

NIST SPECIAL PUBLICATION 1800-13

Mobile Application
Single Sign-On:
Improving Authentication for Public
Safety First Responders

Includes Executive Summary (A); Approach, Architecture, and Security Characteristics (B);
and How-To Guides (C)

William Fisher
Paul Grassi*
William C. Barker
Spike E. Dog
Santos Jha
William Kim
Taylor McCorkill*
Joseph Portner*
Mark Russell*
Sudhi Umarji
*Former employee; all work for this publication was done while at employer.

FINAL

The first and second drafts of this publication are available free of charge from
https://www.nccoe.nist.gov/library/mobile-application-single-sign-nist-sp-1800-13-practice-guide

NIST SPECIAL PUBLICATION 1800-13

Mobile Application Single Sign-On: Improving
Authentication for Public Safety First Responders

Includes Executive Summary (A); Approach, Architecture, and Security Characteristics (B);

and How-To Guides (C)

William Fisher
Paul Grassi*

Applied Cybersecurity Division
Information Technology Laboratory

Spike E. Dog

Santos Jha
William Kim*

Taylor McCorkill*
Joseph Portner*

Mark Russell*
Sudhi Umarji

The MITRE Corporation
McLean, Virginia

William C. Barker

Dakota Consulting
Silver Spring, Maryland

*Former employee; all work for this publication was done while at employer.

FINAL

August 2021

U.S. Department of Commerce
Gina M. Raimondo, Secretary

National Institute of Standards and Technology

James K. Olthoff, Performing the non-exclusive functions and duties of the Under Secretary of Commerce for
Standards and Technology

NIST SPECIAL PUBLICATION 1800-13A

Mobile Application Single
Sign-On:
Improving Authentication for Public Safety First
Responders

Volume A:
Executive Summary

William Fisher
Paul Grassi*
Applied Cybersecurity Division
Information Technology Laboratory

Spike E. Dog
Santos Jha
William Kim*
Taylor McCorkill*
Joseph Portner*
Mark Russell*
Sudhi Umarji
The MITRE Corporation
McLean, Virginia

William C. Barker
Dakota Consulting
Silver Spring, Maryland

*Former employee; all work for this publication was done while at employer.

August 2021

FINAL

The first and second drafts of this publication are available free of charge from
https://www.nccoe.nist.gov/library/mobile-application-single-sign-nist-sp-1800-13-practice-guide

https://www.nccoe.nist.gov/library/mobile-application-single-sign-nist-sp-1800-13-practice-guide

NIST SP 1800-13A: Mobile Application Single Sign-On 1

Executive Summary
 On-demand access to public safety data is critical to ensuring that public safety and first

responders (PSFRs) can protect life and property during an emergency.

 This public safety information, often needing to be accessed via mobile or portable devices,
routinely includes sensitive information, such as personally identifiable information, law
enforcement sensitive information, and protected health information.

 Because the communications are critical to public safety and may include sensitive information,
robust and reliable authentication mechanisms that do not hinder delivery of emergency
services are required.

 In collaboration with the National Institute of Standards and Technology (NIST) Public Safety
Communications Research laboratory and industry stakeholders, the National Cybersecurity
Center of Excellence (NCCoE) at NIST built a laboratory environment to demonstrate standards-
based technologies that can enable PSFRs to gain access to public safety information efficiently
and securely by using mobile devices.

 The technologies demonstrated are currently available and include (1) single sign-on (SSO)
capabilities that reduce the number of credentials that need to be managed by public safety
personnel, and reduce the time and effort that individuals spend authenticating themselves;
(2) identity federation that can improve the ability to authenticate personnel across public
safety organization (PSO) boundaries; and (3) multifactor authentication (MFA) that enables
authentication with a high level of assurance.

 This NIST Cybersecurity Practice Guide describes how organizations can implement these
technologies to enhance public safety mission capabilities by using standards-based
commercially available or open-source products. The technologies described facilitate
interoperability among diverse mobile platforms, applications, relying parties, identity providers
(IdPs), and public-sector and private-sector participants, regardless of the application
development platform used in their construction.

CHALLENGE
Recent natural and human-made disasters and crises have highlighted the importance of efficient and
secure access to critical information by PSFRs. For decades, much of this information was broadcast to
PSFRs by voice over radio. More recently, many PSOs have transitioned to a hybrid model that includes
automated access to much of this information via ruggedized mobile laptops and tablets. Further
advances in technology have resulted in increasing reliance on smartphones or similar portable devices
for field access to public safety information. The increasing reliance on these devices has driven the use
of “native app”-based interfaces to access information, in addition to more conventional browser-based
methods.

Many PSOs are in the process of transitioning from conventional land-based mobile communications to
high-speed, regional or nationwide wireless broadband networks (e.g., FirstNet). These networks
employ Internet Protocol-based communications to provide secure and interoperable public safety
communications to support initiatives such as Criminal Justice Information Services, Regional
Information Sharing Systems, and international justice and public safety services such as those provided

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13A: Mobile Application Single Sign-On 2

by Nlets. This transition will foster critically needed interoperability within and among jurisdictions, but
it will create a significant increase in the number of mobile devices that PSOs will need to manage.

Current PSO authentication services may not be sustainable in the face of this growth. There are needs
to improve security assurance, limit authentication requirements that are imposed on users
(e.g., reduce the number of passwords that are required), improve the usability and efficiency of user
account management, and share identities across jurisdictional boundaries. There is no single
management or administrative hierarchy spanning the PSFR population. PSFR organizations operate in a
variety of environments with different authentication requirements. Standards-based solutions are
needed to support technical interoperability and a diverse set of PSO environments.

SOLUTION
To address these challenges, the NCCoE brought together common identity and software application
providers to demonstrate how a PSO can implement mobile native and web application SSO, access
federated identity sources, and implement MFA. SSO limits the time and effort that PSFR personnel
spend authenticating, while MFA provides PSOs with adequate confidence that users who are accessing
their information are who they say they are. The architecture supports identity federation that allows
PSOs to share identity assertions between applications and across PSO jurisdictions. A combination of all
of these capabilities can allow PSFR personnel to authenticate—say, at the beginning of their shift—and
leverage that high-assurance authentication to gain cross-jurisdictional access to many other mobile
native and web applications while on duty.

The guide provides

 a detailed example solution and capabilities that address risk and security controls

 a demonstration of the approach using commercially available products

 “how to” instructions for implementers and security engineers on integrating and configuring
the example solution into their organization’s enterprise in a manner that achieves security
goals with minimal impact on operational efficiency and expense

The NCCoE assembled existing technologies that support the following standards:

 Internet Engineering Task Force Request for Comments 8252, OAuth 2.0 for Native Apps

 Fast Identity Online (FIDO) Universal Second Factor and Universal Authentication Framework

 Security Assertion Markup Language 2.0

 OpenID Connect 1.0

Commercial, standards-based products, such as the ones that we used, are readily available and
interoperable with existing information technology (IT) infrastructures.

While the NCCoE used a suite of commercial products to address this challenge, this guide does not
endorse these particular products, nor does it guarantee compliance with any regulatory initiatives. Your
organization’s information security experts should identify the products that will best integrate with
your existing tools and IT system infrastructure. Your organization can adopt this solution or one that
adheres to these guidelines in whole, or you can use this guide as a starting point for tailoring and
implementing parts of a solution.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13A: Mobile Application Single Sign-On 3

BENEFITS
The NCCoE’s practice guide to Mobile Application Single Sign-On can help PSOs:

 define requirements for mobile application SSO and MFA implementation

 improve interoperability among mobile platforms, applications, and IdPs, regardless of the
application development platform used in their construction

 enhance the efficiency of PSFRs by reducing the number of authentication steps, the time
needed to access critical data, and the number of credentials that need to be managed

 support a diverse set of credentials, enabling a PSO to choose an authentication solution that
best meets its individual needs

SHARE YOUR FEEDBACK
You can view or download the guide at https://www.nccoe.nist.gov/projects/use-cases/mobile-sso. Help
the NCCoE make this guide better by sharing your thoughts with us as you read the guide. If you adopt
this solution for your own organization, please share your experience and advice with us. We recognize
that technical solutions alone will not fully enable the benefits of our solution, so we encourage
organizations to share lessons learned and best practices for transforming the processes associated with
implementing this guide.

To provide comments or to learn more by arranging a demonstration of this example implementation,
contact the NCCoE at psfr-nccoe@nist.gov.

COLLABORATORS
Collaborators participating in this project submitted their capabilities in response to an open call in the
Federal Register for all sources of relevant security capabilities from academia and industry (vendors
and integrators). The following respondents with relevant capabilities or product components signed a
Cooperative Research and Development Agreement (CRADA) to collaborate with NIST in a consortium to
build this example solution.

Certain commercial entities, equipment, products, or materials may be identified by name or company
logo or other insignia in order to acknowledge their participation in this collaboration or to describe an
experimental procedure or concept adequately. Such identification is not intended to imply special
status or relationship with NIST or recommendation or endorsement by NIST or NCCoE; neither is it
intended to imply that the entities, equipment, products, or materials are necessarily the best available
for the purpose.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

https://www.nccoe.nist.gov/projects/use-cases/mobile-sso
mailto:psfr-nccoe@nist.gov

NIST SPECIAL PUBLICATION 1800-13B

Mobile Application Single
Sign-On:
Improving Authentication for Public Safety First
Responders

Volume B:
Approach, Architecture, and Security Characteristics

William Fisher
Paul Grassi*
Applied Cybersecurity Division
Information Technology Laboratory

Spike E. Dog
Santos Jha
William Kim*
Taylor McCorkill*
Joseph Portner*
Mark Russell*
Sudhi Umarji
The MITRE Corporation
McLean, Virginia

William C. Barker
Dakota Consulting
Silver Spring, Maryland

*Former employee; all work for this publication was done while at employer.

August 2021

FINAL

The first and second drafts of this publication are available free of charge from
https://www.nccoe.nist.gov/library/mobile-application-single-sign-nist-sp-1800-13-practice-guide

https://www.nccoe.nist.gov/library/mobile-application-single-sign-nist-sp-1800-13-practice-guide

NIST SP 1800-13B: Mobile Application Single Sign-On i

DISCLAIMER
Certain commercial entities, equipment, products, or materials may be identified by name or company
logo or other insignia in order to acknowledge their participation in this collaboration or to describe an
experimental procedure or concept adequately. Such identification is not intended to imply special
status or relationship with NIST or recommendation or endorsement by NIST or NCCoE; neither is it
intended to imply that the entities, equipment, products, or materials are necessarily the best available
for the purpose.

National Institute of Standards and Technology Special Publication 1800-13B, Natl. Inst. Stand. Technol.
Spec. Publ. 1800-13B, 64 pages (August 2021), CODEN: NSPUE2

FEEDBACK
As a private-public partnership, we are always seeking feedback on our practice guides. We are
particularly interested in seeing how businesses apply NCCoE reference designs in the real world. If you
have implemented the reference design, or have questions about applying it in your environment,
please email us at psfr-nccoe@nist.gov.

All comments are subject to release under the Freedom of Information Act.

National Cybersecurity Center of Excellence
National Institute of Standards and Technology

100 Bureau Drive
Mailstop 2002

Gaithersburg, Maryland 20899
Email: nccoe@nist.gov

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

mailto:psfr-nccoe@nist.gov
mailto:nccoe@nist.gov

NIST SP 1800-13B: Mobile Application Single Sign-On ii

NATIONAL CYBERSECURITY CENTER OF EXCELLENCE
The National Cybersecurity Center of Excellence (NCCoE), a part of the National Institute of Standards
and Technology (NIST), is a collaborative hub where industry organizations, government agencies, and
academic institutions work together to address businesses’ most pressing cybersecurity issues. This
public-private partnership enables the creation of practical cybersecurity solutions for specific
industries, as well as for broad, cross-sector technology challenges. Through consortia under
Cooperative Research and Development Agreements (CRADAs), including technology partners—from
Fortune 50 market leaders to smaller companies specializing in information technology security—the
NCCoE applies standards and best practices to develop modular, adaptable example cybersecurity
solutions using commercially available technology. The NCCoE documents these example solutions in
the NIST Special Publication 1800 series, which maps capabilities to the NIST Cybersecurity Framework
and details the steps needed for another entity to re-create the example solution. The NCCoE was
established in 2012 by NIST in partnership with the State of Maryland and Montgomery County,
Maryland.

To learn more about the NCCoE, visit https://www.nccoe.nist.gov. To learn more about NIST, visit
https://www.nist.gov.

NIST CYBERSECURITY PRACTICE GUIDES
NIST Cybersecurity Practice Guides (Special Publication 1800 series) target specific cybersecurity
challenges in the public and private sectors. They are practical, user-friendly guides that facilitate the
adoption of standards-based approaches to cybersecurity. They show members of the information
security community how to implement example solutions that help them align with relevant standards
and best practices, and provide users with the materials lists, configuration files, and other information
they need to implement a similar approach.

The documents in this series describe example implementations of cybersecurity practices that
businesses and other organizations may voluntarily adopt. These documents do not describe regulations
or mandatory practices, nor do they carry statutory authority.

ABSTRACT
On-demand access to public safety data is critical to ensuring that public safety and first responder
(PSFR) personnel can deliver the proper care and support during an emergency. This necessitates heavy
reliance on mobile platforms while in the field, which may be used to access sensitive information.
However, complex authentication requirements can hinder the process of providing emergency services,
and any delay—even seconds—can become a matter of life or death. In collaboration with NIST’S Public
Safety Communications Research (PSCR) Division and industry stakeholders, the NCCoE aims to help
PSFR personnel efficiently and securely gain access to mission data via mobile devices and applications.

This practice guide describes a reference design for multifactor authentication (MFA) and mobile single
sign-on (MSSO) for native and web applications while improving interoperability among mobile
platforms, applications, and identity providers, regardless of the application development platform used
in their construction. This guide discusses major architecture design considerations, explains security
characteristics achieved by the reference design, and maps the security characteristics to applicable

https://www.nccoe.nist.gov/
https://www.nist.gov/

NIST SP 1800-13B: Mobile Application Single Sign-On iii

standards and security control families. For parties interested in adopting all or part of the reference
architecture, this guide includes a detailed description of the installation, configuration, and integration
of all components.

KEYWORDS
access control; authentication; authorization; identity; identity management; identity provider; relying
party; single sign-on

ACKNOWLEDGMENTS
We are grateful to the following individuals for their generous contributions of expertise and time.

Name Organization

Donna Dodson* NIST NCCoE

Tim McBride NIST NCCoE

Jeff Vettraino FirstNet

FNU Rajan FirstNet

John Beltz NIST Public Safety Communications Research Lab

Chris Leggett Ping Identity

Paul Madsen Ping Identity

John Bradley Yubico

Adam Migus Yubico

Derek Hanson Yubico

Adam Lewis Motorola Solutions

Mike Korus Motorola Solutions

Dan Griesmann Motorola Solutions

Arshad Noor StrongKey

Pushkar Marathe StrongKey

Max Smyth StrongKey

Scott Wong StrongKey

NIST SP 1800-13B: Mobile Application Single Sign-On iv

Name Organization

Akhilesh Sah Nok Nok Labs

Avinash Umap Nok Nok Labs

*Former employee; all work for this publication was done while at employer.

The Technology Partners/Collaborators who participated in this build submitted their capabilities in
response to a notice in the Federal Register. Respondents with relevant capabilities or product
components were invited to sign a Cooperative Research and Development Agreement (CRADA) with
NIST, allowing them to participate in a consortium to build this example solution. We worked with:

Technology Partner/Collaborator Build Involvement

Ping Identity Federation Server

Motorola Solutions Mobile Applications

Yubico External Authenticators

Nok Nok Labs Fast Identity Online (FIDO) Universal Authentication
Framework (UAF) Server

StrongKey FIDO Universal Second Factor (U2F) Server

PATENT DISCLOSURE NOTICE
NOTICE: The Information Technology Laboratory (ITL) has requested that holders of patent claims whose
use may be required for compliance with the guidance or requirements of this publication disclose such
patent claims to ITL. However, holders of patents are not obligated to respond to ITL calls for patents
and ITL has not undertaken a patent search in order to identify which, if any, patents may apply to this
publication.

As of the date of publication and following call(s) for the identification of patent claims whose use may
be required for compliance with the guidance or requirements of this publication, no such patent claims
have been identified to ITL.

No representation is made or implied by ITL that licenses are not required to avoid patent infringement
in the use of this publication.

https://www.pingidentity.com/en.html
https://www.motorolasolutions.com/en_us.html
https://www.yubico.com/
https://www.noknok.com/
https://strongkey.com/

NIST SP 1800-13B: Mobile Application Single Sign-On v

Contents

1.1.1 Easing User Authentication Requirements ... 2

1.1.2 Improving Authentication Assurance ... 2

1.1.3 Federating Identities and User Account Management ... 2

3.5.1 PSFR Risks ..10

3.5.2 Mobile Ecosystem Threats ..11

3.5.3 Authentication and Federation Threats..13

4.1.1 SSO with OAuth 2.0, IETF RFC 8252, and AppAuth Open-Source Libraries18

4.1.2 Identity Federation ...18

4.1.3 FIDO and Authenticator Types ..19

NIST SP 1800-13B: Mobile Application Single Sign-On vi

4.3.1 SAML and U2F Authentication Flow ...22

4.3.2 OpenID Connect and UAF Authentication Flow..26

5.2.1 Mobile Ecosystem Threat Analysis ...33

5.2.2 Authentication and Federation Threat Analysis ...35

C.1.1 Attributes and Authorization ..49

C.3.1 UAF Protocol ...54

C.3.2 U2F Protocol ...55

C.3.3 FIDO 2..55

C.3.4 FIDO Key Registration ...55

NIST SP 1800-13B: Mobile Application Single Sign-On vii

C.3.5 FIDO Authenticator Attestation ..56

C.3.6 FIDO Deployment Considerations ..57

List of Figures
Figure 3-1 The Mobile Ecosystem ... 13

Figure 4-1 High-Level U2F Architecture ... 20

Figure 4-2 High-Level UAF Architecture ... 21

Figure 4-3 SAML and U2F Sequence Diagram .. 23

Figure 4-4 OIDC and UAF Sequence Diagram ... 26

Figure 5-1 Mobile Device Technology Stack ... 35

List of Tables
Table 3-1 Threat Classes and Categories ... 11

Table 3-2 Products and Technologies .. 15

Table A-1 Cybersecurity Framework Categories .. 39

Table C-1 FAL Requirements ... 51

Table C-2 AAL Summary of Requirements ... 53

NIST SP 1800-13B: Mobile Application Single Sign-On 1

1 Summary
The National Cybersecurity Center of Excellence (NCCoE), with the National Institute of Standards and
Technology’s (NIST’s) Public Safety Communications Research lab, is helping the public safety and first
responder (PSFR) community address the challenge of securing sensitive information accessed on
mobile applications. The Mobile Application Single Sign-On (SSO) Project is a collaborative effort with
industry and the information technology (IT) community, including vendors of cybersecurity solutions.

This project aims to help PSFR personnel efficiently and securely gain access to mission-critical data via
mobile devices and applications through mobile SSO, identity federation, and multifactor authentication
(MFA) solutions for native and web applications by using standards-based commercially available and
open-source products.

The reference design herein

 provides a detailed example solution and capabilities that address risk and security controls

 demonstrates standards-based MFA, identity federation, and mobile SSO for native and web
applications

 supports multiple authentication methods, considering unique environmental constraints faced
by first responders in emergency medical services, law enforcement, and fire services

1.1 Challenge
On-demand access to public safety data is critical to ensuring that PSFR personnel can protect life and
property during an emergency. Mobile platforms offer a significant operational advantage to public
safety stakeholders by providing access to mission-critical information and services while deployed in
the field, during training and exercises, or when participating in day-to-day business and preparing for
emergencies during nonemergency periods. These advantages can be limited if complex authentication
requirements hinder PSFR personnel, especially when a delay—even seconds—is a matter of containing
or exacerbating an emergency. PSFR communities are challenged with implementing efficient and
secure authentication mechanisms to protect access to this sensitive information while meeting the
demands of their operational environment.

