

U/OO/219936-22 | PP-23-0782 | APR 2023 Ver. 1.1

National Security Agency | Cybersecurity Information Sheet

Software Memory Safety

Executive summary

Modern society relies heavily on software-based automation, implicitly trusting

developers to write software that operates in the expected way and cannot be

compromised for malicious purposes. While developers often perform rigorous testing to

prepare the logic in software for surprising conditions, exploitable software

vulnerabilities are still frequently based on memory issues. Examples include

overflowing a memory buffer and leveraging issues with how software allocates and de-

allocates memory. Microsoft® revealed at a conference in 2019 that from 2006 to 2018

70 percent of their vulnerabilities were due to memory safety issues. [1] Google® also

found a similar percentage of memory safety vulnerabilities over several years in

Chrome®. [2] Malicious cyber actors can exploit these vulnerabilities for remote code

execution or other adverse effects, which can often compromise a device and be the

first step in large-scale network intrusions.

Commonly used languages, such as C and C++, provide a lot of freedom and flexibility

in memory management while relying heavily on the programmer to perform the needed

checks on memory references. Simple mistakes can lead to exploitable memory-based

vulnerabilities. Software analysis tools can detect many instances of memory

management issues and operating environment options can also provide some

protection, but inherent protections offered by memory safe software languages can

prevent or mitigate most memory management issues. NSA recommends using a

memory safe language when possible. While the use of added protections to non-

memory safe languages and the use of memory safe languages do not provide absolute

protection against exploitable memory issues, they do provide considerable protection.

Therefore, the overarching software community across the private sector, academia,

and the U.S. Government have begun initiatives to drive the culture of software

development towards utilizing memory safe languages. [3] [4] [5]

U/OO/219936-22 | PP-23-0782 | APR 2023 Ver. 1.1 2

NSA | Software Memory Safety

The memory safety problem

How a software program manages memory is core to preventing many vulnerabilities

and ensuring a program is robust. Exploiting poor or careless memory management can

allow a malicious cyber actor to perform nefarious acts, such as crashing the program at

will or changing the instructions of the executing program to do whatever the actor

desires. Even un-exploitable issues with memory management can result in incorrect

program results, degradation of the program’s performance over time, or seemingly

random program crashes.

Memory safety is a broad category of issues related to how a program manages

memory. One common issue is called a “buffer overflow” where data is accessed

outside the bounds of an array. Other common issues relate to memory allocation.

Languages can allocate new memory locations as a program is executing and then

deallocate the memory, also called releasing or freeing the memory, later when the

memory is no longer needed. But if this is not done carefully by the developer, new

memory may be allocated again and again as the program executes. Consequently,

memory is not always freed when it is no longer needed, resulting in a memory leak that

could cause the program to eventually run out of available memory. Due to logic errors,

programs can also attempt to use memory that has been freed, or even free memory

that has already been freed. Another issue can arise when languages allow the use of a

variable that has not been initialized, resulting in the variable using the value that was

previously set at that location in memory. Finally, another challenging issue is called a

race condition. This issue can occur when a program’s results depend on the order of

operation of two parts of the program accessing the same data. All of these memory

issues are much too common occurrences.

By exploiting these types of memory issues, malicious actors—who are not bound by

normal expectations of software use—may find that they can enter unusual inputs into

the program, causing memory to be accessed, written, allocated, or deallocated in

unexpected ways. In some cases, a malicious actor can exploit these memory

management mistakes to access sensitive information, execute unauthorized code, or

cause other negative impacts. Since it may take a lot of experimenting with unusual

inputs to find one that causes an unexpected response, actors may use a technique

called “fuzzing” to either randomly or intelligently craft multitudes of input values to the

program until one is found that causes the program to crash. Advances in fuzzing tools

U/OO/219936-22 | PP-23-0782 | APR 2023 Ver. 1.1 3

NSA | Software Memory Safety

and techniques have made finding problematic inputs easier for malicious actors in

recent years. Once an actor discovers they can crash the program with a particular

input, they examine the code and work to determine what a specially crafted input could

do. In the worst case, such an input could allow the actor to take control of the system

on which the program is running.

