
www.securing.pldrdr_zz

Damian Rusinek

From web apps to smart 
contracts: tools, vulns, 
standards and SCSVS

Blockchain Working Group

20th Apr 2022



www.securing.pldrdr_zzdrdr_zz

Damian Rusinek

damianrusinek @ github Head of Blockchain Security
Security Researcher

Introducing Decentralized Applications by analogy to Web Apps

drdr_zz



www.securing.pldrdr_zz www.securing.pldrdr_zz

Decentralized Apps

And why are they becoming important?

WHAT IS IT?



www.securing.pldrdr_zzdrdr_zz

What is so special about Decentralized Apps?

• Trustlessness: Use blockchain to store code and data (state).
• No one can turn it off permanently (anyone can bring it to live).
• Everyone can have it (like keeping the database of FB or Reddit locally).



www.securing.pldrdr_zzdrdr_zz

Where is the main difference?
Architecture

Decentralized ApplicationWeb Application



www.securing.pldrdr_zzdrdr_zz

Where is the main difference?
Architecture

Web Application Hybrid Decentralized Application



www.securing.pldrdr_zz www.securing.pldrdr_zz

Decentralized Apps

ARE THOSE SECURE?



www.securing.pldrdr_zzdrdr_zz

Are Decentralized Apps secure?

• Indestructible: No one can turn it off
• Cryptographically secure: All transactions are digitally signed
• Publicly verifiable: Anyone can verify the code of smart contracts
• But still….



www.securing.pldrdr_zzdrdr_zz

Are Decentralized Apps secure?

• Indestructible: No one can turn it off
• Cryptographically secure: All transactions are digitally signed
• Publicly verifiable: Anyone can verify the code of smart contracts
• But still….



www.securing.pldrdr_zzdrdr_zz

Are Decentralized Apps secure?

• Undestroyable: No one can turn it off
• Cryptographically secure: All transactions are digitally signed
• Publicly verifiable: Anyone can verify the code of smart contracts
• But still….

Expectations Reality



www.securing.pldrdr_zz www.securing.pldrdr_zz

From web apps to smart contracts

WE NEED SECURITY!



www.securing.pldrdr_zzdrdr_zz

Security needs

Technical
• Build secure applications.
• Omit the insecure patterns.

• Find ane remediate the security
bugs (vulnerabilities).

Business
• Make sure that the application is

secure.
• The status: List of green and red 

points.



www.securing.pldrdr_zzdrdr_zz

Security Projects & Standards

Web Apps
• Most common vulnerabilities?
• OWASP Top 10

• The end-to-end security checklist to 
perform an audit?
• OWASP ASVS 

Application Security Verification
Standard 

Decentralized Apps
• Most common vulnerabilities?

• DASP Top 10 (https://dasp.co)
• The end-to-end security checklist to 

perform an audit?

https://dasp.co/


www.securing.pldrdr_zz www.securing.pldrdr_zz

SCSVS
- Smart Contracts Security Verification Standard

drdr_zz wh01s7



www.securing.pldrdr_zzdrdr_zz

• Objectives:
• A checklist for architects, developers and security reviewers.

• Technical needs
• Help to mitigate known vulnerabilities by design.
• Help to develop high quality code of the smart contracts.

• Business needs
• Provide a clear and reliable assessment of how secure the 

smart contract is in relation to the percentage of SCSVS 
coverage.

• 14 categories of security requirements.
• Format similar to ASVS.

SCSVS - Objectives



www.securing.pldrdr_zzdrdr_zz

Software Development Life Cycle

SCSVS covers all stages 
of SDLC process.



www.securing.pldrdr_zz www.securing.pldrdr_zz

From web apps to smart contracts

- Analysis & Requirements

SDLC



www.securing.pldrdr_zzdrdr_zz

Similiarities
• Threat modelling

SDLC – Analysis & Requirements

1.1 Verify that the every introduced design change is preceded by an earlier threat 
modelling.

1.2 Verify that the documentation clearly and precisely defines all trust boundaries 
in the contract (trusted relations with other contracts and significant data flows).



www.securing.pldrdr_zzdrdr_zz

Differences – Sensitive data

SDLC – Analysis & Requirements

Web Apps
• Stored in protected database

Decentralized Apps
• Stored on public blockchain

• Forever
• Anyone can read

3.1 Verify that any data saved in the contracts is not considered safe or private 
(even private variables).

3.2 Verify that no confidential data is stored in the blockchain (passwords, personal 
data, token etc.).



www.securing.pldrdr_zzdrdr_zz

Differences – Randomness and oracles

SDLC – Analysis & Requirements

Web Apps
• A matter of a function call

Decentralized Apps
• Not trivially achieved in the 

decentralized computer
• No local parameters can be used
• but…
• ETH2.0 going to change that a little 

bit.