Many public safety organizations (PSOs) are in the process of transitioning from conventional land-based
mobile communications to high-speed, regional or nationwide wireless broadband networks (e.g., First
Responder Network Authority [FirstNet]). These emerging 5G systems employ internet protocol-based
communications to provide secure and interoperable public safety communications to support
initiatives such as Criminal Justice Information Services; Regional Information Sharing Systems; and
international justice and public safety services, such as those provided by Nlets. This transition will
foster critically needed interoperability within and among jurisdictions but will create a significant

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 2

increase in the number of mobile Android and iPhone operating system (iOS) devices that PSOs will need
to manage.

Current PSO authentication services may not be sustainable in the face of this growth. There are needs
to improve security assurance, limit authentication requirements that are imposed on users (e.g., avoid
the number of passwords that are required), improve the usability and efficiency of user account
management, and share identities across jurisdictional boundaries. There is no single management or
administrative hierarchy spanning the PSFR population. PSFR organizations operate in a variety of
environments with different authentication requirements. Standards-based solutions are needed to
support technical interoperability and this diverse set of PSO environments.

1.1.1 Easing User Authentication Requirements
Many devices that digitally access public safety information employ different software applications to
access different information sources. Single-factor authentication processes, usually passwords, are
most commonly required to access each of these applications. Users often need different passwords or
personal identification numbers (PINs) for each application used to access critical information.
Authentication prompts, such as entering complex passwords on a small touchscreen for each
application, can hinder PSFRs. There is an operational need for the mobile systems on which they rely to
support a single authentication process that can be used to access multiple applications. This is referred
to as single sign-on, or SSO.

1.1.2 Improving Authentication Assurance
Single-factor password authentication mechanisms for mobile native and web applications may not
provide sufficient protection for control of access to law enforcement-sensitive information, protected
health information, and personally identifiable information (PII). Replacement of passwords by
multifactor technology (e.g., a PIN plus some physical token or biometric) is widely recognized as
necessary for access to sensitive information. Technology for these capabilities exists, but budgetary,
contractual, and operational considerations have impeded implementation and use of these
technologies. PSOs need a solution that supports differing authenticator requirements across the
community (e.g., law enforcement, fire response, emergency medical services) and a “future-proof”
solution allowing for adoption of evolving technologies that may better support PSFRs in the line of
duty.

1.1.3 Federating Identities and User Account Management
PSFRs need access to a variety of applications and databases to support routine activities and
emergency situations. These resources may be accessed by portable mobile devices or mobile data
terminals in vehicles. It is not uncommon for these resources to reside within neighboring jurisdictions
at the federal, state, county, or local level. Even when the information is within the same jurisdiction, it
may reside in a third-party vendor’s cloud service. This environment results in issuance of many user

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 3

accounts to each PSFR that are managed and updated by those neighboring jurisdictions or cloud service
providers. When a PSFR leaves or changes job functions, the home organization must ensure that
accounts are deactivated, avoiding any orphaned accounts managed by third parties. PSOs need a
solution that reduces the number of accounts managed and allows user accounts and credentials issued
by a PSFR’s home organization to access information across jurisdictions and with cloud services. The
ability of one organization to accept the identity and credentials from another organization in the form
of an identity assertion is called identity federation. Current commercially available standards support
this functionality.

1.2 Solution
This NIST Cybersecurity Practice Guide demonstrates how commercially available technologies,
standards, and best practices implementing SSO, identity federation, and MFA can meet the needs of
PSFR communities when accessing services from mobile devices.

In our lab at the NCCoE, we built an environment that simulates common identity providers (IdPs) and
software applications found in PSFR infrastructure. In this guide, we show how a PSFR entity can
leverage this infrastructure to implement SSO, identity federation, and MFA for native and web
applications on mobile platforms. SSO, federation, and MFA capabilities can be implemented
independently, but implementing them together would achieve maximum improvement with respect to
usability, interoperability, and security.

At its core, the architecture described in Section 4 implements the Internet Engineering Task Force’s
(IETF’s) Best Current Practice (BCP) guidance found in Request for Comments (RFC) 8252, OAuth 2.0 for
Native Apps [1]. Leveraging technology newly available in modern mobile operating systems (OSes), RFC
8252 defines a specific flow allowing for authentication to mobile native applications without exposing
user credentials to the client application. This authentication can be leveraged by additional mobile
native and web applications to provide an SSO experience, avoiding the need for the user to manage
credentials independently for each application. Using the Fast Identity Online (FIDO) Universal
Authentication Framework (UAF) [2] and Universal Second Factor (U2F) [3] protocols, this solution
supports MFA on mobile platforms that use a diverse set of authenticators. The use of Security Assertion
Markup Language (SAML) 2.0 [4] and OpenID Connect (OIDC) 1.0 [5] federation protocols allows PSOs to
share identity assertions between applications and across PSO jurisdictions. Using this architecture
allows PSFR personnel to authenticate once—say, at the beginning of their shift—and then leverage that
single authentication to gain access to many other mobile native and web applications while on duty,
reducing the time needed for authentication.

The PSFR community comprises tens of thousands of different organizations across the United States,
many of which may operate their own IdPs. Today, most IdPs use SAML 2.0, but OIDC is rapidly gaining
market share as an alternative for identity federation. As this build architecture demonstrates, an OAuth
authorization server (AS) can integrate with both OIDC and SAML IdPs.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 4

The guide provides:

 a detailed example solution and capabilities that may be implemented independently or in
combination to address risk and security controls

 a demonstration of the approach, which uses commercially available products

 how-to instructions for implementers and security engineers on integrating and configuring the
example solution into their organization’s enterprise in a manner that achieves security goals
with minimal impact on operational efficiency and expense

Organizations can adopt this solution or a different one that adheres to these guidelines in whole, or an
organization can use this guide as a starting point for tailoring and implementing parts of a solution.

Note that since May 2018, when this project build was initially completed at the NCCoE laboratory,
some of the products used in the build have migrated to new platforms. In addition, new specifications
and standards used by the products have been published and revised. While the general integration
concepts demonstrated in this guide still apply, implementers using newer or different products will
have to tailor their implementation to meet the specific requirements of those products and specifica-
tions. Thus, the implementation details will be different.

1.3 Benefits
The NCCoE, in collaboration with our stakeholders in the PSFR community, identified the need for a
mobile SSO and MFA solution for native and web applications. This NCCoE practice guide, Mobile
Application Single Sign-On, can help PSOs:

 define requirements for mobile application SSO and MFA implementation

 improve interoperability among mobile platforms, applications, and IdPs, regardless of the
application development platform used in their construction

 enhance the efficiency of PSFRs by reducing the number of authentication steps, the time
needed to access critical data, and the number of credentials that need to be managed

 support a diverse set of credentials, enabling a PSO to choose an authentication solution that
best meets its individual needs

 enable cross-jurisdictional information sharing by identity federation

This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 5

2 How to Use This Guide
This NIST Cybersecurity Practice Guide demonstrates a standards-based reference design and provides
users with the information they need to replicate an MFA and mobile SSO solution for mobile native and
web applications. This reference design is modular and can be deployed in whole or in part.

This guide contains three volumes:

 NIST Special Publication (SP) 1800-13A: Executive Summary

 NIST SP 1800-13B: Approach, Architecture, and Security Characteristics—what we built and why
(you are here)

 NIST SP 1800-13C: How-To Guides—instructions for building the example solution

Depending on your role in your organization, you might use this guide in different ways:

Business decision makers, including chief security and technology officers, will be interested in the
Executive Summary (NIST SP 1800-13A), which describes the following topics:

 challenges that enterprises face in MFA and mobile SSO for native and web applications

 example solution built at the NCCoE

 benefits of adopting the example solution

Technology or security program managers who are concerned with how to identify, understand, assess,
and mitigate risk will be interested in this part of the guide, NIST SP 1800-13B, which describes what we
did and why. The following sections will be of particular interest:

 Section 3.5, Risk Assessment, provides a description of the risk analysis we performed.

 Appendix A, Mapping to Cybersecurity Framework Core, maps the security characteristics of this
example solution to cybersecurity standards and best practices.

You might share the Executive Summary, NIST SP 1800-13A, with your leadership team members to help
them understand the importance of adopting a standards-based MFA and mobile SSO solution for native
and web applications.

Information technology (IT) professionals who want to implement an approach like this will find the
whole practice guide useful. You can use the how-to portion of the guide, NIST SP 1800-13C, to replicate
all or parts of the build created in our lab. The how-to portion of the guide provides specific product
installation, configuration, and integration instructions for implementing the example solution. We do
not re-create the product manufacturer’s documentation, which is generally widely available. Rather,
we show how we incorporated the products together in our environment to create an example solution.

This guide assumes that IT professionals have experience implementing security products within the
enterprise. While we have used a suite of commercial products to address this challenge, this guide does

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 6

not endorse these particular products. Your organization can adopt this solution or one that adheres to
these guidelines in whole, or you can use this guide as a starting point for tailoring and implementing
SSO or MFA separately. Your organization’s security experts should identify the products that will best
integrate with your existing tools and IT system infrastructure. We hope you will seek products that are
congruent with applicable standards and best practices. Section 3.7, Technologies, lists the products we
used and maps them to the cybersecurity controls provided by this reference solution.

A NIST Cybersecurity Practice Guide does not describe “the” solution, but a possible solution.
Comments, suggestions, and success stories will improve subsequent versions of this guide. Please
contribute your thoughts to psfr-nccoe@nist.gov.

2.1 Typographic Conventions
The following table presents typographic conventions used in this volume.

Typeface/Symbol Meaning Example

Italics file names and pathnames,
references to documents that
are not hyperlinks, new terms,
and placeholders

For detailed definitions of terms, see
the NCCoE Glossary.

Bold names of menus, options,
command buttons, and fields

Choose File > Edit.

Monospace command-line input, onscreen
computer output, sample code
examples, and status codes

mkdir

Monospace Bold command-line user input
contrasted with computer
output

service sshd start

blue text link to other parts of the
document, a web URL, or an
email address

All publications from NIST’s NCCoE
are available at
https://www.nccoe.nist.gov.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

mailto:psfr-nccoe@nist.gov
https://www.nccoe.nist.gov/

NIST SP 1800-13B: Mobile Application Single Sign-On 7

3 Approach
In conjunction with the PSFR community, the NCCoE developed a project description identifying MFA
and SSO for mobile native and web applications as a critical need for PSFR organizations. The NCCoE
then engaged subject matter experts from industry organizations, technology vendors, and standards
bodies to develop an architecture and reference design leveraging new capabilities in modern mobile
OSes and best current practices in SSO and MFA.

3.1 Audience
This guide is intended for individuals or entities that are interested in understanding the mobile native
and web application SSO and MFA reference designs that the NCCoE has implemented to allow PSFR
personnel to securely and efficiently gain access to mission-critical data by using mobile devices. Though
the NCCoE developed this reference design with the PSFR community, any party interested in SSO and
MFA for native mobile and web applications can leverage the architecture and design principles
implemented in this guide.

The overall build architecture addresses three different audiences with somewhat separate concerns:

 IdPs—PSFR organizations that issue and maintain user accounts for their users. Larger PSFR
organizations may operate their own IdP infrastructures and may federate by using SAML or
OIDC services, while others may seek to use an IdP service provider. IdPs are responsible for
identity proofing, account creation, account and attribute management, and credential
management.

 Relying parties (RPs)—organizations providing application services to multiple PSFR
organizations. RPs may be software-as-a-service (SaaS) providers or PSFR organizations
providing shared services consumed by other organizations. The RP operates an OAuth 2.0 AS,
which integrates with users’ IdPs and issues access tokens to enable mobile applications to
make requests to the back-end application servers.

 Application developers—mobile application developers. Today, mobile client applications are
typically developed by the same software provider as the back-end RP applications. However,
the OAuth framework enables interoperability between RP applications and third-party client
applications. In any case, mobile application development is a specialized skill with unique
considerations and requirements. Mobile application developers should consider implementing
the AppAuth library for IETF RFC 8252 to enable standards-based SSO.

3.2 Scope
The focus of this project is to address the need for secure and efficient mobile native and web
application SSO. The NCCoE drafted a use case that identified numerous desired solution characteristics.
After an open call in the Federal Register for vendors to help develop a solution, we chose participating

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 8

technology collaborators on a first-come, first-served basis. We scoped the project to produce the
following high-level desired outcomes:

 Provide a standards-based solution architecture that selects an effective and secure approach to
implementing mobile SSO, leveraging native capabilities of the mobile OS.

 Ensure that mobile applications do not have access to user credentials.

 Support MFA and multiple authentication protocols.

 Support multiple authenticators, considering unique environmental constraints faced by first
responders in emergency medical services, law enforcement, and fire services.

 Support cross-jurisdictional information sharing through identity federation.

To maintain the project’s focus on core SSO and MFA requirements, the following subjects are out of
scope. These technologies and practices are critical to a successful implementation, but they do not
directly affect the core design decisions.

 Identity proofing—The solution creates synthetic digital identities that represent the identities
and attributes of public safety personnel to test authentication assertions. This includes the
usage of a lab-configured identity repository—not a genuine repository and schema provided by
any PSO. This guide will not demonstrate an identity proofing process.

 Access control—This solution supports the creation and federation of attributes but will not
discuss or demonstrate access control policies that an RP might implement to govern access to
specific resources.

 Credential storage—This solution is agnostic to where credentials are stored on the mobile
device. For example, this use case is not affected by storing a certificate in software versus
hardware, such as a trusted platform module.

 Enterprise Mobility Management (EMM)—The solution assumes that all applications involved in
the SSO experience are allowable via an EMM. This implementation may be supported by using
an EMM (for example, to automatically provision required mobile applications to the device),
but it does not strictly depend on using an EMM.

 Fallback authentication mechanisms—This solution involves the use of multifactor
authenticators, which may consist of physical authentication devices or cryptographic keys
stored directly on mobile devices. Situations may arise where a user’s authenticator or device
has been lost or stolen. This practice guide recommends registering multiple authenticators for
each user as a partial mitigation, but in some cases, it may be necessary to either enable users
to fall back to single-factor authentication or provide other alternatives. Such fallback
mechanisms must be evaluated considering the organization’s security and availability
requirements.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 9

3.3 Assumptions
Before implementing the capabilities described in this practice guide, organizations should review the
assumptions underlying the NCCoE build. These assumptions are detailed in Appendix B. Though not in
scope for this effort, implementers should consider whether the same assumptions can be made based
on current policy, process, and IT infrastructure. As detailed in Appendix B, applicable and appropriate
guidance is provided to assist this process for the following functions:

 identity proofing

 mobile device security

 mobile application security

 EMM

 FIDO enrollment process

3.4 Business Case
Any decision to implement IT systems within an organization must begin with a solid business case. This
business case could be an independent initiative or a component of the organization’s strategic planning
cycle. Individual business units or functional areas typically derive functional or business unit strategies
from the overall organization’s strategic plan. The business drivers for any IT project must originate in
these strategic plans, and the decision to determine if an organization will invest in mobile SSO, identity
federation, or MFA by implementing the solution in this practice guide will be based on the
organization’s decision-making process for initiating new projects.

Important inputs to the business case are the risks to the organization from mobile authentication and
identity management, as outlined in Section 3.5. Apart from addressing cybersecurity risks, SSO also
improves the user experience and alleviates the overhead associated with maintaining and using
passwords for multiple applications. This provides a degree of convenience to all types of users, but
reducing the authentication overhead for PSFR users and reducing barriers to getting the information
and applications that they need could have a tremendous effect. First responder organizations and
application providers also benefit by using interoperable standards that provide easy integration across
disparate technology platforms. In addition, the burden of account management is reduced by using a
single user account managed by the organization to access multiple applications and services.

3.5 Risk Assessment
NIST SP 800-30 Revision 1 [6], Guide for Conducting Risk Assessments, states that risk is “a measure of
the extent to which an entity is threatened by a potential circumstance or event, and typically a function
of (i) the adverse impacts that would arise if the circumstance or even occurs; and (ii) the likelihood of
occurrence.” The guide further defines risk assessment as “the process of identifying, estimating, and

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 10

prioritizing risks to organizational operations (including mission, functions, image, reputation),
organizational assets, individuals, other organizations, and the Nation, resulting from the operation of
an information system. Part of risk management incorporates threat and vulnerability analyses, and
considers mitigations provided by security controls planned or in place.”

The NCCoE recommends that any discussion of risk management, particularly at the enterprise level,
begins with a comprehensive review of NIST SP 800-37 Revision 2, Guide for Applying the Risk
Management Framework to Federal Information Systems [7]—material that is available to the public.
The risk management framework guidance, as a whole, proved invaluable in giving us a baseline to
assess risks, from which we developed the project, the security characteristics of the build, and this
guide.

3.5.1 PSFR Risks
As PSFR communities adopt mobile platforms and applications, organizations should consider potential
risks that these new devices and ecosystems introduce that may negatively affect PSFR organizations
and the ability of PSFR personnel to operate. These are some of the risks:

 The reliance on passwords alone by many PSFR entities effectively expands the scope of a single
application/database compromise when users fall back to reusing a small set of easily
remembered passwords across multiple applications.

 Complex passwords are harder to remember and input to IT systems. Mobile devices exacerbate
this issue with small touchscreens that may not work with gloves or other PSFR equipment, and
with three separate keyboards among which the user must switch. In an emergency response,
any delay in accessing information may prove critical to containing a situation.

 Social engineering, machine-in-the-middle attacks, replay attacks, and phishing all present real
threats to password-based authentication systems.

 Deterministic, cryptographic authentication mechanisms have security benefits, yet come with
the challenge of cryptographic key management. Loss or misuse of cryptographic keys could
undermine an authentication system, leading to unauthorized access or data leakage.

 Biometric authentication mechanisms may be optimal for some PSFR personnel, yet
organizations need to ensure that PII, such as fingerprint templates, is protected.

 Credentials exposed to mobile applications could be stolen by malicious applications or misused
by nonmalicious applications. Previously, it was common for native applications to use
embedded user-agents (commonly implemented with web views) for OAuth requests. That
approach has many drawbacks, including the host application being able to copy user
credentials and cookies, as well as the user needing to authenticate again in each application.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 11

3.5.2 Mobile Ecosystem Threats
Any discussion of risks and vulnerabilities is incomplete without considering the threats that are
involved. NIST SP 800-150, Guide to Cyber Threat Information Sharing [8], states that a cyber threat is
“any circumstance or event with the potential to adversely impact organizational operations (including
mission, functions, image, or reputation), organizational assets, individuals, other organizations, or the
Nation through an information system via unauthorized access, destruction, disclosure, or modification
of information, and/or denial of service.”

To simplify this concept, a threat is anything that can exploit a vulnerability to damage an asset. Finding
the intersection of these three will yield a risk. Understanding the applicable threats to a system is the
first step in determining its risks.

However, identifying and delving into mobile threats is not the primary goal of this practice guide.
Instead, we rely on prior work from NIST’s Mobile Threat Catalogue (MTC), along with its associated
NIST Interagency Report (IR) 8144, Assessing Threats to Mobile Devices & Infrastructure [9]. Each entry
in the MTC contains several pieces of information: an identifier, a category, a high-level description,
details on its origin, exploit examples, examples of common vulnerabilities and exposures, possible
countermeasures, and academic references. For the purposes of this practice guide, we are primarily
interested in threat identifiers, categories, descriptions, and countermeasures.

In broad strokes, the MTC covers 32 threat categories that are grouped into 12 distinct classes, as shown
in Table 3-1. Of these categories, three in particular, highlighted in green in the table, are covered by the
guidance in this practice guide. If implemented correctly, this guidance will help mitigate those threats.