Memory safe languages

Using a memory safe language can help prevent programmers from introducing certain

types of memory-related issues. Memory is managed automatically as part of the

computer language; it does not rely on the programmer adding code to implement

memory protections. The language institutes automatic protections using a combination

of compile time and runtime checks. These inherent language features protect the

programmer from introducing memory management mistakes unintentionally. Examples

of memory safe language include Python®, Java®, C#, Go, Delphi/Object Pascal, Swift®,

Ruby™, Rust®, and Ada.

Even with a memory safe language, memory management is not entirely memory safe.

Most memory safe languages recognize that software sometimes needs to perform an

unsafe memory management function to accomplish certain tasks. As a result, classes

or functions are available that are recognized as non-memory safe and allow the

programmer to perform a potentially unsafe memory management task. Some

languages require anything memory unsafe to be explicitly annotated as such to make

the programmer and any reviewers of the program aware that it is unsafe. Memory safe

languages can also use libraries written in non-memory safe languages and thus can

contain unsafe memory functionality. Although these ways of including memory unsafe

mechanisms subvert the inherent memory safety, they help to localize where memory

problems could exist, allowing for extra scrutiny on those sections of code.

Languages vary in their degree of memory safety instituted through inherent protections

and mitigations. Some languages provide only relatively minimal memory safety

whereas some languages are very strict and provide considerable protections by

controlling how memory is allocated, accessed, and managed. For languages with an

extreme level of inherent protection, considerable work may be needed to simply get the

program to compile due to the checks and protections.

U/OO/219936-22 | PP-23-0782 | APR 2023 Ver. 1.1 4

NSA | Software Memory Safety

Memory safety can be costly in performance and flexibility. Most memory safe

languages require some sort of garbage collection to reclaim memory that has been

allocated, but is no longer needed by the program. There is also considerable

performance overhead associated with checking the bounds on every array access that

could potentially be outside of the array.

Alternatively, a similar performance hit can exist in a non-memory safe language due to

the checks a programmer adds to the program to perform bounds checking and other

memory management protections. Additional costs of using non-memory safe

languages include hard-to-diagnose memory corruption and occasional program

crashes along with the potential for exploitation of memory access vulnerabilities

It is not trivial to shift a mature software development infrastructure from one computer

language to another. Skilled programmers need to be trained in a new language and

there is an efficiency hit when using a new language. Programmers must endure a

learning curve and work their way through any “newbie” mistakes. While another

approach is to hire programmers skilled in a memory safe language, they too will have

their own learning curve for understanding the existing code base and the domain in

which the software will function.

Application security testing

Several mechanisms can be used to harden non-memory safe languages to make them

more memory safe. Analyzing the software using static and dynamic application security

testing (SAST and DAST) can identify memory use issues in software.

Static analysis examines the source code to find potential security issues. Using SAST

allows all of the code to be examined, but it can generate a considerable number of

false positives through identifying potential issues incorrectly. However, SAST can be

used throughout the development of the software allowing issues to be identified and

fixed early in the software development process. Rigorous tests have shown that even

the best-performing SAST tools only identify a portion of memory issues in even the

simplest software programs and usually generate many false positives.

In contrast to SAST, dynamic analysis examines the code while it is executing. DAST

requires a running application. This means most issues will not be identified until late in

the development cycle, making the identified problem more expensive to fix and

U/OO/219936-22 | PP-23-0782 | APR 2023 Ver. 1.1 5

NSA | Software Memory Safety

regressively test. DAST can only identify issues with code that is on the execution path

when the tool is run, so code coverage is also an issue. However, DAST has a much

lower percentage of false positives than SAST. Issues such as a memory leak can be

identified by DAST, but the underlying cause of the memory issue may be very difficult

to identify in the software.