www.securing.pldrdr_zzdrdr_zz

Differences – Randomness

SDLC – Analysis & Requirements

• EOSPlay hack
• 30k EOS stolen (~120k USD)

• DiceGame
• my finding presented on EthCC

7.5 Verify that the contract does not generate pseudorandom numbers trivially 
basing on the information from blockchain (e.g. seeding with the block number).



www.securing.pldrdr_zzdrdr_zz

New threat actors for Decentralized Apps

SDLC – Requirements & Analysis

• Miners/Validators
• Validate transactions and add new blocks



www.securing.pldrdr_zzdrdr_zz

New threat actors for Decentralized Apps

SDLC – Requirements & Analysis

8.1 Verify that the contract logic implementation corresponds to the 
documentation.

8.3 Verify that the contract has business limits and correctly enforces it.

9.3 Verify that the contract logic does not disincentivize users to use contracts (e.g. 
the cost of transaction is higher than the profit).



www.securing.pldrdr_zz www.securing.pldrdr_zz

From web apps to smart contracts

- Design

SDLC



www.securing.pldrdr_zzdrdr_zz

Similiarities
• Least privilege rule
• Access control
• Public and known to everyone
• Centralized and simple

SDLC – Design

2.3 Verify that the creator of the contract complies with the rule of least privilege and 
his rights strictly follow the documentation.

2.11 Verify that all user and data attributes used by access controls are kept in trusted 
contract and cannot be manipulated by other contracts unless specifically authorized.



www.securing.pldrdr_zzdrdr_zz

Differences – Loops

SDLC – Design

Web Apps
• Infinite loops -> DoS

Decentralized Apps
• Unbound loops -> DoS



www.securing.pldrdr_zzdrdr_zz

Differences – Loops

SDLC – Design

• GovernMentals
• A ponzi scheme
• Iteration over a huge array
• 1100 ETH frozen
• https://bit.ly/2kVXwaj

7.3 Verify that the contract does not iterate over unbound loops.

8.8 Verify that the contract does not send funds automatically, but it lets 
users withdraw funds on their own in separate transaction instead.

https://bit.ly/2kVXwaj


www.securing.pldrdr_zzdrdr_zz

Decreasing the risk

SDLC – Design

• Decentralized Applications keep cryptocurrencies
• The higher the amount the bigger the incentive for hackers

1.9 Verify that the amount of cryptocurrencies kept on contract is controlled and at 
the minimal acceptable level.



www.securing.pldrdr_zz www.securing.pldrdr_zz

From web apps to smart contracts

- Implementation

SDLC



www.securing.pldrdr_zzdrdr_zz

• Great tools

• Perform basic security analysis

• But we still make bugs.
• Sounds familiar? J

SDLC – Implementation

Ethereum Studio Foundry



www.securing.pldrdr_zzdrdr_zz

Similarities – Arithmetic bugs

SDLC – Implementation

Web Apps
• Not that common

Decentralized Apps
• Overflows and underflows
• …yep, still after 0.8 with unchecked



www.securing.pldrdr_zzdrdr_zz

Similarities – Arithmetic bugs

SDLC – Implementation

• Multiple ERC20 Smart Contracts
• Allow to transfer more than 

decillions (10^60) of tokens
• https://bit.ly/2lWa9ma
• https://bit.ly/2ksNEF1

https://bit.ly/2lWa9ma
https://bit.ly/2ksNEF1


www.securing.pldrdr_zzdrdr_zz

Similarities – Arithmetic bugs

SDLC – Implementation

• Tellor
• Not trivial
• Required staking
• Reported 
• No funds stolen

• my finding presented on EthCC



www.securing.pldrdr_zzdrdr_zz

Similarities – Arithmetic bugs

SDLC – Implementation

5.1 Verify that the values and math operations are resistant to integer 
overflows. Use SafeMath library for arithmetic operations before solidity 0.8.*.

5.2 Verify that the unchecked code snippets from Solidity 0.8.* do not 
introduce integer under/overflows.

5.3 Verify that the extreme values (e.g. maximum and minimum values of the 
variable type) are considered and does change the logic flow of the contract.



www.securing.pldrdr_zzdrdr_zz

Differences – Recursive calls

SDLC – Implementation

Web Apps
• Must be explicitly included in the 

logic

Decentralized Apps
• Executing some logic multiple times

in one call
• The DAO hack

• Recursive withdrawals
• 3.6 mln ETH stolen
• https://bit.ly/2hBQjKq

4.5 Verify that re-entrancy attack is mitigated by blocking recursive calls from 
other contracts. Follow CEI pattern.

4.6 Verify that the result of low-level function calls (e.g. send, delegatecall, 
call) from another contracts is checked.

https://bit.ly/2hBQjKq


www.securing.pldrdr_zz www.securing.pldrdr_zz

From web apps to smart contracts

- Testing

SDLC



www.securing.pldrdr_zzdrdr_zz

Similarities – Great tools for automatic scans

SDLC – Testing

Web Apps Decentralized Apps

1.12 Verify that code analysis tools are in use that 
can detect potentially malicious code.

https://bit.ly/2mpaL3U

https://mythx.io/

https://bit.ly/2mpaL3U
https://mythx.io/


www.securing.pldrdr_zzdrdr_zz

Similiarities – Ensuring the testing takes place

• including manual security tests

SDLC – Analysis & Requirements

12.1 Verify that all functions of verified contract are covered with tests in the 
development phase.

12.2 Verify that the implementation of verified contract has been checked for 
security vulnerabilities using static and dynamic analysis.