Table 3-1 Threat Classes and Categories

Threat Class Threat Category Threat Class Threat Category

Application

Malicious or Privacy-Invasive
Applications

Local Area
Network and
Personal Area

Network

Network Threats:
Bluetooth

Vulnerable Applications
Network Threats: Near
Field Communication

(NFC)

Authentication

Authentication: User or Device to
Network

 Network Threats: Wi-Fi

Authentication: User or Device to
Remote Service

Payment
Application-Based

Authentication: User to Device In-Application Purchases

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

https://pages.nist.gov/mobile-threat-catalogue/
https://pages.nist.gov/mobile-threat-catalogue/application.html#malicious-priv-applications
https://pages.nist.gov/mobile-threat-catalogue/application.html#malicious-priv-applications
https://pages.nist.gov/mobile-threat-catalogue/lan-pan.html#bluetooth
https://pages.nist.gov/mobile-threat-catalogue/lan-pan.html#bluetooth
https://pages.nist.gov/mobile-threat-catalogue/application.html#vulnerable-applications
https://pages.nist.gov/mobile-threat-catalogue/lan-pan.html#nfc
https://pages.nist.gov/mobile-threat-catalogue/lan-pan.html#nfc
https://pages.nist.gov/mobile-threat-catalogue/lan-pan.html#nfc
https://pages.nist.gov/mobile-threat-catalogue/authentication.html#user-device-network
https://pages.nist.gov/mobile-threat-catalogue/authentication.html#user-device-network
https://pages.nist.gov/mobile-threat-catalogue/lan-pan.html#wi-fi
https://pages.nist.gov/mobile-threat-catalogue/authentication.html#user-device-remote
https://pages.nist.gov/mobile-threat-catalogue/authentication.html#user-device-remote
https://pages.nist.gov/mobile-threat-catalogue/payment.html
https://pages.nist.gov/mobile-threat-catalogue/authentication.html#user-device
https://pages.nist.gov/mobile-threat-catalogue/payment.html

NIST SP 1800-13B: Mobile Application Single Sign-On 12

Threat Class Threat Category Threat Class Threat Category

Cellular

Carrier Infrastructure NFC-Based

Carrier Interoperability Physical Access Physical Access

Cellular Air Interface Privacy Behavior Tracking

Consumer-Grade Femtocell Supply Chain Supply Chain

Short Message Service
(SMS)/Multimedia Messaging

Service (MMS)/Rich
Communication Services (RCS)

Stack

Baseband Subsystem

Unstructured Supplementary
Service Data (USSD)

 Boot Firmware

Voice over Long-Term Evolution
(VoLTE)

 Device Drivers

Ecosystem

Mobile Application Store Isolated Execution
Environments

Mobile OS & Vendor
Infrastructure

 Mobile Operating System

EMM EMM Secure Digital (SD) Card

Global
Positioning

System (GPS)
GPS

Universal Subscriber
Identity Module

(USIM)/Subscriber
Identity Module
(SIM)/Universal

Integrated Circuit Card
(UICC) Security

The other categories, while still important elements of the mobile ecosystem and critical to the health of
an overall mobility architecture, are out of scope for this document. The entire mobile ecosystem should
be considered when analyzing threats to the architecture; this ecosystem is depicted in Figure 3-1, taken
from NIST IR 8144. Each player in the ecosystem—the mobile device user, the enterprise, the network

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

https://pages.nist.gov/mobile-threat-catalogue/cellular.html#carrier-infrastructure
https://pages.nist.gov/mobile-threat-catalogue/payment.html
https://pages.nist.gov/mobile-threat-catalogue/cellular.html#carrier-interoperability
https://pages.nist.gov/mobile-threat-catalogue/physical.html
https://pages.nist.gov/mobile-threat-catalogue/cellular.html#air-interface
https://pages.nist.gov/mobile-threat-catalogue/privacy.html
https://pages.nist.gov/mobile-threat-catalogue/cellular.html#consumer-grade-small-cell
https://pages.nist.gov/mobile-threat-catalogue/supply-chain.html
https://pages.nist.gov/mobile-threat-catalogue/cellular.html#carrier-grade-messaging
https://pages.nist.gov/mobile-threat-catalogue/cellular.html#carrier-grade-messaging
https://pages.nist.gov/mobile-threat-catalogue/cellular.html#carrier-grade-messaging
https://pages.nist.gov/mobile-threat-catalogue/cellular.html#carrier-grade-messaging
https://pages.nist.gov/mobile-threat-catalogue/stack.html#baseband-subsystem
https://pages.nist.gov/mobile-threat-catalogue/cellular.html#ussd
https://pages.nist.gov/mobile-threat-catalogue/cellular.html#ussd
https://pages.nist.gov/mobile-threat-catalogue/stack.html#boot-firmware
https://pages.nist.gov/mobile-threat-catalogue/cellular.html#volte
https://pages.nist.gov/mobile-threat-catalogue/cellular.html#volte
https://pages.nist.gov/mobile-threat-catalogue/stack.html#device-drivers
https://pages.nist.gov/mobile-threat-catalogue/ecosystem.html#mobile-app-stores
https://pages.nist.gov/mobile-threat-catalogue/stack.html#isolated-exec-environ
https://pages.nist.gov/mobile-threat-catalogue/stack.html#isolated-exec-environ
https://pages.nist.gov/mobile-threat-catalogue/ecosystem.html#mobile-vendor-infra
https://pages.nist.gov/mobile-threat-catalogue/ecosystem.html#mobile-vendor-infra
https://pages.nist.gov/mobile-threat-catalogue/stack.html#mobile-operating-system
https://pages.nist.gov/mobile-threat-catalogue/emm.html#page
https://pages.nist.gov/mobile-threat-catalogue/stack.html#sd-card
https://pages.nist.gov/mobile-threat-catalogue/gps.html
https://pages.nist.gov/mobile-threat-catalogue/stack.html#sim-card
https://pages.nist.gov/mobile-threat-catalogue/stack.html#sim-card
https://pages.nist.gov/mobile-threat-catalogue/stack.html#sim-card
https://pages.nist.gov/mobile-threat-catalogue/stack.html#sim-card
https://pages.nist.gov/mobile-threat-catalogue/stack.html#sim-card
https://pages.nist.gov/mobile-threat-catalogue/stack.html#sim-card
https://pages.nist.gov/mobile-threat-catalogue/stack.html#sim-card

NIST SP 1800-13B: Mobile Application Single Sign-On 13

operator, the application developer, and the original equipment manufacturer (OEM)—can find
suggestions to deter other threats by reviewing the MTC and NIST IR 8144. Many of these share
common solutions, such as using EMM software to monitor device health, and installing applications
from only authorized sources.

Figure 3-1 The Mobile Ecosystem

3.5.3 Authentication and Federation Threats
The MTC is a useful reference from the perspective of mobile devices, applications, and networks. In the
context of mobile SSO, specific threats to authentication and federation systems must also be
considered. Table 8-1 in NIST SP 800-63B [10] lists several categories of threats against authenticators:

 theft—stealing a physical authenticator, such as a smart card or U2F device

 duplication—unauthorized copying of an authenticator, such as a password or private key

 eavesdropping—interception of an authenticator secret when in use

 offline cracking—attacks on authenticators that do not require interactive authentication
attempts, such as brute-force attacks on passwords used to protect cryptographic keys

 side-channel attack—exposure of an authentication secret through observation of the
authenticator’s physical characteristics

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 14

 phishing or pharming—capturing authenticator output through impersonation of the RP or IdP

 social engineering—using a pretext to convince the user to subvert the authentication process

 online guessing—attempting to guess passwords through repeated online authentication
attempts with the RP or IdP

 end point compromise—malicious code on the user’s device, which is stealing authenticator
secrets, redirecting authentication attempts to unintended RPs, or otherwise subverting the
authentication process

 unauthorized binding—binding an attacker-controlled authenticator with the user’s account by
intercepting the authenticator during provisioning or impersonating the user in the enrollment
process

These threats undermine the basic assumption that use of an authenticator in an authentication
protocol demonstrates that the user initiating the protocol is the individual referenced by the claimed
user identifier. Mitigating these threats is the primary design goal of MFA, and the FIDO specifications
address many of these threats.

An additional set of threats concerns federation protocols. Authentication threats affect the process of
direct authentication of the user to the RP or IdP, whereas federation threats affect the assurance that
the IdP can deliver assertions that are genuine and unaltered, only to the intended RP. Table 8-1 in NIST
SP 800-63C [11] lists the following federation threats:

 assertion manufacture or modification—generation of a false assertion or unauthorized
modification of a valid assertion

 assertion disclosure—disclosure of sensitive information contained in an assertion to an
unauthorized third party

 assertion repudiation by the IdP—IdP denies having authenticated a user after the fact

 assertion repudiation by the subscriber—subscriber denies having authenticated and performed
actions on the system

 assertion redirect—subversion of the federation protocol flow to enable an attacker to obtain
the assertion or to redirect it to an unintended RP

 assertion reuse—attacker obtains a previously used assertion to establish his own session with
the RP

 assertion substitution—attacker substitutes an assertion for a different user in the federation
flow, leading to session hijacking or fixation

Federation protocols are complex and require interaction among multiple systems, typically under
different management. Implementers should carefully apply best security practices relevant to the
federation protocols in use. Most federation protocols can incorporate security measures to address
these threats, but this may require specific configuration and enabling optional features.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 15

3.6 Systems Engineering
Some organizations use a systems engineering-based approach to plan and implement their IT projects.
Organizations wishing to implement IT systems should develop robust requirements, taking into
consideration the operational needs of each system stakeholder. Standards such as International
Organization for Standardization (ISO)/International Electrotechnical Commission (IEC) ISO/IEC/IEEE
15288:2015, Systems and software engineering—System life cycle processes [12] and NIST SP 800-160,
Systems Security Engineering: Considerations for a Multidisciplinary Approach in the Engineering of
Trustworthy Secure Systems [13] provide guidance for applying security in systems development. With
both standards, organizations can choose to adopt only those sections of the standard that are relevant
to their development approach, environment, and business context. NIST SP 800-160 recommends a
thorough analysis of alternative solution classes accounting for security objectives, considerations,
concerns, limitations, and constraints. This advice applies to both new system developments and
integration of components into existing systems, the focus of this practice guide. Section 4.1, General
Architecture Considerations, may assist organizations with this analysis.

3.7 Technologies
Table 3-2 lists all of the technologies used in this project and provides a mapping among the generic
application term, the specific product used, and the NIST Cybersecurity Framework Subcategory that the
product provides. For a mapping of Cybersecurity Framework Subcategories to security controls, please
refer to Appendix A, Mapping to Cybersecurity Framework Core. Refer to Table A-1 for an explanation of
the Cybersecurity Framework Category and Subcategory codes.

Table 3-2 Products and Technologies

Component Specific Product Used How the Component
Functions in the Build

Applicable
Cybersecurity
Framework
Subcategories

Federation Server Ping Federate 8.2 OAuth 2.0 AS
OIDC provider
SAML 2 IdP

PR.AC-3: Remote
access is managed.

FIDO U2F Server StrongKey Crypto En-
gine (SKCE) 2.0

FIDO U2F server PR.AC-1: Identities and
credentials are man-
aged for authorized
devices and users.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 16

Component Specific Product Used How the Component
Functions in the Build

Applicable
Cybersecurity
Framework
Subcategories

External Authenticator YubiKey Neo FIDO U2F token sup-
porting authentication
over NFC

PR-AC-1: Identities and
credentials are man-
aged for authorized
devices and users.

FIDO UAF Server Nok Nok Labs FIDO
UAF Server

UAF authenticator en-
rollment, authentica-
tion, and transaction
confirmation

PR.AC-1: Identities and
credentials are man-
aged for authorized
devices and users.

Mobile Applications
(including SaaS back-
end)

Custom demo applica-
tions developed by the
build team; Motorola
Solutions Public Safety
Experience (PSX) Cock-
pit, PSX Messenger,
and PSX Mapping 5.2

Provide application
programming inter-
faces (APIs) for mobile
client applications to
access cloud-hosted
services and data; con-
sume OAuth tokens

PR.AC-3: Remote
access is managed.

SSO
Implementing Best
Current Practice

AppAuth Software
Development Kit (SDK)
for iOS and Android

Library used by mobile
applications, providing
an IETF RFC 8252-com-
pliant OAuth 2.0 client
implementation; im-
plements authorization
requests, Proof Key for
Code Exchange (PKCE),
and token refresh

PR.AC-3: Remote
access is managed.

4 Architecture
The NCCoE worked with industry subject matter experts to develop an open, standards-based,
commercially available architecture demonstrating three main capabilities:

 SSO to RP applications using OAuth 2.0 implemented in accordance with RFC 8252 (the OAuth
2.0 for Native Apps BCP)

 identity federation to RP applications using both SAML 2.0 and OIDC 1.0

 MFA to mobile native and web applications using FIDO UAF and U2F

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 17

Though these capabilities are implemented as an integrated solution in this guide, organizational
requirements may dictate that only a subset of these capabilities be implemented. The modular
approach of this architecture is designed to support such use cases.

Additionally, the authors of this document recognize that PSFR organizations will have diverse IT
infrastructures, which may include previously purchased authentication, federation, or SSO capabilities,
and legacy technology. For this reason, Section 4.1 and Appendix C outline general considerations that
any organization may apply when designing an architecture tailored to organizational needs. Section 4.2
follows with considerations for implementing the architecture specifically developed by the NCCoE for
this project.

Organizations are encouraged to read Section 3.2, Section 3.3, Section 3.5, and Appendix B to
understand context for this architecture design.

4.1 General Architectural Considerations
The PSFR community is large and diverse, comprising numerous state, local, tribal, and federal
organizations with individual missions and jurisdictions. PSFR personnel include police, firefighters,
emergency medical technicians, public health officials, and other skilled support personnel. There is no
single management or administrative hierarchy spanning the PSFR population. PSFR organizations
operate in a variety of environments with different technology requirements and wide variations in IT
staffing and budgets.

Cooperation and communication among PSFR organizations at multiple levels is crucial to addressing
emergencies that span organizational boundaries. Examples include coordination among multiple
services within a city (e.g., fire and police services), among different state law enforcement agencies to
address interstate crime, and among federal agencies like the Department of Homeland Security and its
state and local counterparts. This coordination is generally achieved through peer-to-peer interaction
and agreement or through federation structures, such as the National Identity Exchange Federation.
Where interoperability is achieved, it is the result of the cooperation of willing partners rather than
adherence to central mandates.

Enabling interoperability across the heterogeneous, decentralized PSFR user base requires a standards-
based solution; a proprietary solution might not be uniformly adopted and could not be mandated. The
solution must also support identity federation and federated authentication, as user accounts and
authenticators are managed by several different organizations. The solution must also accommodate
organizations of different sizes, levels of technical capabilities, and budgets. Compatibility with the
existing capabilities of fielded identity systems can reduce the barrier to entry for smaller organizations.

Emergency response and other specialized work performed by PSFR personnel often require that they
wear personal protective equipment, such as gloves, masks, respirators, and helmets. This equipment
renders some authentication methods impractical or unusable. Fingerprint scanners cannot be used

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 18

with gloves, authentication using a mobile device camera to analyze the user’s face or iris may be
hampered by masks or goggles, and entering complex passwords on small virtual keyboards is also
impractical for gloved users. In addition, PSFR work often involves urgent and hazardous situations
requiring the ability to quickly perform mission activities like driving, firefighting, and administering
urgent medical aid. Therefore, the solution must support a variety of authenticators in an interoperable
way so that individual user groups can select authenticators suited to their operational constraints.

In considering these requirements, the NCCoE implemented a standards-based architecture and
reference design. Section 4.1.1 through Section 4.1.3 detail the primary standards used, while
Appendix C goes into great depth on architectural consideration when implementing these standards.

4.1.1 SSO with OAuth 2.0, IETF RFC 8252, and AppAuth Open-Source Libraries
SSO enables a user to authenticate once and subsequently access different applications without having
to authenticate again. SSO on mobile devices is complicated by the sandboxed architecture, which
makes it difficult to share the session state with back-end systems between individual applications.
EMM vendors have provided solutions through proprietary SDKs, but this approach requires integrating
the SDK with each individual application and does not scale to a large and diverse population, such as
the PSFR user community.

OAuth 2.0 is an IETF standard that has been widely adopted to provide delegated authorization of
clients accessing representational state transfer interfaces, including mobile applications. OAuth 2.0,
when implemented in accordance with RFC 8252 (the OAuth 2.0 for Native Apps BCP), provides a
standards-based SSO pattern for mobile applications. The OpenID Foundation’s AppAuth libraries [14]
can facilitate building mobile applications in full compliance with IETF RFC 8252, but any mobile
application that follows RFC 8252’s core recommendation of using a shared external user-agent for the
OAuth authorization flow will have the benefit of SSO. OAuth considerations and recommendations are
detailed in Section C.1 of Appendix C.

4.1.2 Identity Federation
SAML 2.0 [4] and OIDC 1.0 [5] are two standards that enable an application to redirect users to an IdP
for authentication and to receive an assertion of the user’s identity and other optional attributes.
Federation is important in a distributed environment like the PSFR community, where user management
occurs in numerous local organizations. Federated authentication relieves users of having to create
accounts in each application that they need to access, and it frees application owners from managing
user accounts and credentials. OIDC is a more recent protocol, but many organizations have existing
SAML deployments. The architecture supports both standards to facilitate adoption without requiring
upgrades or modifications to existing SAML IdPs. Federation considerations and recommendations are
detailed in Section C.2 of Appendix C.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 19

4.1.3 FIDO and Authenticator Types
When considering MFA implementations, PSFR organizations should carefully consider organizationally
defined authenticator requirements. These requirements are detailed in Section C.3 of Appendix C.

FIDO provides a standard framework within which vendors have produced a wide range of interoperable
biometric, hardware, and software authenticators. This will enable PSFR organizations to choose
authenticators suitable to their operational constraints. The FIDO Alliance has published specifications
for two types of authenticators based on UAF and U2F. These protocols operate agnostic of the FIDO
authenticator, allowing PSOs to choose any FIDO-certified authenticator that meets operational
requirements and to implement it with this solution. The protocols, FIDO key registration, FIDO
authenticator attestation, and FIDO deployment considerations are also detailed in Section C.3 of
Appendix C.

4.2 High-Level Architecture
The NCCoE implemented both FIDO UAF and U2F for this project. The high-level architecture varies
somewhat between the two implementations. Figure 4-1 depicts the interactions between the key
elements of the build architecture with the U2F implementation.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 20

Figure 4-1 High-Level U2F Architecture

On the mobile device, the mobile application includes the OpenID Foundation’s AppAuth library, which
streamlines implementation of the OAuth client functionality in accordance with the IETF RFC 8252,
OAuth 2.0 for Native Apps, guidance. AppAuth orchestrates the authorization request flow by using the
device’s native browser capabilities, including in-application browser tabs on devices that support them.
The mobile device also supports the two FIDO authentication schemes, UAF and U2F. UAF typically
involves an internal (on-device) authenticator that authenticates the user directly to the device by using
biometrics, other hardware capabilities, or a software client. U2F typically involves an external hardware
authenticator token, which communicates with the device over NFC or Bluetooth.

Figure 4-2 shows the corresponding architecture view with the FIDO UAF components.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 21

Figure 4-2 High-Level UAF Architecture

The SaaS provider hosts application servers that provide APIs consumed by mobile applications, as well
as an OAuth AS. The browser on the mobile device connects to the AS to initiate the OAuth
authorization code flow. The AS redirects the browser to the IdP of the user’s organization to
authenticate the user. Once the user has authenticated, the AS will issue an access token, which is

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 22

returned to the mobile application through a browser redirect and can be used to authorize requests to
the application servers.