Neither SAST nor DAST can make non-memory safe code totally memory safe. Since

all tools have their strengths and weaknesses, it is recommended that multiple SAST

and DAST tools be run to increase the chances that memory or other issues are

identified. Working through the issues identified by the tools can take considerable

work, but will result in more robust and secure code. Vulnerability correlation tools can

intake the results from multiple tools and integrate them into a single report to simplify

and help prioritize analysis.

Anti-exploitation features

The compilation and execution environment can be used to make it more difficult for

cyber actors to exploit memory management issues. Most of these added features

focus on limiting where code can be executed in memory and making memory layout

unpredictable. As a result, this reduces a malicious actor’s opportunities to use the

exploitation tradecraft of executing data as code and overwriting a return address to

direct program flow to a nefarious location.

Leveraging options, such as Control Flow Guard (CFG), will place restrictions on where

code can be executed. Similarly, Address Space Layout Randomization (ASLR) and

Data Execution Prevention (DEP) add unpredictability to where items are located in

memory and prevent data from being executed as code. [6] [7] Bypassing ASLR and

DEP is not insurmountable to a malicious actor, but it makes developing an exploit

much more difficult and lowers the odds of an exploit succeeding. Anti-exploitation

features can help mitigate vulnerabilities in both memory safe and non-memory safe

languages.

The path forward

Memory issues in software comprise a large portion of the exploitable vulnerabilities in

existence. NSA advises organizations to consider making a strategic shift from

programming languages that provide little or no inherent memory protection, such as

U/OO/219936-22 | PP-23-0782 | APR 2023 Ver. 1.1 6

NSA | Software Memory Safety

C/C++ and assembly, to a memory safe language when possible. Some examples of

memory safe languages are Python, Java, C#, Go, Delphi/Object Pascal, Swift, Ruby,

Rust, and Ada. Memory safe languages provide differing degrees of memory usage

protections, so available code hardening defenses, such as compiler options, tool

analysis, and operating system configurations, should be used for their protections as

well. By using memory safe languages and available code hardening defenses, many

memory vulnerabilities can be prevented, mitigated, or made very difficult for cyber

actors to exploit.▪

Works cited

[1] Microsoft® (2019), "Trends, challenges, and strategic shifts in the software vulnerability mitigation

landscape". https://github.com/Microsoft/MSRC-Security-

Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-

%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20miti

gation.pdf

[2] Google (2021), "An update on Memory Safety in Chrome".

https://security.googleblog.com/2021/09/an-update-on-memory-safety-in-chrome.html

[3] Georgia Institute of Technology (2022), "Recommendations from the Workshop on Open-source

Software Security Initiative". https://cpb-us-

w2.wpmucdn.com/sites.gatech.edu/dist/a/2878/files/2022/10/OSSI-Final-Report.pdf

[4] The Linux® Foundation (2022), "The Linux Foundation and Open Source Software Security

Foundation (OpenSSF) Gather Industry and Government Leaders for Open Source Software

Security Summit II". https://www.linuxfoundation.org/press/press-release/linux-foundation-

openssf-gather-industry-government-leaders-open-source-software-security-summit

[5] The Linux Foundation Open Source Security Foundation (2022), "The Open Source Software

Security Mobilization Plan". https://openssf.org/oss-security-mobilization-plan/

[6] National Security Agency (2019), Windows® 10 for Enterprises Security Benefits of Timely

Adoption. https://media.defense.gov/2019/Jul/16/2002158052/-1/-1/0/CSI-WINDOWS-10-FOR-

ENTERPRISE-SECURITY-BENEFITS-OF-TIMELY-ADOPTION.PDF

[7] National Security Agency (2019), Leverage Modern Hardware Security Features.