12.3 Verify that the specification of smart contract has been formally verified.

12.4 Verify that the specification and the result of formal verification is included in 
the documentation.

1.3 Verify that the SCSVS, security requirements or policy is available to all 
developers and testers.



www.securing.pldrdr_zzdrdr_zz

Similiarities – Business logic errors
• Hard to find using automated scans
• Value DeFi
• Incorrect assumptions
• 10m$ lost
• „improper use of a complex 
exponentiation power() function”

SDLC – Analysis & Requirements

1.11 Verify that the business logic in contracts is consistent. Important changes in the logic 
should be allowed for all or none of the contracts.

8.2 Verify that the business logic flows of smart contracts proceed in a sequential step order 
and it is not possible to skip any part of it or to do it in a different order than designed.

https://rekt.news/value-rekt3/

https://rekt.news/value-rekt3/


www.securing.pldrdr_zz www.securing.pldrdr_zz

From web apps to smart contracts

- Deployment

SDLC



www.securing.pldrdr_zzdrdr_zz

Differences – Initialization stage

SDLC – Deployment

Web Apps
• Setting up configurations and 

integrations
• Performed once during deployment

Decentralized Apps
• Setting up configurations and 

integrations
• What if one can (re-)initialize the 

contract?



www.securing.pldrdr_zzdrdr_zz

Differences – Initialization stage

SDLC – Deployment

• Parity Wallet hack:
• Kill contract shared by hundreds of 

other contracts
• 500k ETH frozen
• https://bit.ly/2kIBYhA
• https://bit.ly/2kpfKkm

https://bit.ly/2kIBYhA
https://bit.ly/2kpfKkm


www.securing.pldrdr_zzdrdr_zz

Differences – Initialization stage

SDLC – Deployment

11.7 Verify that all storage variables are initialised.

2.8 Verify that the initialization functions are marked 
internal and cannot be executed twice.

9.1 Verify that the self-destruct functionality is used only 
if necessary.



www.securing.pldrdr_zz www.securing.pldrdr_zz

From web apps to smart contracts

- Maintenance

SDLC



www.securing.pldrdr_zzdrdr_zz

Differences – Security Alert and Fix

SDLC – Analysis & Requirements

Web Apps
• Application goes down
• The bug is fixed (patch)
• Application redeployed

Decentralized Apps
• Smart contract goes down
• The bug is fixed (patch)
• Smart contract deployed again

1.7 Verify that there exists a mechanism that can temporarily stop the sensitive functionalities of the contract in 
case of a new attack. This mechanism should not block access to the assets (e.g. tokens) for the owners.

1.4 Verify that there exists an upgrade process for the contract which allows to deploy 
the security fixes or it is clearly stated that the contract is not upgradeable.



www.securing.pldrdr_zzdrdr_zz

Security Projects & Standards

Web Apps
• Most common vulnerabilities?
• OWASP Top 10

• The end to end security checklist to 
perform an audit?
• OWASP ASVS (Application 

Security Verification Standard) 

Decentralized Apps
• Most common vulnerabilities?

• DASP Top 10 (https://dasp.co)
• The end to end security checklist to 

perform an audit?

SCSVS

https://dasp.co/


www.securing.pldrdr_zzdrdr_zz

SCSVS meets your security needs

Technical
• Build secure applications.
• Omit the insecure patterns.

• Find ane remediate the security
bugs (vulnerabilities).

Business
• Make sure that the application is

secure.
• The status: List of green and red 

points.

Go for SCSVS!



www.securing.pldrdr_zz www.securing.pldrdr_zz

SCSVS 2.0
- The Future

drdr_zz wh01s7



www.securing.pldrdr_zz www.securing.pldrdr_zz

SCSVS 2.0

COMPOSABILITY



www.securing.pldrdr_zzdrdr_zz

SCSVS 2.0 - categories



www.securing.pldrdr_zzdrdr_zz

SCSVS 2.0 – how to use



www.securing.pldrdr_zz

Ok, Thank you!

Damian.Rusinek@securing.pl

Want to develop secure
smart contracts?

Want a security audit of 
smart contract? 

Go for SCSVS!

drdr_zz