The user’s IdP includes a federation server that implements SAML or OIDC, directory services containing
user accounts and attributes, and a FIDO authentication service that can issue authentication challenges
and validate the responses that are returned from FIDO authenticators. The FIDO authentication service
may be built into the IdP but is more commonly provided by a separate server.

A SaaS provider may provide multiple applications, which may be protected by the same AS. For
example, for our build Motorola Solutions provided both the PSX Mapping and PSX Messaging
applications, which were protected by a shared AS. Users may also use services from different SaaS
providers, which would have separate ASes. This build architecture can provide SSO between
applications hosted by a single SaaS provider as well as across applications provided by multiple SaaS
vendors.

Support for these two scenarios differs between the Android and iOS platforms. When the build team
implemented this project, U2F was not supported on iOS devices, while UAF was supported on both
Android and iOS. The build team has only built and tested the U2F implementation on Android devices.

4.3 Detailed Architecture Flow
The mobile SSO lab implementation demonstrates two authentication flows: one in which the user
authenticates to a SAML IdP with a YubiKey Neo U2F token and a PIN, and one in which the user
authenticates to an OIDC IdP by using UAF with a fingerprint. These pairings of federation and
authentication protocols are purely arbitrary; U2F could just as easily be used with OIDC, for example.

4.3.1 SAML and U2F Authentication Flow
The authentication flow using SAML and U2F is depicted in Figure 4-3. As explained in Section 4.2, at the
time of publication this implementation is not supported on iOS devices. This figure depicts the message
flows among different components on the mobile device or hosted by the SaaS provider or user
organization. In the figure, colored backgrounds differentiate the SAML, OAuth, and FIDO U2F protocol
flows. Prior to this authentication flow, the user must have registered a FIDO U2F token with the IdP,
and the AS and IdP must have exchanged metadata and established an RP trust.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 23

Figure 4-3 SAML and U2F Sequence Diagram

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 24

The detailed steps are as follows:

1. The user unlocks the mobile device. Any form of lock-screen authentication can be used; it is not
directly tied to the subsequent authentication or authorization.

2. The user opens a mobile application that connects to the SaaS provider’s back-end services. The
mobile application determines that an OAuth token is needed. This may occur because the
application has no access or refresh tokens cached or it has an existing token known to be
expired based on token metadata, or it may submit a request to the API server with a cached
bearer token and receive an HTTP 401 status code in the response.

3. The mobile application initiates an OAuth authorization request using the authorization code
flow by invoking the system browser (or an in-application browser tab) with the uniform
resource locator (URL) of the SaaS provider AS’s authorization end point.

4. The browser submits the request to the AS over a Hypertext Transfer Protocol Secure (HTTPS)
connection. This begins the OAuth 2 authorization flow.

5. The AS returns a page that prompts for the user’s email address.

6. The user submits the email address. The AS uses the domain of the email address for IdP
discovery. The user needs to specify the email address only one time; the address is stored in a
cookie in the device browser and will be used to automatically determine the user’s IdP on
subsequent visits to the AS.

7. The AS redirects the device browser to the user’s IdP with a SAML authentication request. This
begins the SAML authentication flow.

8. The IdP returns a login page. The user submits a username and PIN. The IdP validates these
credentials against the directory service. If the credentials are invalid, the IdP redirects back to
the login page with an error message and prompts the user to authenticate again. If the
credentials are valid, the IdP continues to step 9.

9. The IdP submits a “preauth” API request to the StrongKey SKCE server. The preauth request
includes the authenticated username obtained in step 8. This begins the FIDO U2F
authentication process.

10. The SKCE responds with a U2F challenge that must be signed by the user’s registered key in the
U2F token to complete authentication. If the user has multiple keys registered, the SKCE returns
a challenge for each key so that the user can authenticate with any registered authenticator.

11. The IdP returns a page to the user’s browser that includes Google’s JavaScript U2F API and the
challenge obtained from the SKCE in step 10. The user taps a button on the page to initiate U2F
authentication, which triggers a call to the u2f.sign JavaScript function.

12. The u2f.sign function invokes the Google Authenticator application, passing it the challenge, the
appId (typically the domain name of the IdP), and an array of the user’s registered key.

13. Google Authenticator prompts the user to hold the U2F token against the NFC radio of the
mobile device, which the user does.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 25

14. Google Authenticator connects to the U2F token over the NFC channel and sends an applet
selection command to activate the U2F applet on the token. Google Authenticator then submits
a U2F_AUTHENTICATE message to the token.

15. Provided that the token has one of the keys registered at the IdP, it signs the challenge and
returns the signature in an authentication success response over the NFC channel.

16. Google Authenticator returns the signature to the browser in a SignResponse object.

17. The callback script on the authentication web page returns the SignResponse object to the IdP.

18. The IdP calls the “authenticate” API on the SKCE, passing the SignResponse as a parameter.

19. The SKCE validates the signature of the challenge by using the registered public key and verifies
that the appId matches the IdP’s and that the response was received within the configured time-
out. The API returns a response to the IdP, indicating success or failure and any error messages.
This concludes the U2F authentication process; the user has now authenticated to the IdP,
which sets a session cookie.

20. The IdP returns a SAML response indicating the authentication success or failure to the AS
through a browser redirect. If authentication has succeeded, the response will include the user’s
identifier and, optionally, additional attribute assertions. This concludes the SAML
authentication flow. The user is now authenticated to the AS, which sets a session cookie.
Optionally, the AS could prompt the user to approve the authorization request, displaying the
scopes of access being requested at this step.

21. The AS sends a redirect to the browser with the authorization code. The target of the redirect is
the mobile application’s redirect_uri, a link that opens in the mobile application through a
mechanism provided by the mobile OS (e.g., custom request scheme or Android AppLink).

22. The mobile application extracts the authorization code from the URL and submits it to the AS’s
token end point.

23. The AS responds with an access token and, optionally, a refresh token that can be used to obtain
an additional access token when the original token expires. This concludes the OAuth
authorization flow.

24. The mobile application can now submit API requests to the SaaS provider’s back-end services by
using the access token in accordance with the bearer token authorization scheme defined in
RFC 6750, The OAuth 2.0 Authorization Framework: Bearer Token Usage [15].

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 26

4.3.2 OpenID Connect and UAF Authentication Flow
The authentication flow involving OIDC and UAF is depicted in Figure 4-4.

Figure 4-4 OIDC and UAF Sequence Diagram

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 27

Figure 4-4 uses the same conventions and color coding as the earlier SAML/U2F diagram (Figure 4-3) to
depict components on the device, at the SaaS provider, and at the user’s organization. Prior to this
authentication flow, the user must have registered a FIDO UAF authenticator with the IdP, and the AS
must be registered as an OIDC client at the IdP. The detailed steps are listed below. For ease of
comparison, steps that are identical to the corresponding step in Figure 4-3 are shown in italics.

1. The user unlocks the mobile device. Any form of lock-screen authentication can be used; it is not
directly tied to the subsequent authentication or authorization.

2. The user opens a mobile application that connects to the SaaS provider’s back-end services. The
mobile application determines that an OAuth token is needed. This may occur because the
application has no access or refresh tokens cached or it has an existing token known to be
expired based on token metadata, or it may submit a request to the API server with a cached
bearer token and receive an HTTP 401 status code in the response.

3. The mobile application initiates an OAuth authorization request by using the authorization code
flow by invoking the system browser (or an in-application browser tab) with the URL of the SaaS
provider AS’s authorization end point.

4. The in-application browser tab submits the request to the AS over an HTTPS connection. This
begins the OAuth 2 authorization flow.

5. The AS returns a page that prompts for the user’s email address.

6. The user submits the email address. The AS uses the domain of the email address for IdP
discovery. The user needs to specify the email address only one time; the address is stored in a
cookie in the device browser and will be used to automatically determine the user’s IdP on
subsequent visits to the AS.

7. The AS redirects the device browser to the user’s IdP with an OIDC authentication request. This
begins the OIDC authentication flow.

8. The IdP submits a START_OOB_AUTH request to the UAF authentication server. The server
responds with a data structure containing the necessary information for a UAF client to initiate
an Out-of-Band (OOB) authentication, including a transaction identifier linked to the user’s
session at the IdP.

9. The IdP returns an HTTP redirect to the browser. The redirect target URL is an application link
that will pass the OOB data to the Nok Nok Labs Passport application on the device.

10. The Nok Nok Passport application opens and extracts the OOB data from the application link
URL.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 28

11. Passport sends an INIT_OOB_AUTH request to the UAF authentication server, including the OOB
data and a list of authenticators available on the device that the user has registered for use at
the IdP. The server responds with a set of UAF challenges for the registered authenticators.

12. If the user has multiple registered authenticators (e.g., fingerprint and voice authentication),
Passport prompts the user to select which authenticator to use.

13. Passport activates the authenticator, which prompts the user to perform the required steps for
verification. For example, if the selected authenticator is the Android Fingerprint authenticator,
the standard Android fingerprint user interface (UI) overlay will pop over the browser and
prompt the user to scan an enrolled fingerprint. The authenticator UI may be presented by
Passport (for example, the PIN authenticator), or it may be provided by an OS component such
as Apple Touch ID or Face ID.

14. The user completes the biometric scan or other user verification activity. Verification occurs
locally on the device; biometrics and secrets are not transmitted to the server.

15. The authenticator signs the UAF challenge by using the private key that was created during
initial UAF enrollment with the IdP. The authenticator returns control to the Passport
application through an application link with the signed UAF challenge.

16. The Passport application sends a FINISH_OOB_AUTH API request to the UAF authentication
server. The server extracts the username and registered public key and validates the signed
response. The server can also validate the authenticator’s attestation signature and check that
the security properties of the authenticator satisfy the IdP’s security policy. The server caches
the authentication result.

17. The Passport application closes, returning control to the browser, which is redirected to the
“resume SSO” URL at the IdP. This URL is defined on the Ping server to enable multistep
authentication flows and allow the browser to be redirected back to the IdP after completing
required authentication steps with another application.

18. The browser requests the Resume SSO URL at the IdP.

19. The IdP sends a STATUS_OOB_AUTH API request to the UAF authentication server. The UAF
server responds with the success/failure status of the out-of-band authentication and any
associated error messages. (Note: The IdP begins sending STATUS_OOB_AUTH requests
periodically, following step 9 in the flow, and continues to do so until a final status is returned or
the transaction times out.) This concludes the UAF authentication process; the user has now
authenticated to the IdP, which sets a session cookie.

20. The IdP returns an authorization code to the AS through a browser redirect.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 29

21. The AS submits a token request to the IdP’s token end point, authenticating with its credentials
and including the authorization code.

22. The IdP responds with an identification (ID) token and an access token. The ID token includes
the user’s identifier and, optionally, additional attribute assertions. The access token can
optionally be used to request additional user claims at the IdP’s user information end point. This
concludes the OIDC authentication flow. The user is now authenticated to the AS, which sets a
session cookie. Optionally, the AS could prompt for the user to approve the authorization
request, displaying the scopes of access being requested at this step.

23. The AS sends a redirect to the browser with the authorization code. The target of the redirect is
the mobile application’s redirect_uri, a link that opens in the mobile application through a
mechanism provided by the mobile OS (e.g., custom request scheme or Android AppLink).

24. The mobile application extracts the authorization code from the URL and submits it to the AS’s
token end point.

25. The AS responds with an access token and, optionally, a refresh token that can be used to obtain
an additional access token when the original token expires. This concludes the OAuth
authorization flow.

26. The mobile application can now submit API requests to the SaaS provider’s back-end services by
using the access token in accordance with the bearer token authorization scheme.

Both authentication flows end with a single application obtaining an access token to access back-end
resources. At this point, conventional OAuth token life-cycle management would begin. Access tokens
have an expiration time. Depending on the application’s security policy, refresh tokens may be issued
along with the access token and used to obtain a new access token when the initial token expires.
Refresh tokens and access tokens can continue to be issued in this manner for as long as the security
policy allows. When the current access token has expired and no additional refresh tokens are available,
the mobile application would submit a new authorization request to the AS.

Apart from obtaining an access token, the user has established sessions with the AS and IdP that can be
used for SSO.

Implementation details for this scenario were slightly different on iOS and Android devices. On Android
devices, a Chrome Custom Tab was used as the user-agent. On iOS, however, the team encountered
issues using the custom tabs implementation in iOS 12 (provided by the ASWebAuthenticationSession
API) in conjunction with Passport. At step 17 in the above sequence, where the Passport application
should close and control should return to the in-application browser tab, instead a second Safari
window opened, and the user was prompted again to authenticate using Passport. The team
determined that ASWebAuthenticationSession did not seem to support opening a different application
like Passport and then returning to the same ASWebAuthenticationSession instance once the other

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 30

application closes. This issue was resolved by configuring AppAuth to use Safari instead of
ASWebAuthenticationSession.

4.4 Single Sign-On with the OAuth Authorization Flow
When multiple applications invoke a common user-agent to perform the OAuth authorization flow, the
user-agent maintains the session state with the AS and IdP. In the build architecture, this can enable SSO
in two scenarios.

In the first case, assume that a user has launched a mobile application, been redirected to an IdP to
authenticate, and completed the OAuth flow to obtain an access token. Later, the user launches a
second application that connects to the same AS used by the first application. The application will
initiate an authorization request using the same user-agent as the first application. Provided that the
user has not logged out at the AS, this request will be sent with the session cookie that was established
when the user authenticated in the previous authorization flow. The AS will recognize the user’s active
session and issue an access token to the second application without requiring the user to authenticate
again.

In the second case, again assume that the user has completed an OAuth flow, including authentication
to an IdP, while launching the first application. Later, the user launches a second application that
connects to an AS that is different from the first application. Again, the second application initiates an
authorization request using the same user-agent as the first application. The user has no active session
with the second AS, so the user-agent is redirected to the IdP to obtain an authentication assertion.
Provided that the user has not logged out at the IdP, the authentication request will include the
previously established session cookie, and the user will not be required to authenticate again at the IdP.
The IdP will return an assertion to the AS, which will then issue an access token to the second
application.

This architecture can also provide SSO across native and web applications. If the web application is an RP
to the same SAML or OIDC IdP used in the authentication flow described above, the application will
redirect the browser to the IdP and resume the user’s existing session without the need to
reauthenticate, provided that the browser used to access the web application is the same one used in
the authorization flow described above. For example, if a Google Chrome Custom Tab is used in the
native-application OAuth flow, accessing the web application in Chrome will provide a shared cookie
store and SSO. If the web application uses the OAuth 2.0 implicit grant, SSO could follow either of the
above workflows, depending on whether the user is already authenticated at the AS used by the
application.

When applications use embedded web views instead of the system browser or in-application tabs for
the OAuth authorization flow, each individual application’s web view has its own cookie store, so there
is no continuity of the session state as the user transitions from one application to another, and the user
must authenticate each time.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 31

4.5 Application Developer Perspective of the Build
The following paragraphs provide takeaways from an application developer’s perspective regarding the
experience of the build team, inclusive of FIDO, the AppAuth library, PKCE, and Chrome Custom Tabs.

AppAuth was integrated as described in Section C.1 of Appendix C. From an application developer
perspective, the primary emphasis in the build was integrating AppAuth. The authentication technology
was basically transparent to the developer. In fact, the native application developers for this project had
no visibility to the FIDO U2F or UAF integration. This transparency was achieved through the AppAuth
pattern of delegating the authentication process to the in-application browser tab capability of the OS.
Other application developer effects are listed below:

 Several pieces of information must be supplied by an application in the OAuth authorization
request, such as the scope and the client ID, which an OAuth AS might use to apply appropriate
authentication policy. These details are obtained during the OAuth client registration process
with the AS.

 The ability to support multiple IdPs without requiring any hard-coding of IdP URLs in the
application itself was achieved by using Hypertext Markup Language (HTML) forms hosted by
the IdP to collect information from end users (e.g., domain) during login, which was used to
perform IdP discovery.

4.6 Identity Provider Perspective of the Build
The IdP is responsible for account and attribute creation and maintenance, as well as credential
provisioning, management, and deprovisioning. Some IdP concerns for this architecture are listed
below:

 Enrollment/registration of authenticators: IdPs should consider the enrollment process and life-
cycle management for MFA. For this NCCoE project, FIDO UAF enrollment was launched by the
user via tapping a native enrollment application (Nok Nok Labs’ Passport application). During
user authentication, the same application (Passport) was invoked programmatically (via
AppLink) to perform FIDO authentication. In a production implementation, the IdP would need
to put processes in place to enroll, retire, or replace authenticators when needed. A process for
responding when authenticators are lost or stolen is particularly important to prevent
unauthorized access.

 For UAF, a FIDO UAF client must be installed (e.g., we installed Nok Nok Labs’ NNL Passport).

 For U2F, download and install Google Authenticator (or equivalent) because mobile browsers do
not support FIDO U2F 1.1 natively (as do some desktop browsers). This situation is evolving with
ratification of the World Wide Web Consortium’s Web Authentication (WebAuthn) standard
[16] and mobile browser support for it. For implementations supporting U2F integration in the
browser, such as the one described in this practice guide, Google Authenticator is still required

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 32

on Android devices. For implementations using WebAuthn, native browser support may
eliminate the need for Google Authenticator.

4.7 Token and Session Management
RP application owners have two separate areas of concern when it comes to token and session
management. They have authorization tokens to manage on the client side and identity tokens/sessions
to receive and manage from the IdP side. Each of these functions has its own separate concerns and
requirements.

When dealing with the native application’s access to RP application data, RP operators need to make
sure that appropriate authorization is in place. The architecture in Section 4.2 uses OAuth 2.0 and
authorization tokens for this purpose, following the guidance from IETF RFC 8252. Native-application
clients present a special challenge, as mentioned earlier, especially when it comes to protecting the
authorization code being returned to the client. To mitigate a code interception threat, RFC 8252
requires that both clients and servers use PKCE for public native-application clients. ASes should reject
authorization requests from native applications that do not use PKCE. The lifetime of the authorization
tokens depends on the use case, but the general recommendation from the OAuth working group is to
use short-lived access tokens and long-lived refresh tokens. The reauthentication requirements in NIST
SP 800-63B [10] can be used as guidance for maximum refresh token lifetimes at each authenticator
assurance level. All security considerations from RFC 8252 apply here as well, such as making sure that
attackers cannot easily guess any of the token values or credentials.

The RP may directly authenticate the user, in which case all of the current best practices for web session
security and protecting the channel with Transport Layer Security (TLS) apply. However, if there is
delegated or federated authentication via a third-party IdP, then the RP must also consider the
implications for managing the identity claims received from the IdP, whether it be an ID token from an
OIDC provider or a SAML assertion from a SAML IdP. This channel is used for authentication of the user,
which means that potential PII may be obtained. Care must be taken to obtain user consent prior to
authorization for release and use of this information in accordance with relevant regulations. If OIDC is
used for authentication to the RP, then all of the OAuth 2.0 security applies again here. In all cases, all
channels between parties must be protected with TLS encryption.

5 Security Characteristic Analysis
The purpose of the security characteristic analysis is to understand the extent to which the project
meets its objective of demonstrating MFA and mobile SSO for native and web applications. In addition, it
seeks to document the security benefits and drawbacks of the example solution.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 33

5.1 Assumptions and Limitations
This security characteristics analysis is focused on the specific design elements of the build, consisting of
MFA, SSO, and federation implementation. It discusses some elements of application development, but
only the aspects that directly interact with the SSO implementation. It does not focus on potential
underlying vulnerabilities in OSes, application run times, hardware, or general secure coding practices. It
is assumed that risks to these foundational components are managed separately (e.g., through asset and
patch management). As with any implementation, all layers of the architecture must be appropriately
secured, and it is assumed that implementers will adopt standard security and maintenance practices to
the elements not specifically addressed here.

This project did not include a comprehensive test of all security components or “red team” penetration
testing or adversarial emulation. Cybersecurity is a rapidly evolving field where new threats and
vulnerabilities are continually discovered. Therefore, this security guidance cannot be guaranteed to
identify every potential weakness of the build architecture. It is assumed that implementers will follow
risk management procedures as outlined in the NIST Risk Management Framework.