https://media.defense.gov/2019/Sep/09/2002180345/-1/-

1/0/Leverage%20Modern%20Hardware%20Security%20Features%20-%20Copy.pdf

https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://security.googleblog.com/2021/09/an-update-on-memory-safety-in-chrome.html
https://cpb-us-w2.wpmucdn.com/sites.gatech.edu/dist/a/2878/files/2022/10/OSSI-Final-Report.pdf
https://cpb-us-w2.wpmucdn.com/sites.gatech.edu/dist/a/2878/files/2022/10/OSSI-Final-Report.pdf
https://www.linuxfoundation.org/press/press-release/linux-foundation-openssf-gather-industry-government-leaders-open-source-software-security-summit
https://www.linuxfoundation.org/press/press-release/linux-foundation-openssf-gather-industry-government-leaders-open-source-software-security-summit
https://openssf.org/oss-security-mobilization-plan/
https://media.defense.gov/2019/Jul/16/2002158052/-1/-1/0/CSI-WINDOWS-10-FOR-ENTERPRISE-SECURITY-BENEFITS-OF-TIMELY-ADOPTION.PDF
https://media.defense.gov/2019/Jul/16/2002158052/-1/-1/0/CSI-WINDOWS-10-FOR-ENTERPRISE-SECURITY-BENEFITS-OF-TIMELY-ADOPTION.PDF
https://media.defense.gov/2019/Sep/09/2002180345/-1/-1/0/Leverage%20Modern%20Hardware%20Security%20Features%20-%20Copy.pdf
https://media.defense.gov/2019/Sep/09/2002180345/-1/-1/0/Leverage%20Modern%20Hardware%20Security%20Features%20-%20Copy.pdf

U/OO/219936-22 | PP-23-0782 | APR 2023 Ver. 1.1 7

NSA | Software Memory Safety

Disclaimer of endorsement

The information and opinions contained in this document are provided "as is" and without any warranties or

guarantees. Reference herein to any specific commercial products, process, or service by trade name, trademark,

manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favoring by the United

States Government, and this guidance shall not be used for advertising or product endorsement purposes.

Trademarks
Chrome™ is a trademark of Google, Inc. in the U.S. and other counties.

Google® is a registered trademark of Google, Inc. in the United States and/or other countries.

Java® is a registered trademark of Sun Microsystems Inc. in the United States and/or other countries.

Linux® is a registered trademark of Linus Torvalds in the United States and/or other countries.

Microsoft® and Windows® are registered trademarks of Microsoft Corporation in the United States and/or other

countries.

Python® is a registered trademark of the Python Software Foundation in the United States and/or other countries.

Swift® is a registered trademark of Apple, Inc. in the U.S. and/or other countries.

Ruby™ is a registered trademark of O’Reilly Media Inc. in the United States and/or other countries.

Rust® is a registered trademark of Mozilla Foundation in the United States and/or other countries.

Purpose

This document was developed in furtherance of NSA’s cybersecurity missions, including its responsibilities to identify

and disseminate threats to National Security Systems, Department of Defense, and Defense Industrial Base

information systems, and to develop and issue cybersecurity specifications and mitigations. This information may be

shared broadly to reach all appropriate stakeholders.

Contact

Cybersecurity Report Feedback: CybersecurityReports@nsa.gov

General Cybersecurity Inquiries: Cybersecurity_Requests@nsa.gov

Defense Industrial Base Inquiries and Cybersecurity Services: DIB_Defense@cyber.nsa.gov

Media Inquiries / Press Desk: 443-634-0721, MediaRelations@nsa.gov

mailto:CybersecurityReports@nsa.gov
mailto:Cybersecurity_Requests@nsa.gov
mailto:DIB_Defense@cyber.nsa.gov
mailto:MediaRelations@nsa.gov

	Software Memory Safety
	Executive summary
	The memory safety problem
	Memory safe languages
	Application security testing
	Anti-exploitation features
	The path forward
	Works cited

