
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Media Inquiries / Press Desk: 443-634-0721, MediaRelations@nsa.gov  
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