5.2 Threat Analysis
The following subsections describe how the build architecture addresses the threats discussed in
Section 3.5.

5.2.1 Mobile Ecosystem Threat Analysis
In Section 3.5.2, we introduced the MTC, described the 32 categories of mobile threats that it covers,
and highlighted the three categories that this practice guide addresses: Vulnerable Applications,
Authentication: User or Device to Network, and Authentication: User or Device to Remote Service.

At the time of this writing, these categories encompass 18 entries in the MTC. However, the MTC is a
living catalog, which is continually being updated. Instead of addressing each threat, we describe in
general how these types of threats are mitigated by the architecture laid out in this practice guide:

 Use encryption for data in transit: The IdP and AS enforce HTTPS encryption by default, which
the application is required to use during SSO authentication.

 Use newer mobile platforms: Volume C of this guide (NIST SP 1800-13C) calls for using at least
Android 5.0 or iOS 8.0 or newer, which mitigates weaknesses of older versions (e.g., applications
can access the system log in Android 4.0 and older).

 Use built-in browser features: The AppAuth for Android library utilizes the Chrome Custom Tabs
feature, which activates the device’s native browser. This allows the application to leverage
built-in browser features, such as identifying and avoiding known malicious web pages. AppAuth
for iOS supports using the SFSafariViewController and SFAuthenticationSession APIs or the Safari
browser.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

https://pages.nist.gov/mobile-threat-catalogue/application.html#vulnerable-applications
https://pages.nist.gov/mobile-threat-catalogue/authentication.html#user-device-network
https://pages.nist.gov/mobile-threat-catalogue/authentication.html#user-device-remote

NIST SP 1800-13B: Mobile Application Single Sign-On 34

 Avoid hard-coded secrets: The AppAuth guidance recommends and supports the use of PKCE.
This allows developers to avoid using a hard-coded OAuth client secret.

 Avoid logging sensitive data: The AppAuth library, which handles the OAuth 2 flow, does not log
any sensitive data.

 Use sound authentication practices: By using SSO, the procedures outlined in this guide allow
application developers to rely on the IdP’s implementation of authentication practices, such as
minimum length and complexity requirements for passwords, maximum authentication
attempts, and periodic reset requirements. In addition, the IdP can introduce new
authenticators without any downstream effect to applications.

 Use sound token management practices: Again, this guide allows application developers to rely
on the IdP’s implementation of authorization tokens and good management practices, such as
replay-resistance mechanisms and token expirations.

 Use two-factor authentication: Both FIDO U2F and UAF, as deployed in this build architecture,
provide multifactor cryptographic user authentication. The U2F implementation requires the
user to authenticate with a password or PIN and with a single-factor cryptographic token.
However, the UAF implementation utilizes a key pair stored in the device’s hardware-backed key
store that is unlocked through user verification consisting of a biometric (e.g., fingerprint or
voice match) or a password or PIN.

 Protect cryptographic keys: FIDO U2F and UAF authentication leverage public key cryptography.
In this architecture, U2F private keys are stored external to the mobile device in a hardware-
secure element on a YubiKey Neo. UAF private keys are stored on the mobile device’s hardware-
backed key store. These private keys are never sent to external servers.

 Protect biometric templates: When using biometric authentication mechanisms, organizations
should consider storage and use of user biometric templates. This architecture relies on the
native biometric mechanisms implemented by modern mobile devices and OSes, which verify
biometric templates locally and store them in protected storage.

To fully address these threats and threats in other MTC categories, additional measures should be taken
by all parties involved in the mobile ecosystem: the mobile device user, the enterprise, the network
operator, the application developer, and the OEM. A figure depicting this ecosystem in total is shown in
Section 3.5.2. In addition, the mobile platform stack should be understood in great detail to fully assess
the threats that may be applicable. An illustration of this stack, taken from NISTIR 8144 [9], is shown in
Figure 5-1.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 35

Figure 5-1 Mobile Device Technology Stack

Several tools, techniques, and best practices are available to mitigate these other threats. EMM
software can allow enterprises to manage devices more fully and to gain a better understanding of
device health; one example of this is detecting whether a device has been rooted or jailbroken, which
compromises the security architecture of the entire platform. Application security-vetting software
(commonly known as app-vetting software) can be utilized to detect vulnerabilities in first-party
applications and to discover potentially malicious behavior in third-party applications. Using app-vetting
software in conjunction with EMM software prevents the installation of unauthorized applications and
reduces the attack surface of the platform. For more guidance on these threats and mitigations, refer to
the MTC and NISTIR 8144 [9].

5.2.2 Authentication and Federation Threat Analysis
Section 3.5.3 discussed threats specific to authentication and federation systems, which are cataloged in
NIST SP 800-63-3 [17]. MFA, provided in the build architecture by FIDO U2F and UAF, is designed to
mitigate several authentication risks:

 Theft of physical authenticator: Possessing an authenticator, which could be a YubiKey (in the
case of U2F) or the mobile device itself (in the case of UAF), does not in itself enable an attacker
to impersonate the user to an RP or IdP. Additional knowledge or a biometric factor is needed to
authenticate.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

https://pages.nist.gov/mobile-threat-catalogue/

NIST SP 1800-13B: Mobile Application Single Sign-On 36

 Eavesdropping: Some MFA solutions, including many one-time password (OTP)
implementations, are vulnerable to eavesdropping attacks. FIDO implements cryptographic
authentication, which does not involve transmission of secrets over the network.

 Social engineering: A typical social engineering exploit involves impersonating a system
administrator or other authority figure under some pretext to convince users to disclose their
passwords over the phone, but this comprises only a single authentication factor.

 Online guessing: Typical password authentication schemes may be vulnerable to online guessing
attacks, although lockout and throttling policies can reduce the risk. Cryptographic
authentication schemes are not vulnerable to online guessing.

FIDO also incorporates protections against phishing and pharming attacks. When a FIDO authenticator is
registered with an RP, a new key pair is created and associated with the RP’s application ID, which is
derived from the domain name in the URL where the registration transaction was initiated. During
authentication, the application ID is again derived from the URL of the page that is requesting
authentication, and the authenticator will sign the authentication challenge only if a key pair has been
registered with the matching application ID. The FIDO Facet specification enables sites to define a list of
domain names that should be treated as a single application ID to accommodate service providers that
span multiple domain names, such as google.com and gmail.com.

The application ID verification effectively prevents the most common type of phishing attack, in which
the attacker creates a new domain and tricks users into visiting that domain instead of an intended RP
where the user has an account. For example, an attacker might register a domain called “google-
accts.com” and send emails with a pretext to get users to visit the site, such as a warning that the user’s
account will be disabled unless some action is taken. The attacker’s site would present a login screen
identical to Google’s login screen to obtain the user’s password (and OTP, if enabled) credentials and to
use them to impersonate the user to the real Google services. With FIDO, the authenticator would not
have an existing key pair registered under the attacker’s domain, so the user would be unable to return
a signed FIDO challenge to the attacker’s site. If the attacker could convince the user to register the FIDO
authenticator with the malicious site and then sign an authentication challenge, the signed FIDO
assertion could not be used to authenticate to Google because the RP can also verify the application ID
associated with the signed challenge, and it would not be the expected ID.

A more advanced credential theft attack involves an active machine-in-the-middle that can intercept the
user’s requests to the legitimate RP and act as a proxy between the two. To avoid TLS server certificate
validation errors, in this case, the attacker must obtain a TLS certificate for the legitimate RP site that is
trusted by the user’s device. This could be accomplished by exploiting a vulnerability in a commercial
certificate authority; it presents a high bar for the attacker but is not unprecedented. Application ID
validation is not sufficient to prevent this attacker from obtaining an authentication challenge from the
RP, proxying it to the user, and using the signed assertion that they get back from the user to
authenticate to the RP. To prevent this type of attack, the FIDO specifications permit token binding to
protect the signed assertion that is returned to the RP by including information in the assertion about

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 37

the TLS channel over which it is being delivered. If there is a machine in the middle (or a proxy of any
kind) between the user and the RP, the RP can detect it by examining the token-binding message
included in the assertion and comparing it with the TLS channel over which it was received. Token
binding is not widely implemented today, but with finalization of the token-binding specification in RFC
8471 [18] and related RFCs, adoption is expected to increase.

Many of the federation threats discussed in Section 3.5.3 can be addressed by signing assertions,
ensuring their integrity and authenticity. An encrypted assertion can also provide multiple protections,
preventing disclosure of sensitive information contained in the assertion and providing strong
protection against assertion redirection because only the intended RP will have the key required to
decrypt the assertion. Most mitigations to federation threats require application of protocol-specific
guidance for SAML and OIDC. These considerations are not specific to the mobile SSO use case;
application of a security-focused profile of these protocols can mitigate many potential issues.

In addition to RFC 8252, application developers and RP service providers should consult the OAuth 2.0
Threat Model and Security Considerations documented in RFC 6819 [19] for best practices for
implementing OAuth 2.0. The AppAuth library supports a secure OAuth client implementation by
automatically handling details like PKCE. Key protections for OAuth and OIDC include those listed below:

 Requiring HTTPS for protocol requests and responses protects access tokens and authorization
codes and authenticates the server to the client.

 Using the mobile operating system browser or in-application browser tabs for the
authentication flow, in conformance with RFC 8252, protects user credentials from exposure to
the mobile client application or the application service provider.

 OAuth tokens are associated with access scopes, which can be used to limit the authorizations
granted to any given client application, which somewhat mitigates the potential for misuse of
compromised access tokens.

 PKCE, as explained previously, prevents interception of the authorization code by malicious
applications on the mobile device.

5.3 Scenarios and Findings
The overall test scenario on Android devices involved launching the Motorola Solutions PSX Cockpit
mobile application, authenticating, and then subsequently launching additional PSX applications and
validating that the applications could access the back-end APIs and reflected the identity of the
authenticated user. To enable testing of the two authentication scenarios, two separate “user
organization” infrastructures were created in the NCCoE lab, and both were registered as IdPs to the
test PingFederate instance acting as the PSX AS. A “domain selector” was created in PingFederate to
perform IdP discovery based on the domain of the user’s email address, enabling the user to trigger
authentication at one of the IdPs.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 38

On iOS devices, two demonstration applications—a chat application and a mapping application, with
corresponding back-end APIs—were developed to demonstrate SSO. The iOS demo used the same
authentication infrastructure in the NCCoE lab as the Android demo. The demo consisted of launching
either application and authenticating to the IdP that supported OpenID Connect and FIDO UAF, then
launching the additional demo application to demonstrate SSO and access to the back-end APIs with the
identity of the authenticated user.

Prior to testing the authentication infrastructure, users had to register U2F and UAF authenticators at
the respective IdPs. FIDO authenticator registration requires a process that provides high assurance that
the authenticator is in possession of the claimed account holder. In practice, this typically requires a
strongly authenticated session or an in-person registration process overseen by an administrator. In the
lab, a notional enrollment process was implemented with the understanding that real-world processes
would be different and subject to agency security policies. Organizations should refer to NIST SP 800-
63B [10] for specific considerations regarding credential enrollment. From a FIDO perspective, however,
the registration data used would be the same.

Lab testing showed that the build architecture consistently provided SSO between applications. Two
operational findings were uncovered during testing:

 Knowing the location of the NFC radio on the mobile device greatly improves the user
experience when authenticating with an NFC token, such as the YubiKey Neo. The team found
that NFC radios are in different locations on different devices; on the Nexus 6P, for example, the
NFC radio is near the top of the device, near the camera, whereas on the Galaxy S6 Edge, the
NFC radio is slightly below the vertical midpoint of the device. After initial experimentation to
locate the radio, team members could quickly and reliably make a good NFC connection with the
YubiKey by holding it in the correct location. Device manufacturers provide NFC radio location
information via device technical specifications.

 Time synchronization between servers is critical. In lab testing, intermittent authentication
errors were found to be caused by clock drift between the IdP and the AS. This manifested as
the AS reporting JavaScript Object Notation Web Token validation errors when attempting to
validate ID tokens received from the IdP. All participants in the federation scheme should
synchronize their clocks to a reliable Network Time Protocol (NTP) source, such as the NIST NTP
pools [20]. Implementations should allow for a small amount of clock skew—on the order of a
few seconds—to account for the unpredictable latency of network traffic.

This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 39

Appendix A Mapping to Cybersecurity Framework Core
Table A-1 maps informative National Institute of Standards and Technology (NIST) and consensus
security references to the Cybersecurity Framework core Subcategories that are addressed by this
practice guide. The references do not include protocol specifications that are implemented by the
individual products that compose the demonstrated security platforms. While some of the references
provide general guidance that informs implementation of referenced Cybersecurity Framework core
Functions, the references also provide specific recommendations that should be considered when
composing and configuring security platforms and technologies described in this practice guide.

Table A-1 Cybersecurity Framework Categories

Category Subcategory Informative References

Asset Management
(ID.AM): The data, personnel,
devices, systems, and facilities
that enable the organization to
achieve business purposes are
identified and managed
consistent with their relative
importance to business
objectives and the
organization’s risk strategy.

ID.AM-1: Physical devices and
systems within the organization
are inventoried.

CCS CSC 1
COBIT 5 BAI09.01, BAI09.02
ISA 62443-2-1:2009 4.2.3.4
ISA 62443-3-3:2013 SR 7.8
ISO/IEC 27001:2013 A.8.1.1,
A.8.1.2
NIST SP 800-53 Rev. 4 CM-8

Access Control (PR.AC):
Access to assets and associated
facilities is limited to authorized
users, processes, or devices,
and to authorized activities and
transactions.

PR.AC-1: Identities and
credentials are managed for
authorized devices and users.

CCS CSC 16
COBIT 5 DSS05.04, DSS06.03
ISA 62443-2-1:2009 4.3.3.5.1
ISA 62443-3-3:2013 SR 1.1,
SR 1.2, SR 1.3, SR 1.4, SR 1.5,
SR 1.7, SR 1.8, SR 1.9
ISO/IEC 27001:2013 A.9.2.1,
A.9.2.2, A.9.2.4, A.9.3.1, A.9.4.2,
A.9.4.3
NIST SP 800-53 Rev. 4 AC-2,
Information Assurance Family

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 40

Category Subcategory Informative References

PR.AC-3: Remote access is
managed.

COBIT 5 APO13.01, DSS01.04,
DSS05.03
ISA 62443-2-1:2009 4.3.3.6.6
ISA 62443-3-3:2013 SR 1.13,
SR 2.6
ISO/IEC 27001:2013 A.6.2.2,
A.13.1.1, A.13.2.1
NIST SP 800-53 Rev. 4 AC‑17,
AC-19, AC-20

PR.AC-4: Access permissions are
managed, incorporating the
principles of least privilege and
separation of duties.

CCS CSC 12, 15
ISA 62443-2-1:2009 4.3.3.7.3
ISA 62443-3-3:2013 SR 2.1
ISO/IEC 27001:2013 A.6.1.2,
A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4
NIST SP 800-53 Rev. 4 AC-2,
AC-3, AC-5, AC-6, AC-16

Data Security (PR.DS):
Information and records (data)
are managed consistent with
the organization’s risk strategy
to protect the confidentiality,
integrity, and availability of
information.

PR.DS-5: Protections against
data leaks are implemented.

CCS CSC 17
COBIT 5 APO01.06
ISA 62443-3-3:2013 SR 5.2
ISO/IEC 27001:2013 A.6.1.2,
A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2,
A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3,
A.9.4.1, A.9.4.4, A.9.4.5,
A.13.1.3, A.13.2.1, A.13.2.3,
A.13.2.4, A.14.1.2, A.14.1.3
NIST SP 800-53 Rev. 4 AC-4,
AC-5, AC-6, PE-19, PS-3, PS-6,
SC-7, SC-8, SC-13, SC-31, SI-4

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 41

Category Subcategory Informative References

Protective Technology (PR.PT):
Technical security solutions are
managed to ensure the security
and resilience of systems and
assets, consistent with related
policies, procedures, and
agreements.

PR.PT-1: Audit/log records are
determined, documented,
implemented, and reviewed in
accordance with policy.

CCS CSC 14
COBIT 5 APO11.04
ISA 62443-2-1:2009 4.3.3.3.9,
4.3.3.5.8, 4.3.4.4.7, 4.4.2.1,
4.4.2.2, 4.4.2.4
ISA 62443-3-3:2013 SR 2.8,
SR 2.9, SR 2.10, SR 2.11, SR 2.12
ISO/IEC 27001:2013 A.12.4.1,
A.12.4.2, A.12.4.3, A.12.4.4,
A.12.7.1
NIST SP 800-53 Rev. 4 Audit and
Accountability Family

PR.PT-2: Removable media is
protected and its use restricted
according to policy.

COBIT 5 DSS05.02, APO13.01
ISA 62443-3-3:2013 SR 2.3
ISO/IEC 27001:2013 A.8.2.2,
A.8.2.3, A.8.3.1, A.8.3.3,
A.11.2.9
NIST SP 800-53 Rev. 4 MP-2,
MP-4, MP-5, MP-7

PR.PT-3: Access to systems and
assets is controlled,
incorporating the principle of
least functionality.

COBIT 5 DSS05.02
ISA 62443-2-1:2009 4.3.3.5.1,
4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4,
4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7,
4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2,
4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5,
4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8,
4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2,
4.3.3.7.3, 4.3.3.7.4
ISA 62443-3-3:2013 SR 1.1,
SR 1.2, SR 1.3, SR 1.4, SR 1.5,
SR 1.6, SR 1.7, SR 1.8, SR 1.9,
SR 1.10, SR 1.11, SR 1.12,
SR 1.13, SR 2.1, SR 2.2, SR 2.3,
SR 2.4, SR 2.5, SR 2.6, SR 2.7
ISO/IEC 27001:2013 A.9.1.2
NIST SP 800-53 Rev. 4 AC-3,
CM-7

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 42

Category Subcategory Informative References

PR.PT-4: Communications and
control networks are protected.

CCS CSC 7
COBIT 5 DSS05.02, APO13.01
ISA 62443-3-3:2013 SR 3.1,
SR 3.5, SR 3.8, SR 4.1, SR 4.3,
SR 5.1, SR 5.2, SR 5.3, SR 7.1,
SR 7.6
ISO/IEC 27001:2013 A.13.1.1,
A.13.2.1
NIST SP 800-53 Rev. 4 AC-4,
AC-17, AC-18, CP-8, SC-7

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 43

Appendix B Assumptions Underlying the Build
This project is guided by the following assumptions. Implementers are advised to consider whether the
same assumptions can be made based on current policy, process, and IT infrastructure. Where
applicable, appropriate guidance is provided to assist this process as described in the following
subsections.

B.1 Identity Proofing
NIST SP 800-63A, Enrollment and Identity Proofing [21] addresses how applicants can prove their
identities and become enrolled as valid subjects within an identity system. It provides requirements for
processes by which applicants can both proof and enroll at one of three different levels of risk
mitigation, in both remote and physically present scenarios. NIST SP 800-63A contains both normative
and informative material. An organization should use NIST SP 800-63A to develop and implement an
identity proofing plan within its enterprise.

B.2 Mobile Device Security
Mobile devices can add to an organization’s productivity by providing employees with access to business
resources at any time. Not only has this reshaped how typical tasks are accomplished, but organizations
are also devising entirely new ways to work. However, mobile devices may be lost or stolen. A
compromised mobile device may allow remote access to sensitive on-premises organizational data or
any other data that the user has entrusted to the device. Several methods exist to address these
concerns (e.g., using a device lock screen, setting shorter screen timeouts, forcing a device wipe in case
of too many failed authentication attempts). It is up to the organization to implement these types of
security controls, which can be enforced with EMM software (see Section B.4).

NIST SP 1800-4, Mobile Device Security: Cloud and Hybrid Builds [22] demonstrates how to secure
sensitive enterprise data that is accessed by and/or stored on employees’ mobile devices. The NIST
Mobile Threat Catalogue [23] identifies threats to mobile devices and associated mobile infrastructure
to support development and implementation of mobile security capabilities, best practices, and security
solutions to better protect enterprise IT. We strongly encourage organizations implementing this
practice guide in whole or in part to consult these resources when developing and implementing a
mobile device security plan for their organizations.

B.3 Mobile Application Security
The security qualities of an entire platform can be compromised if an application exhibits vulnerable or
malicious behavior. Application security is paramount in ensuring that the security controls
implemented in other architecture components can effectively mitigate threats. The practice of making
sure that an application is secure is known as software assurance (SwA). This is defined as “the level of

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 44

confidence that software is free from vulnerabilities, either intentionally designed into the software or
accidentally inserted at any time during its lifecycle, and that the software functions in the intended
manner” [24].

In an architecture that largely relies on third-party—usually closed-source—applications to handle daily
user functions, good SwA hygiene can be difficult to implement. To address this problem, NIST has
released guidance on how to structure and implement an application-vetting process (also known as app
vetting) [25]. This takes an organization through the following steps:

1. understanding the process for vetting the security of mobile applications

2. planning for implementation of an app-vetting process

3. developing application security requirements

4. understanding types of application vulnerabilities and testing methods used to detect those
vulnerabilities

5. determining whether an application is acceptable for deployment on the organization’s mobile
devices

PSOs should carefully consider their application-vetting needs. Though major mobile-application stores,
such as Apple’s iTunes Store and Google’s Play Store, have vetting mechanisms to find vulnerable and
malicious applications, organizations may have needs beyond these proprietary tools. Per NIST SP 800-
163, Vetting the Security of Mobile Applications [25]:

App stores may perform app vetting processes to verify compliance with their own
requirements. However, because each app store has its own unique, and not always
transparent, requirements and vetting processes, it is necessary to consult current agreements
and documentation for a particular app store to assess its practices. Organizations should not
assume that an app has been fully vetted and conforms to their security requirements simply
because it is available through an official app store. Third party assessments that carry a
moniker of “approved by” or “certified by” without providing details of which tests are
performed, what the findings were, or how apps are scored or rated, do not provide a reliable
indication of software assurance. These assessments are also unlikely to take organization
specific requirements and recommendations into account, such as federal-specific cryptography
requirements.

FirstNet provides an application store specifically geared toward first responder applications. Through
the FirstNet Developer Portal [26], application developers can submit mobile applications for evaluation
against its published development guidelines. The guidelines include security, scalability, and availability.
Compliant applications can be selected for inclusion in the FirstNet App Store. This provides first
responder agencies with a repository of applications that have been tested to a known set of standards.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 45

PSOs should avoid the unauthorized “side loading” of mobile applications that are not subject to
organizational vetting requirements.

B.4 Enterprise Mobility Management
The rapid evolution of mobile devices has introduced new paradigms for work environments, along with
new challenges for enterprise IT to address. EMM solutions, as part of an EMM program, provide a
variety of ways to view, organize, secure, and maintain a fleet of mobile devices. EMM solutions can
vary greatly in form and function, but in general, they use platform-provided application programming
interfaces. Sections 3 and 4 of NIST SP 800-124 [27] describe the two basic approaches of EMM, along
with components, capabilities, and their uses. One approach, commonly known as fully managed,
controls the entire device. Another approach, usually used for bring-your-own-device situations, wraps
or “containerizes” applications inside a secure sandbox so that they can be managed without affecting
the rest of the device.

EMM capabilities can be grouped into four general categories:

1. General policy—centralized technology to enforce security policies of particular interest for
mobile device security, such as accessing hardware sensors like GPS, accessing native OS
services like a web browser or email client, managing wireless networks, monitoring when policy
violations occur, and limiting access to enterprise services if the device is vulnerable or
compromised

2. Data communication and storage—automatically encrypting data in transit between the device
and the organization (e.g., through a virtual private network); strongly encrypting data at rest on
internal and removable media storage; and wiping the device if it is being reissued to another
user, has been lost, or has surpassed a certain number of incorrect unlock attempts

3. User and device authentication—requiring a device password/passcode and parameters for
password strength, remotely restoring access to a locked device, automatically locking the
device after an idle period, and remotely locking the device if needed

4. Applications—restricting which application stores may be used, restricting which applications
can be installed, requiring specific application permissions (such as using the camera or GPS),
restricting use of OS synchronization services, verifying digital signatures to ensure that
applications are unmodified and sourced from trusted entities, and automatically
installing/updating/removing applications according to administrative policies

PSFR organizations will have different requirements for EMM. This document does not prescribe any
specific processes or procedures but assumes that they have been established in accordance with
agency requirements. However, sections of this document refer to the NIST Mobile Threat Catalogue
[23], which does list the use of EMM solutions as mitigations for certain types of threats.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 46

B.5 FIDO Enrollment Process
FIDO provides a framework for users to register a variety of different multifactor authenticators and use
them to authenticate to applications and identity providers. Before an authenticator can be used in an
online transaction, it must be associated with the user’s identity. This process is described in NIST SP
800-63B [10] as authenticator binding. NIST SP 800-63B specifies requirements for binding
authenticators to a user’s account both during initial enrollment and after enrollment, and recommends
that relying parties support binding multiple authenticators to each user’s account to enable alternative
strong authenticators in case the primary authenticator is lost, stolen, or damaged.

Authenticator binding may be an in-person or remote process, but in both cases, the user’s identity and
control over the authenticator being bound to the account must be established. This is related to
identity proofing, discussed in Section B.1, but requires that credentials be issued in a manner that
maintains a tight binding with the user identity that has been established through proofing. PSFR
organizations will have different requirements for identity and credential management; this document
does not prescribe any specific processes or procedures but assumes that they have been established in
accordance with agency requirements.

As an example, in-person authenticator binding could be implemented by having administrators
authenticate with their own credentials and authorize the association of an authenticator with an
enrolling user’s account. Once a user has one enrolled authenticator, it can be used for online
enrollment of other authenticators at the same assurance level or lower. Allowing users to enroll strong
multifactor authenticators based on authentication with weaker credentials, such as username and
password or knowledge-based questions, can undermine the security of the overall authentication
scheme and should be avoided.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 47

Appendix C Architectural Considerations for the Mobile
Application Single Sign-On Build
This appendix details architectural considerations relating to SSO with OAuth 2.0; IETF RFC 8252; and
AppAuth open-source libraries, federation, and types of MFA.

C.1 SSO with OAuth 2.0, IETF RFC 8252, and AppAuth Open-Source
Libraries
As stated above, SSO streamlines the user experience by enabling a user to authenticate once and to
subsequently access different applications without having to authenticate again. SSO on mobile devices
is complicated by the sandboxed architecture, which makes it difficult to share the session state with
back-end systems between individual applications. EMM vendors have provided solutions through
proprietary SDKs, but this approach requires integrating the SDK with each individual application and
does not scale to a large and diverse population, such as the PSFR user community.

OAuth 2.0, when implemented in accordance with RFC 8252 (the OAuth 2.0 for Native Apps Best Current
Practice), provides a standards-based SSO pattern for mobile applications. The OpenID Foundation’s
AppAuth libraries [14] can facilitate building mobile applications in full compliance with IETF RFC 8252,
but any mobile application that follows RFC 8252’s core recommendation of using a shared external
user-agent for the OAuth authorization flow will have the benefit of SSO.

To implement SSO with OAuth 2.0, this practice guide recommends that application developers choose
one of the following options:

 Implement IETF RFC 8252 themselves. This RFC specifies that OAuth 2.0 authorization requests
from native applications should be made only through external user-agents, primarily the user’s
browser. This specification details the security and usability reasons for why this is the case and
how native applications and authorization servers can implement this best practice. RFC 8252
also recommends the use of PKCE, as detailed in RFC 7636 [28], which protects against
authorization code interception attacks.

 Integrate the AppAuth open-source libraries (that implement RFC 8252 and RFC 7636) for
mobile SSO. The AppAuth libraries make it easy for application developers to enable standards-
based authentication, SSO, and authorization to application programming interfaces. This was
the option chosen by the implementers of this build.

When OAuth is implemented in a native application, it operates as a public client; this presents security
concerns with aspects like client secrets and redirected uniform resource identifiers (URIs). The AppAuth
pattern mitigates these concerns and provides several security advantages for developers. The primary
benefit of RFC 8252 is that native applications use an external user-agent (e.g., the Chrome for Android

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 48

web browser) instead of an embedded user-agent (e.g., an Android WebView) for their OAuth
authorization requests.

An embedded user-agent is demonstrably less secure and user-friendly than an external user-agent.
Embedded user-agents potentially allow the client to log keystrokes, capture user credentials, copy
session cookies, and automatically submit forms to bypass user consent. In addition, session information
for embedded user-agents is stored on a per-application basis. This does not allow for SSO functionality,
which users generally prefer and which this practice guide sets out to implement. Recent versions of
Android and iPhone operating systems (iOS) both provide implementations of “in-application browser
tabs” that retain the security benefits of using an external user-agent while avoiding visible context-
switching between the application and the browser; RFC 8252 recommends their use where available.
In-application browser tabs are supported in Android 4.1 and higher and in iOS 9 and higher.

AppAuth also requires that public client applications eschew client secrets in favor of PKCE, which is a
standard extension to the OAuth 2.0 framework. When using the AppAuth pattern, the following steps
are performed:

1. The user opens the client application and initiates a sign-in.

2. The client uses a browser to initiate an authorization request to the AS.

3. The user authenticates to the IdP.

4. The OIDC/SAML flow takes place, and the user authenticates to the AS.

5. The browser requests an authorization code from the AS.

6. The browser returns the authorization code to the client.

7. The client uses its authorization code to request and obtain an access token.

There is a possible attack vector at the end user’s device in this workflow if PKCE is not enabled. During
step 6, so that the client application can receive the authorization code, the AS redirects the browser to
a URI on which the client application is listening. However, a malicious application could register for this
URI and attempt to intercept the code so that it may obtain an access token. PKCE-enabled clients use a
dynamically generated random code verifier to ensure proof of possession for the authorization code. If
the grant is intercepted by a malicious application before being returned to the client, the malicious
application will be unable to use the grant without the client’s secret verifier.

AppAuth also outlines several other actions to consider, such as three types of redirect URIs, native-
application client registration guidance, and reverse domain-name-based schemes. These are supported
and/or enforced with secure defaults in the AppAuth libraries. The libraries are open-source and include
sample code for implementation. In addition, if U2F or UAF is desired, that flow is handled entirely by
the external user-agent, so client applications do not need to implement any of that functionality.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 49

The AppAuth library takes care of several boilerplate tasks for developers, such as caching access tokens
and refresh tokens, checking access-token expiration, and automatically refreshing access tokens. To
implement the AppAuth pattern in an Android application by using the provided library, a developer
needs to perform the following actions:

 Add the Android AppAuth library as a Gradle dependency.

 Add a redirect URI to the Android manifest.

 Add the Java code to initiate the AppAuth flow and to use the access token afterward.

 Register the application’s redirect URI with the AS.

Using the AppAuth library in an iOS application is a similar process:

 Add the AppAuth library by using either Pods or Carthage.

 Configure a custom URL scheme in the info.plist file.

 Update the view controllers and application delegate to initiate the AppAuth flow and to use the
access token afterward.

 Register the application’s redirect URI with the AS.

To implement the AppAuth pattern without using a library, the user will need to follow the general
guidance laid out in RFC 8252, review and follow the operating system-specific guidance in the AppAuth
documentation [14], and adhere to the requirements of both the OAuth 2.0 framework documented in
RFC 6749 [29] and the PKCE.

C.1.1 Attributes and Authorization
Authorization, in the sense of applying a policy to determine the rights and privileges that apply to
application requests, is beyond the scope of this practice guide. OAuth 2.0 provides delegation of user
authorizations to mobile applications acting on their behalf, but this is distinct from the authorization
policy enforced by the application. This guide is agnostic to the specific authorization model (e.g., role-
based access control [RBAC], attribute-based access control [ABAC], capability lists) that applications will
use, and the SSO mechanism documented here is compatible with virtually any back-end authorization
policy.

While applications could potentially manage user roles and privileges internally, federated
authentication provides the capability for the IdP to provide user attributes to RPs. These attributes
might be used to map users to defined application roles or used directly in an ABAC policy (e.g., to
restrict access to sworn law enforcement officers). Apart from authorization, attributes may provide
identifying information useful for audit functions, contact information, or other user data.

In the build architecture, the AS is an RP to the user’s IdP, which is either a SAML IdP or an OIDC
provider. SAML IdPs can return attribute elements in the SAML response. OIDC providers can return

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 50

attributes as claims in the ID token, or the AS can request them from the user information end point. In
both cases, the AS can validate the IdP’s signature of the asserted attributes to ensure their validity and
integrity. Assertions can also optionally be encrypted, which both protects their confidentiality in transit
and enforces audience restrictions because only the intended RP will be able to decrypt them.

Once the AS has received and validated the asserted user attributes, it could use them as issuance
criteria to determine whether an access token should be issued for the client to access the requested
scopes. In the OAuth 2.0 framework, scopes are individual access entitlements that can be granted to a
client application. In addition, the attributes could be provided to the protected resource server to
enable the application to enforce its own authorization policies. Communications between the AS and
protected resource are internal design concerns for the SaaS provider. One method of providing
attributes to the protected resource is for the AS to issue the access token as a JavaScript Object
Notation (JSON) Web Token (JWT) containing the user’s attributes. The protected resource could also
obtain attributes by querying the AS’s token introspection end point, where they could be provided as
part of the token metadata in the introspection response.

C.2 Federation
The preceding section discussed the communication of attributes from the IdP to the AS for use in
authorization decisions. In the build architecture, it is assumed that the SaaS provider may be an RP of
many IdPs supporting different user organizations. Several first responder organizations have their own
IdPs, each managing its own users’ attributes. This presents a challenge if the RP needs to use those
attributes for authorization. Local variations in attribute names, values, and encodings would make it
difficult to apply a uniform authorization policy across the user base. If the SaaS platform enables
sharing of sensitive data between organizations, participants would need some assurance that their
partners were establishing and managing user accounts and attributes appropriately—promptly
removing access for terminated employees and performing appropriate validation before assigning
attributes that enable privileged access. Federations attempt to address this issue by creating common
profiles and policies governing use and management of attributes and authentication mechanisms,
which members are expected to follow. This facilitates interoperability, and members are also typically
audited for compliance with the federation’s policies and practices, enabling mutual trust in attributes
and authentication.

As an example, the National Identity Exchange Federation (NIEF) is a federation serving law enforcement
organizations and networks, including the Federal Bureau of Investigation, the Department of Homeland
Security, the Regional Information Sharing System, and the Texas Department of Public Safety. NIEF has
established SAML profiles for both web-browser and system-to-system use cases, and a registry of
common attributes for users, resources, and other entities. NIEF attributes are grouped into attribute
bundles, with some designated as mandatory, meaning that all participating IdPs must provide those
attributes, and participating RPs can depend on their presence in the SAML response.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 51

The architecture documented in this build guide is fully compatible with NIEF and other federations,
though this would require configuring IdPs and RPs in compliance with the federation’s policies. The use
of SAML IdPs is fully supported by this architecture, as is the coexistence of SAML IdPs and OIDC
providers.

NIST SP 800-63-3 [17] defines Federation Assurance Levels (FALs) and their implementation
requirements. FALs are a measure of the assurance that assertions presented to an RP are genuine and
unaltered, pertain to the individual presenting them, are not subject to replay at other RPs, and are
protected from many additional potential attacks on federated authentication schemes. A high-level
summary of the requirements for FALs 1-3 is provided in Table C-1.

Table C-1 FAL Requirements

FAL Requirement

1 Bearer assertion, signed by IdP

2 Bearer assertion, signed by IdP, and encrypted to RP

3 Holder of key assertion, signed by IdP, and encrypted to RP

IdPs typically sign assertions, and this functionality is broadly supported in available software. For SAML,
the IdP’s public key is provided in the SAML metadata. For OIDC, the public key can be provided through
the discovery end point, if supported; otherwise, the key would be provided to the RP out of band.
Encrypting assertions is also relatively trivial and requires providing the RP’s public key to the IdP. The
build architecture in this guide can support FAL-1 and FAL-2 with relative ease.

The requirement for holder of key assertions makes FAL-3 more difficult to implement. A SAML holder
of key profile exists but has never been widely implemented in a web-browser SSO context. The OIDC
core specification does not include a mechanism for a holder of key assertions; however, the
forthcoming token binding over the Hypertext Transfer Protocol (HTTP) specification [30] and related
RFCs may provide a pathway to supporting FAL-3 in an OIDC implementation.

C.3 Authenticator Types
When considering MFA implementations, PSFR organizations should carefully consider organizationally
defined authenticator requirements. These requirements may include:

 the sensitivity of data being accessed and the commensurate level of authentication assurance
needed

 environmental constraints, such as gloves or masks, that may limit the usability and
effectiveness of certain authentication modalities

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 52

 costs throughout the authenticator life cycle, such as authenticator binding, loss, theft,
unauthorized duplication, expiration, and revocation

 policy and compliance requirements, such as the Health Insurance Portability and Accountability
Act (HIPAA) [31], the Criminal Justice Information System Security Policy [32], or other
organizationally defined requirements

 support of current IT infrastructure, including mobile devices, for various authenticator types

The new, third revision of NIST SP 800-63, Digital Identity Guidelines [17] is a suite of documents that
provide technical requirements and guidance for federal agencies implementing digital identity services,
and it may assist PSFR organizations when selecting authenticators. The most significant difference from
previous versions of NIST SP 800-63 is the retirement of the previous assurance rating system, known as
the Levels of Assurance (LOA), established by Office of Management and Budget (OMB) Memorandum
M-04-04, E-Authentication Guidance for Federal Agencies. In the new NIST SP 800-63-3 guidance, digital
identity assurance is split into three ordinals as opposed to the single ordinal in LOA. The three ordinals
are listed below:

 identity assurance level (IAL)

 authenticator assurance level (AAL)

 FAL

This practice guide is primarily concerned with AALs and how they apply to the reference architecture
outlined in Table 3-2.

The strength of an authentication transaction is measured by the AAL. A higher AAL means stronger
authentication and requires more resources and capabilities by attackers to subvert the authentication
process. We discuss a variety of multifactor implementations in this practice guide. NIST SP 800-63-3
gives us a reference to map the risk reduction of the various implementations recommended in this
practice guide.

The AAL is determined by authenticator type and combination, verifier requirements, reauthentication
policies, and security control baselines, as defined in NIST SP 800-53, Security and Privacy Controls for
Federal Information Systems and Organizations [33]. A summary of requirements at each of the levels is
provided in Table C-2.

A memorized secret (most commonly implemented as a password) satisfies AAL1, but this alone is not
enough to reach the higher levels shown in Table C-2. For AAL2 and AAL3, some form of MFA is
required. MFA comes in many forms. The architecture in this practice guide describes two examples.
One example is a multifactor software cryptographic authenticator, where a biometric authenticator
application is installed on the mobile device—the two factors being possession of the private key and
the biometric. The other example is a combination of a memorized secret and a single-factor

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 53

cryptographic device, which performs cryptographic operations via a direct connection to the user end
point.

Reauthentication requirements also become more stringent for higher levels. AAL1 requires
reauthentication only every 30 days, but AAL2 and AAL3 require reauthentication every 12 hours. At
AAL2, users may reauthenticate by using a single authentication factor, but at AAL3, users must
reauthenticate by using both of their authentication factors. At AAL2, 30 minutes of idle time is allowed,
but only 15 minutes is allowed at AAL3.

For a full description of the different types of multifactor authenticators and AAL requirements, please
refer to NIST SP 800-63B [10].

Table C-2 AAL Summary of Requirements

Requirement AAL1 AAL2 AAL3

Permitted
authenticator types

Memorized Secret;
Lookup Secret;
Out of Band;
Single Factor (SF) One-
Time Password (OTP)
Device;
Multifactor (MF) OTP
Device;
SF Crypto Software;
SF Crypto Device;
MF Crypto Software;
MF Crypto Device

MF OTP Device;
MF Crypto Software;
MF Crypto Device;
or Memorized Secret
plus:
 Lookup Secret
 Out of Band
 SF OTP Device
 SF Crypto

Software
 SF Crypto Device

MF Crypto Device;
SF Crypto Device plus
Memorized Secret;
SF OTP Device plus MF
Crypto Device or
Software;
SF OTP Device plus SF
Crypto Software plus
Memorized Secret

Federal Information
Processing Standard
(FIPS) 140-2
verification

Level 1 (government
agency verifiers)

Level 1 (government
agency authenticators
and verifiers)

Level 2 overall (MF au-
thenticators)
Level 1 overall (verifiers
and SF Crypto Devices)
Level 3 physical secu-
rity (all authenticators)

Reauthentication 30 days 12 hours, or after
30 minutes of inactiv-
ity; MAY use one au-
thentication factor

12 hours, or after
15 minutes of inactiv-
ity; SHALL use both au-
thentication factors

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 54

Requirement AAL1 AAL2 AAL3

Security controls NIST SP 800-53
Low Baseline
(or equivalent)

NIST SP 800-53
Moderate Baseline
(or equivalent)

NIST SP 800-53
High Baseline
(or equivalent)

Machine-in-the-middle
resistance

Required Required Required

Verifier-impersonation
resistance

Not required Not required Required

Verifier-compromise
resistance

Not required Not required Required

Replay resistance Not required Required Required

Authentication intent Not required Recommended Required

Records retention
policy

Required Required Required

Privacy controls Required Required Required

The FIDO Alliance has published specifications for two types of authenticators based on UAF and U2F.
These protocols operate agnostic of the FIDO authenticator, allowing PSOs to choose any FIDO-certified
authenticator that meets operational requirements and to implement it with this solution. As new FIDO-
certified authenticators become available in the marketplace, PSOs may choose to migrate to these new
authenticators if they better meet PSFR needs in their variety of duties.

C.3.1 UAF Protocol
The UAF protocol [2] allows users to register their device to the online service by selecting a local
authentication mechanism, such as swiping a finger, looking at the camera, speaking into the
microphone, or entering a PIN. The UAF protocol allows the service to select which mechanisms are
presented to the user. Once registered, the user simply repeats the local authentication action
whenever they need to authenticate to the service. The user no longer needs to enter their password
when authenticating from that device. UAF also allows experiences that combine multiple
authentication mechanisms, such as fingerprint plus PIN. Data used for local user verification, such as
biometric templates, passwords, or PINs, is validated locally on the device and is not transmitted to the
server. Authentication to the server is performed with a cryptographic key pair, which is unlocked after
local user verification.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 55

C.3.2 U2F Protocol
The U2F protocol [3] allows online services to augment the security of their existing password
infrastructure by adding a strong second factor to user login, typically an external hardware-backed
cryptographic device. The user logs in with a username and password as before and is then prompted to
present the external second factor. The service can prompt the user to present a second-factor device at
any time that it chooses. The strong second factor allows the service to simplify its passwords (e.g., four-
digit PIN) without compromising security. During registration and authentication, the user presents the
second factor by simply pressing a button on a universal serial bus (USB) device or tapping over NFC.

The user can use their FIDO U2F device across all online services that support the protocol. On desktop
operating systems, the Google Chrome and Opera browsers currently support U2F. U2F is also
supported on Android through the Google Authenticator application, which must be installed from the
Play Store.

C.3.3 FIDO 2
The FIDO 2 project comprises a set of related standardization efforts undertaken by the FIDO Alliance
and the World Wide Web Consortium (W3C). The second iteration of the FIDO standards will support
the W3C’s Web Authentication standard [16]. As a W3C recommendation, Web Authentication is
expected to be widely adopted by web browser developers and to provide out-of-the-box FIDO support
without the need to install additional client applications or extensions.

In addition, the proposed FIDO Client-to-Authenticator Protocol (CTAP) standard will support new
authenticator functions, including the ability to set a PIN on authenticators such as YubiKeys. By
requiring a PIN at authentication time, a CTAP-compliant authenticator can provide MFA in a manner
similar to a smart card. This would eliminate the need to pair an external authenticator with an existing
knowledge factor such as username/password authentication against an LDAP database, as was used in
the U2F implementation of this build.

C.3.4 FIDO Key Registration
From the perspective of an IdP, enabling users to authenticate themselves with FIDO-based credentials
requires that users register a cryptographic key with the IdP and associate the registered key with the
username or distinguished name known to the IdP. FIDO registration must be repeated for each
authenticator that the user chooses to associate with their account. FIDO protocols are different from
most authentication protocols in that they permit registering multiple cryptographic keys (from different
authenticators) to use with a single account. This is convenient for end users as it provides a natural
backup solution to lost, misplaced, or forgotten authenticators—users may use any one of their
registered authenticators to access their applications.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 56

The process of a first-time FIDO key registration is fairly simple:

1. A user creates an account for themselves at an application site, or one is created for them as
part of a business process.

2. The user registers a FIDO key with the application through one of the following processes:

a. as part of the account self-creation process

b. upon receiving an email with an invitation to register

c. as part of a registration process, after an authentication process within an organization
application

d. A FIDO authenticator with a temporary, preregistered key is provided so that the user
can strongly authenticate to register a new key with the application, at which point the
temporary key is deleted permanently. Authenticators with preregistered keys may be
combined with shared secrets given/sent to the user out of band to verify their identity
before enabling them to register a new FIDO key with the organization’s application.

e. as part of a custom process local to the IdP

Policy at the organization dictates what might be considered most appropriate for a registration process.

C.3.5 FIDO Authenticator Attestation
To meet AAL requirements, RPs may need to restrict the types of FIDO authenticators that can be
registered and used to authenticate. They may also require assurances that the authenticators in use are
not counterfeit or vulnerable to known attacks. The FIDO specifications include mechanisms that enable
the RP to validate the identity and security properties of authenticators, which are provided in a
standard metadata format.

Each FIDO authenticator has an attestation key pair and certificate. To maintain FIDO’s privacy
guarantees, these attestation keys are not unique for each device but are typically assigned on a
manufacturing batch basis. During authenticator registration, the RP can check the validity of the
attestation certificate and validate the signed registration data to verify that the authenticator
possesses the private attestation key.

For software authenticators, which cannot provide protection for a private attestation key, the UAF
protocol allows for surrogate basic attestation. In this mode, the key pair generated to authenticate the
user to the RP is used to sign the registration data object, including the attestation data. This is
analogous to the use of self-signed certificates for HTTPS in that it does not actually provide
cryptographic proof of the security properties of the authenticator. A potential concern is that the RP
could not distinguish between a genuine software authenticator and a malicious look-alike

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 57

authenticator that could provide registered credentials to an attacker. In an enterprise setting, this
concern could be mitigated by delivering the valid authenticator application using EMM or another
controlled distribution mechanism.

Authenticator metadata would be most important in scenarios where an RP accepts multiple
authenticators with different assurance levels and applies authorization policies based on the security
properties of the authenticators (e.g., whether they provide FIPS 140-2-validated key storage [34]). In
practice, most existing enterprise implementations use a single type of authenticator.

C.3.6 FIDO Deployment Considerations
To support any of the FIDO standards for authentication, some integration needs to happen on the
server side. Depending on how the federated architecture is set up—whether with OIDC or SAML—this
integration may look different. In general, there are two servers where a FIDO server can be integrated:
the AS (also known as the RP) and the IdP.

FIDO Integration at the IdP

Primary authentication already happens at the IdP, so logic follows that FIDO authentication (e.g., U2F,
UAF) would as well. This is the most common and well-understood model for using a FIDO
authentication server and, consequently, there is solid guidance for setting up such an architecture. The
IdP already has detailed knowledge of the user and directly interacts with the user (e.g., during
registration), so it is not difficult to insert the FIDO server into the registration and authentication flows.
In addition, this gives PSOs the most control over the security controls that are used to authenticate
their users. However, there are a few downsides to this approach:

 The PSO must now budget, host, manage, and/or pay for the cost of the FIDO server.

 The only authentication of the user at the AS is the bearer assertion from the IdP, so an
assertion intercepted by an attacker could be used to impersonate the legitimate user at the AS.

FIDO Integration at the AS

Another option is to integrate FIDO authentication at the AS. One benefit of this is that PSOs will not be
responsible for the expenses of maintaining a FIDO server. In addition, an attacker who intercepted a
valid user’s SAML assertion or ID token could not easily impersonate the user because of the
requirement to authenticate to the AS as well. This approach assumes that some mechanism is in place
for tightly binding the FIDO authenticator with the user’s identity, which is a nontrivial task. In addition,
this approach has several downsides:

 Splitting authentication into a two-stage process that spans the IdP and AS is a less well
understood model for authentication, which may lead to subtle issues.

 The AS does not have detailed knowledge of—or direct action with—users, so enrollment is
more difficult.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 58

 Users would have to register their FIDO authenticators at every AS that is federated to their IdP,
which adds complexity and frustration to the process.

 PSOs would lose the ability to enforce which kinds of FIDO token(s) their users utilize.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 59

Appendix D Acronyms
AAL Authenticator Assurance Level
ABAC Attribute-Based Access Control
API Application Programming Interface
AS Authorization Server
BCP Best Current Practice
CJIS Criminal Justice Information Services
CNSS Committee on National Security Systems
CRADA Cooperative Research and Development Agreement
CTAP Client-to-Authenticator Protocol
EMM Enterprise Mobility Management
FAL Federation Assurance Level
FIDO Fast Identity Online
FIPS Federal Information Processing Standard
FirstNet First Responder Network Authority
GPS Global Positioning System
HIPAA Health Insurance Portability and Accountability Act
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IA Information Assurance
IAL Identity Assurance Level
ID Identification
IdP Identity Provider
IEC International Electrotechnical Commission
IETF Internet Engineering Task Force
iOS iPhone Operating System
ISO International Organization for Standardization
IT Information Technology
JSON JavaScript Object Notation
JWT JSON Web Token
LOA Level of Assurance
MF Multifactor
MFA Multifactor Authentication
MMS Multimedia Messaging Service
MSSO Mobile Single Sign-On

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 60

MTC Mobile Threat Catalogue
NCCoE National Cybersecurity Center of Excellence
NFC Near Field Communication
NIEF National Identity Exchange Federation
NIST National Institute of Standards and Technology
NTP Network Time Protocol
OEM Original Equipment Manufacturer
OIDC OpenID Connect
OMB Office of Management and Budget
OOB Out of Band
OS Operating System
OTP One-Time Password
PII Personally Identifiable Information
PIN Personal Identification Number
PKCE Proof Key for Code Exchange
PSCR Public Safety Communications Research Division
PSFR Public Safety and First Responder
PSO Public Safety Organization
PSX Public Safety Experience
RBAC Role-Based Access Control
RCS Rich Communication Services
RFC Request for Comments
RP Relying Party
SaaS Software as a Service
SAML Security Assertion Markup Language
SD Secure Digital
SDK Software Development Kit
SF Single Factor
SIM Subscriber Identity Module
SKCE StrongKey Crypto Engine
SMS Short Message Service
SP Special Publication
SSO Single Sign-On
SwA Software Assurance
TLS Transport Layer Security
U2F Universal Second Factor
UAF Universal Authentication Framework

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 61

UI User Interface
UICC Universal Integrated Circuit Card
URI Uniform Resource Identifier
URL Uniform Resource Locator
USB Universal Serial Bus
USIM Universal Subscriber Identity Module
USSD Unstructured Supplementary Service Data
VoLTE Voice over Long-Term Evolution
W3C World Wide Web Consortium

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13B: Mobile Application Single Sign-On 62

Appendix E References
[1] W. Denniss and J. Bradley, OAuth 2.0 for Native Apps, Best Current Practice 212, Internet

Engineering Task Force (IETF) Network Working Group Request for Comments (RFC) 8252, Oct.
2017. Available: https://www.rfc-editor.org/info/rfc8252.

[2] S. Machani et al., FIDO UAF Architectural Overview: FIDO Alliance Implementation Draft, FIDO
Alliance, Wakefield, Mass., 2017. Available: https://fidoalliance.org/specs/fido-uaf-v1.1-id-
20170202/fido-uaf-overview-v1.1-id-20170202.html.

[3] S. Srinivas et al., Universal 2nd Factor (U2F) Overview: FIDO Alliance Proposed Standard, FIDO
Alliance, Wakefield, Mass., 2017. Available: https://fidoalliance.org/specs/fido-u2f-v1.2-ps-
20170411/fido-u2f-overview-v1.2-ps-20170411.html.

[4] S. Cantor et al., Assertions and Protocols for the OASIS Security Assertion Markup Language
(SAML) V2.0, OASIS Standard, Mar. 2005. Available: https://docs.oasis-
open.org/security/saml/v2.0/saml-core-2.0-os.pdf.

[5] N. Sakimura et al., OpenID Connect Core 1.0 incorporating errata set 1, Nov. 2014. Available:
https://openid.net/specs/openid-connect-core-1_0.html.

[6] Joint Task Force, Guide for Conducting Risk Assessments, National Institute of Standards and
Technology (NIST) Special Publication (SP) 800-30 Revision 1, Gaithersburg, Md., Sept. 2012.
Available: https://doi.org/10.6028/NIST.SP.800-30r1.

[7] Joint Task Force, Risk Management Framework for Information Systems and Organizations: A
System Life Cycle Approach for Security and Privacy, NIST SP 800-37 Revision 2, Gaithersburg,
Md., Feb. 2010. Available: https://doi.org/10.6028/NIST.SP.800-37r2.

[8] C. Johnson et al., Guide to Cyber Threat Information Sharing, NIST SP 800-150, Gaithersburg,
Md., Oct. 2016. Available: https://doi.org/10.6028/NIST.SP.800-150.

[9] C. Brown et al., Assessing Threats to Mobile Devices & Infrastructure: The Mobile Threat
Catalogue, Draft NIST Interagency Report 8144, Gaithersburg, Md., Sept. 2016. Available:
https://nccoe.nist.gov/sites/default/files/library/mtc-nistir-8144-draft.pdf.

[10] P. Grassi et al., Digital Identity Guidelines: Authentication and Lifecycle Management, NIST SP
800-63B, Gaithersburg, Md., June 2017. Available: https://doi.org/10.6028/NIST.SP.800-63b.

[11] P. Grassi et al., Digital Identity Guidelines: Federation and Assertions, NIST SP 800-63C,
Gaithersburg, Md., June 2017. Available: https://doi.org/10.6028/NIST.SP.800-63c.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

https://www.rfc-editor.org/info/rfc8252
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-uaf-overview-v1.1-id-20170202.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-uaf-overview-v1.1-id-20170202.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-overview-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-overview-v1.2-ps-20170411.html
https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://openid.net/specs/openid-connect-core-1_0.html
https://doi.org/10.6028/NIST.SP.800-30r1
https://doi.org/10.6028/NIST.SP.800-37r2
https://doi.org/10.6028/NIST.SP.800-150
https://nccoe.nist.gov/sites/default/files/library/mtc-nistir-8144-draft.pdf
https://doi.org/10.6028/NIST.SP.800-63b
https://doi.org/10.6028/NIST.SP.800-63c

NIST SP 1800-13B: Mobile Application Single Sign-On 63

[12] International Organization for Standardization/International Electrotechnical
Commission/Institute of Electrical and Electronics Engineers, Systems and software
engineering—System life cycle processes, ISO/IEC/IEEE 15288:2015, 2015. Available:
https://www.iso.org/standard/63711.html.

[13] R. Ross et al., Systems Security Engineering: Considerations for a Multidisciplinary Approach in
the Engineering of Trustworthy Secure Systems, NIST SP 800-160, Gaithersburg, Md., Nov. 2016.
Available: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160v1.pdf

[14] AppAuth. AppAuth. Available: https://appauth.io/.

[15] M. Jones and D. Hardt, The OAuth 2.0 Authorization Framework: Bearer Token Usage, IETF
Network Working Group RFC 6750, Oct. 2012. Available: https://www.rfc-
editor.org/info/rfc6750.

[16] D. Balfanz et al., Web Authentication: An API for accessing Public Key Credentials Level 1, W3C
Recommendation, Mar. 2019. Available: https://www.w3.org/TR/webauthn/.

[17] P. Grassi et al., Digital Identity Guidelines, NIST SP 800-63-3, Gaithersburg, Md., June 2017.
Available: https://pages.nist.gov/800-63-3/.

[18] A. Popov et al., The Token Binding Protocol Version 1.0, IETF Network Working Group RFC 8471,
Oct. 2018. Available: https://www.rfc-editor.org/info/rfc8471.

[19] T. Lodderstedt, Ed., et al., OAuth 2.0 Threat Model and Security Considerations, IETF Network
Working Group RFC 6819, Jan. 2013. Available: https://www.rfc-editor.org/info/rfc6819.

[20] NIST. NIST Internet Time Servers. Available: https://tf.nist.gov/tf-cgi/servers.cgi.

[21] P. Grassi et al., Digital Identity Guidelines: Enrollment and Identity Proofing, NIST SP 800-63A,
Gaithersburg, Md., June 2017. Available: https://doi.org/10.6028/NIST.SP.800-63a.

[22] J. Franklin et al., Mobile Device Security: Cloud and Hybrid Builds, NIST SP 1800-4, Gaithersburg,
Md., Nov. 2015. Available: https://www.nccoe.nist.gov/sites/default/files/library/sp1800/mds-
nist-sp1800-4-draft.pdf.

[23] C. Brown et al., Mobile Threat Catalogue, NIST, 2016. Available: https://pages.nist.gov/mobile-
threat-catalogue/.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

https://www.iso.org/standard/63711.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160v1.pdf
https://appauth.io/
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc6750
https://www.w3.org/TR/webauthn/
https://pages.nist.gov/800-63-3/
https://www.rfc-editor.org/info/rfc8471
https://www.rfc-editor.org/info/rfc6819
https://tf.nist.gov/tf-cgi/servers.cgi
https://doi.org/10.6028/NIST.SP.800-63a
https://www.nccoe.nist.gov/sites/default/files/library/sp1800/mds-nist-sp1800-4-draft.pdf
https://www.nccoe.nist.gov/sites/default/files/library/sp1800/mds-nist-sp1800-4-draft.pdf
https://pages.nist.gov/mobile-threat-catalogue/
https://pages.nist.gov/mobile-threat-catalogue/

NIST SP 1800-13B: Mobile Application Single Sign-On 64

[24] Committee on National Security Systems (CNSS), National Information Assurance (IA) Glossary,
CNSS Instruction Number 4009, Apr. 2015. Available: https://rmf.org/wp-
content/uploads/2017/10/CNSSI-4009.pdf.

[25] M. Ogata et al., Vetting the Security of Mobile Applications, NIST SP 800-163 Revision 1,
Gaithersburg, Md., Apr. 2019. Available: https://doi.org/10.6028/NIST.SP.800-163r1

[26] First Responder Network Authority. FirstNet Developer Portal. Available:
https://developer.firstnet.com/firstnet.

[27] M. Souppaya and K. Scarfone, Guidelines for Managing the Security of Mobile Devices in the
Enterprise, NIST SP 800-124 Revision 1, Gaithersburg, Md., June 2013. Available:
https://doi.org/10.6028/NIST.SP.800-124r1.

[28] N. Sakimura et al., Proof Key for Code Exchange by OAuth Public Clients, IETF Network Working
Group RFC 7636, Sept. 2015. Available: https://www.rfc-editor.org/info/rfc7636.

[29] D. Hardt, Ed., The OAuth 2.0 Authorization Framework, IETF Network Working Group RFC 6749,
Oct. 2012. Available: https://www.rfc-editor.org/info/rfc6749.

[30] A. Popov et al., Token Binding over HTTP, IETF Network Working Group RFC 8473, Oct. 2018.
Available: https://www.rfc-editor.org/info/rfc8473.

[31] U.S. Department of Labor, Employee Benefits Security Administration. Fact Sheet: The Health
Insurance Portability and Accountability Act (HIPAA). Available:
https://permanent.access.gpo.gov/gpo10291/fshipaa.html.

[32] Criminal Justice Information Services (CJIS) Security Policy, Version 5.6, U.S. Department of
Justice, Federal Bureau of Investigation, Criminal Justice Information Services Division, June
2017. Available: https://www.fbi.gov/services/cjis/cjis-security-policy-resource-center.

[33] Joint Task Force, Security and Privacy Controls for Federal Information Systems and
Organizations, NIST SP 800-53 Revision 4, Gaithersburg, Md., Jan. 2015. Available:
https://dx.doi.org/10.6028/NIST.SP.800-53r4.

[34] U.S. Department of Commerce. Security Requirements for Cryptographic Modules, Federal
Information Processing Standards (FIPS) Publication 140-2, May 2001. Available:
https://doi.org/10.6028/NIST.FIPS.140-2.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

https://rmf.org/wp-content/uploads/2017/10/CNSSI-4009.pdf
https://rmf.org/wp-content/uploads/2017/10/CNSSI-4009.pdf
https://doi.org/10.6028/NIST.SP.800-163r1
https://developer.firstnet.com/firstnet
https://doi.org/10.6028/NIST.SP.800-124r1
https://www.rfc-editor.org/info/rfc7636
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc8473
https://permanent.access.gpo.gov/gpo10291/fshipaa.html
https://www.fbi.gov/services/cjis/cjis-security-policy-resource-center
https://dx.doi.org/10.6028/NIST.SP.800-53r4
https://doi.org/10.6028/NIST.FIPS.140-2

NIST SPECIAL PUBLICATION 1800-13C

Mobile Application Single
Sign-On:
Improving Authentication for Public Safety First
Responders

Volume C:
How-To Guides

William Fisher
Paul Grassi*
Applied Cybersecurity Division
Information Technology Laboratory

Spike E. Dog
Santos Jha
William Kim*
Taylor McCorkill*
Joseph Portner*
Mark Russell*
Sudhi Umarji
The MITRE Corporation
McLean, Virginia

William C. Barker
Dakota Consulting
Silver Spring, Maryland

*Former employee; all work for this publication was done while at employer.

August 2021

FINAL

The first and second drafts of this publication are available free of charge from
https://www.nccoe.nist.gov/library/mobile-application-single-sign-nist-sp-1800-13-practice-guide

https://www.nccoe.nist.gov/library/mobile-application-single-sign-nist-sp-1800-13-practice-guide

NIST SP 1800-13C: Mobile Application Single Sign-On i

DISCLAIMER
Certain commercial entities, equipment, products, or materials may be identified by name or company
logo or other insignia in order to acknowledge their participation in this collaboration or to describe an
experimental procedure or concept adequately. Such identification is not intended to imply special
status or relationship with NIST or recommendation or endorsement by NIST or NCCoE; neither is it
intended to imply that the entities, equipment, products, or materials are necessarily the best available
for the purpose.

While NIST and the NCCoE address goals of improving management of cybersecurity and privacy risk
through outreach and application of standards and best practices, it is the stakeholder’s responsibility to
fully perform a risk assessment to include the current threat, vulnerabilities, likelihood of a compromise,
and the impact should the threat be realized before adopting cybersecurity measures such as this
recommendation.

National Institute of Standards and Technology Special Publication 1800-13C, Natl. Inst. Stand. Technol.
Spec. Publ. 1800-13C, 159 pages (August 2021), CODEN: NSPUE2

FEEDBACK
As a private-public partnership, we are always seeking feedback on our practice guides. We are
particularly interested in seeing how businesses apply NCCoE reference designs in the real world. If you
have implemented the reference design, or have questions about applying it in your environment,
please email us at psfr-nccoe@nist.gov.

All comments are subject to release under the Freedom of Information Act.

National Cybersecurity Center of Excellence
National Institute of Standards and Technology

100 Bureau Drive
Mailstop 2002

Gaithersburg, Maryland 20899
Email: nccoe@nist.gov

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

mailto:psfr-nccoe@nist.gov
mailto:nccoe@nist.gov

NIST SP 1800-13C: Mobile Application Single Sign-On ii

NATIONAL CYBERSECURITY CENTER OF EXCELLENCE
The National Cybersecurity Center of Excellence (NCCoE), a part of the National Institute of Standards
and Technology (NIST), is a collaborative hub where industry organizations, government agencies, and
academic institutions work together to address businesses’ most pressing cybersecurity issues. This
public-private partnership enables the creation of practical cybersecurity solutions for specific
industries, as well as for broad, cross-sector technology challenges. Through consortia under
Cooperative Research and Development Agreements (CRADAs), including technology partners—from
Fortune 50 market leaders to smaller companies specializing in information technology security—the
NCCoE applies standards and best practices to develop modular, adaptable example cybersecurity
solutions using commercially available technology. The NCCoE documents these example solutions in
the NIST Special Publication 1800 series, which maps capabilities to the NIST Cybersecurity Framework
and details the steps needed for another entity to re-create the example solution. The NCCoE was
established in 2012 by NIST in partnership with the State of Maryland and Montgomery County,
Maryland.

To learn more about the NCCoE, visit https://nccoe.nist.gov. To learn more about NIST, visit
https://www.nist.gov.

NIST CYBERSECURITY PRACTICE GUIDES
NIST Cybersecurity Practice Guides (Special Publication 1800 series) target specific cybersecurity
challenges in the public and private sectors. They are practical, user-friendly guides that facilitate the
adoption of standards-based approaches to cybersecurity. They show members of the information
security community how to implement example solutions that help them align with relevant standards
and best practices and provide users with the materials lists, configuration files, and other information
they need to implement a similar approach.

The documents in this series describe example implementations of cybersecurity practices that
businesses and other organizations may voluntarily adopt. These documents do not describe regulations
or mandatory practices, nor do they carry statutory authority.

ABSTRACT
On-demand access to public safety data is critical to ensuring that public safety and first responder
(PSFR) personnel can deliver the proper care and support during an emergency. This necessitates heavy
reliance on mobile platforms while in the field, which may be used to access sensitive information.
However, complex authentication requirements can hinder the process of providing emergency services,
and any delay—even seconds—can become a matter of life or death. In collaboration with NIST’s Public
Safety Communications Research (PSCR) Division and industry stakeholders, the NCCoE aims to help
PSFR personnel efficiently and securely gain access to mission data via mobile devices and applications.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

https://nccoe.nist.gov/
https://www.nist.gov/

NIST SP 1800-13C: Mobile Application Single Sign-On iii

This practice guide describes a reference design for multifactor authentication (MFA) and mobile single
sign-on (MSSO) for native and web applications, while improving interoperability among mobile
platforms, applications, and identity providers, regardless of the application development platform used
in their construction. This guide discusses major architecture design considerations, explains security
characteristics achieved by the reference design, and maps the security characteristics to applicable
standards and security control families. For parties interested in adopting all or part of the reference
architecture, this guide includes a detailed description of the installation, configuration, and integration
of all components.

KEYWORDS
access control; authentication; authorization; identity; identity management; identity provider; relying
party; single sign-on

ACKNOWLEDGMENTS
We are grateful to the following individuals for their generous contributions of expertise and time.

Name Organization

Donna Dodson* NIST NCCoE

Tim McBride NIST NCCoE

Jeff Vettraino FirstNet

FNU Rajan FirstNet

John Beltz NIST Public Safety Communications Research Lab

Chris Leggett Ping Identity

Paul Madsen Ping Identity

John Bradley Yubico

Adam Migus Yubico

Derek Hanson Yubico

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On iv

Name Organization

Adam Lewis Motorola Solutions

Mike Korus Motorola Solutions

Dan Griesmann Motorola Solutions

Arshad Noor StrongKey

Pushkar Marathe StrongKey

Max Smyth StrongKey

Scott Wong StrongKey

Akhilesh Sah Nok Nok Labs

Avinash Umap Nok Nok Labs

*Former employee; all work for this publication was done while at employer.

The Technology Partners/Collaborators who participated in this build submitted their capabilities in
response to a notice in the Federal Register. Respondents with relevant capabilities or product
components were invited to sign a Cooperative Research and Development Agreement (CRADA) with
NIST, allowing them to participate in a consortium to build this example solution. We worked with:

Technology Partner/Collaborator Build Involvement

Ping Identity Federation Server

Motorola Solutions Mobile Applications

Yubico External Authenticators
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.SP.1800-13.

https://www.pingidentity.com/en.html
https://www.motorolasolutions.com/en_us.html
https://www.yubico.com/

NIST SP 1800-13C: Mobile Application Single Sign-On v

Technology Partner/Collaborator Build Involvement

Nok Nok Labs Fast Identity Online (FIDO) Universal Authentication Frame-
work (UAF) Server

StrongKey FIDO Universal Second Factor (U2F) Server

PATENT DISCLOSURE NOTICE
NOTICE: The Information Technology Laboratory (ITL) has requested that holders of patent claims whose
use may be required for compliance with the guidance or requirements of this publication disclose such
patent claims to ITL. However, holders of patents are not obligated to respond to ITL calls for patents
and ITL has not undertaken a patent search in order to identify which, if any, patents may apply to this
publication.

As of the date of publication and following call(s) for the identification of patent claims whose use may
be required for compliance with the guidance or requirements of this publication, no such patent claims
have been identified to ITL.

No representation is made or implied by ITL that licenses are not required to avoid patent infringement
in the use of this publication.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

https://www.noknok.com/
https://strongkey.com/

NIST SP 1800-13C: Mobile Application Single Sign-On vi

Contents

1.2.1 Usage Scenarios .. 2
1.2.2 Architectural Overview ... 3
1.2.3 General Infrastructure Requirements ... 5

2.1.1 Supporting SSO on Android Devices ... 7
2.1.2 Supporting SSO on iOS Devices ... 8
2.1.3 Supporting FIDO U2F on Android Devices ..10
2.1.4 Supporting FIDO U2F on iOS Devices ..10
2.1.5 Supporting FIDO UAF ..10

2.2.1 How to Install and Configure SSO-Enabled Applications ..11
2.2.2 How to Install and Configure a FIDO U2F Authenticator ..22
2.2.3 How to Install and Configure a FIDO UAF Client ...24

2.3.1 AppAuth Integration for Android ..34
2.3.2 AppAuth Integration for iOS ...40

3.1.1 Software Requirements ..48
3.1.2 Hardware Requirements ...48
3.1.3 Network Requirements ...48

3.2.1 Java Installation...49

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On vii

3.2.2 Java Post Installation ...50
3.2.3 PingFederate Installation ..51
3.2.4 Certificate Installation ...52

3.4.1 How to Configure Direct Authentication ..66
3.4.2 How to Configure SAML Authentication ...75
3.4.3 How to Configure OIDC Authentication ..82
3.4.4 How to Configure the Authentication Policy ..89

4.2.1 Configuring Authentication to the IdP ..101
4.2.2 Configure the SP Connection ..111

4.3.1 Configuring Authentication to the OIDC IdP ...119
4.3.2 Configuring the OIDC Client Connection ...131

5.1.1 Hardware Requirements ...134
5.1.2 Software Requirements ..134

6.1.1 Software Requirements ..137
6.1.2 Hardware Requirements ...138
6.1.3 Network Requirements ...138

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On viii

6.3.1 FIDO U2F Registration in Production ..144

List of Figures
Figure 1-1 Lab Build Architecture ..3

Figure 2-1 Comparison of UAF and U2F Standards ...7

Figure 2-2 SFAuthenticationSession Consent Prompt ..8

Figure 2-3 Safari Transition Prompt ..9

Figure 2-4 FIDO UAF Architectural Overview ... 11

Figure 2-5 PSX Cockpit Setup .. 12

Figure 2-6 PSX Cockpit Setup, Continued... 13

Figure 2-7 PSX Cockpit Group List Selection... 14

Figure 2-8 PSX Cockpit Groups .. 15

Figure 2-9 PSX Cockpit Group List Setup Complete .. 16

Figure 2-10 PSX Cockpit User Interface ... 17

Figure 2-11 PSX Mapping User Interface ... 18

Figure 2-12 PSX Mapping Group Member Information .. 19

Figure 2-13 PSX Messenger User Interface .. 20

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On ix

Figure 2-14 PSX Messenger Messages ... 21

Figure 2-15 FIDO U2F Registration .. 23

Figure 2-16 FIDO U2F Authentication .. 24

Figure 2-17 Nok Nok Labs Tutorial Application Authentication .. 26

Figure 2-18 Nok Nok Labs Tutorial Application Login ... 27

Figure 2-19 FIDO UAF Registration Interface ... 28

Figure 2-20 FIDO UAF Registration QR Code .. 29

Figure 2-21 FIDO UAF Registration Device Flow, Android Device .. 30

Figure 2-22 FIDO UAF Registration Device Flow, iPhone X ... 31

Figure 2-23 FIDO UAF Fingerprint Authenticator, Android Device .. 32

Figure 2-24 FIDO UAF Registration Success ... 33

Figure 2-25 Linked Frameworks and Libraries .. 41

Figure 2-26 Creating a New Run Script Phase .. 42

Figure 2-27 Carthage Run Script .. 42

Figure 2-28 Custom URL Scheme ... 44

Figure 3-1 Access Token Attribute Mapping Framework .. 53

Figure 3-2 Server Roles for AS ... 55

Figure 3-3 Federation Info .. 56

Figure 3-4 AS Settings ... 57

Figure 3-5 Scopes ... 59

Figure 3-6 Access Token Management Instance .. 60

Figure 3-7 Access Token Manager Instance Configuration ... 61

Figure 3-8 Access Token Manager Attribute Contract .. 62

Figure 3-9 OAuth Client Registration, Part 1 .. 63

Figure 3-10 OAuth Client Registration, Part 2 .. 64

Figure 3-11 Create Adapter Instance ... 67

Figure 3-12 FIDO Adapter Settings .. 68

Figure 3-13 FIDO Adapter Contract ... 69

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On x

Figure 3-14 FIDO Adapter Instance Summary .. 70

Figure 3-15 Policy Contract Information .. 71

Figure 3-16 Policy Contract Attributes... 71

Figure 3-17 Create Authentication Policy Contract Mapping .. 72

Figure 3-18 Authentication Policy Contract Fulfillment .. 73

Figure 3-19 Create Access Token Attribute Mapping ... 74

Figure 3-20 Access Token Mapping Contract Fulfillment .. 74

Figure 3-21 Create IdP Connection .. 76

Figure 3-22 IdP Connection Options .. 76

Figure 3-23 IdP Connection General Info ... 77

Figure 3-24 IdP Connection–User-Session Creation ... 78

Figure 3-25 IdP Connection OAuth Attribute Mapping ... 79

Figure 3-26 IdP Connection—Protocol Settings ... 80

Figure 3-27 Policy Contract for SAML RP ... 81

Figure 3-28 Contract Mapping for SAML RP ... 82

Figure 3-29 IdP Connection Type .. 83

Figure 3-30 IdP Connection Options .. 83

Figure 3-31 IdP Connection General Info ... 84

Figure 3-32 IdP Connection Authentication Policy Contract ... 85

Figure 3-33 IdP Connection Policy Contract Mapping... 86

Figure 3-34 IdP Connection OAuth Attribute Mapping ... 87

Figure 3-35 IdP Connection Protocol Settings .. 88

Figure 3-36 IdP Connection Activation and Summary .. 89

Figure 3-37 Authentication Selector Instance .. 90

Figure 3-38 Authentication Selector Details .. 91

Figure 3-39 Selector Result Values .. 92

Figure 3-40 Policy Settings .. 92

Figure 3-41 Authentication Policy ... 93

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On xi

Figure 3-42 Policy Contract Mapping for IdP Connections .. 94

Figure 3-43 Policy Contract Mapping for Local Authentication ... 95

Figure 4-1 Active Directory Users and Computers .. 96

Figure 4-2 Server Configuration .. 97

Figure 4-3 Data Store Type ... 98

Figure 4-4 LDAP Data Store Configuration ... 99

Figure 4-5 Server Roles for SAML IdP .. 100

Figure 4-6 SAML IdP Federation Info ... 101

Figure 4-7 Create Password Credential Validator ... 102

Figure 4-8 Credential Validator Configuration ... 103

Figure 4-9 Password Credential Validator Extended Contract .. 104

Figure 4-10 Password Validator Summary ... 105

Figure 4-11 HTML Form Adapter Instance ... 106

Figure 4-12 Form Adapter Settings.. 107

Figure 4-13 Form Adapter Extended Contract ... 108

Figure 4-14 Create U2F Adapter Instance .. 109

Figure 4-15 U2F Adapter Settings .. 110

Figure 4-16 IdP Authentication Policy ... 111

Figure 4-17 SP Connection Type .. 112

Figure 4-18 SP Connection General Info .. 113

Figure 4-19 SP Browser SSO Profiles ... 114

Figure 4-20 Assertion Identity Mapping .. 115

Figure 4-21 Assertion Attribute Contract ... 115

Figure 4-22 Assertion Attribute Contract Fulfillment ... 116

Figure 4-23 Browser SSO Protocol Settings.. 117

Figure 4-24 OIDC IdP Roles ... 118

Figure 4-25 Create Access Token Manager .. 120

Figure 4-26 Access Token Manager Configuration ... 121

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On xii

Figure 4-27 Access Token Attribute Contract ... 122

Figure 4-28 Access Token Contract Fulfillment .. 123

Figure 4-29 Data Store for User Lookup .. 124

Figure 4-30 Attribute Directory Search .. 125

Figure 4-31 Access Token Contract Fulfillment .. 126

Figure 4-32 Access Token Issuance Criteria.. 127

Figure 4-33 OIDC Policy Creation .. 128

Figure 4-34 OIDC Policy Attribute Contract ... 129

Figure 4-35 OIDC Policy Contract Fulfillment ... 130

Figure 4-36 OIDC Client Configuration ... 132

Figure 6-1 Glassfish SSL Settings ... 142

Figure 7-1 Using Postman to Obtain the ID Token ... 150

Figure 7-2 Authorization Prompt .. 152

Figure 7-3 Token Introspection Request and Response .. 153

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 1

1 Introduction
The following guide demonstrates a standards-based example solution for efficiently and securely
gaining access to mission-critical data via mobile devices and applications. This guide demonstrates
multifactor authentication (MFA) and mobile single sign-on (MSSO) solutions for native and web
applications using standards-based commercially available and open-source products. We cover all of
the products that we employed in our solution set. We do not re-create the product manufacturer’s
documentation. Instead, we provide pointers to where this documentation is available from the
manufacturers. This guide shows how we incorporated the products together in our environment as a
reference implementation of the proposed build architecture for doing MSSO.

Since May 2018, when this project build was initially completed at the NCCoE laboratory, some of the
products used in the build have migrated to new platforms. In addition, new specifications and stand-
ards used by the products have been published and revised. While the general integration concepts
demonstrated in this guide still apply, implementers using newer or different products will have to tailor
their implementation to meet the specific requirements of those products and specifications. Thus, the
implementation details will be different.

Note: This is not a comprehensive tutorial. There are many possible service and security configurations
for these products that are out of scope for this reference solution set.

1.1 Practice Guide Structure
This National Institute of Standards and Technology (NIST) Cybersecurity Practice Guide demonstrates a
standards-based example solution and provides users with the information they need to replicate this
approach to implementing our MSSO build. The example solution is modular and can be deployed in
whole or in part.

This guide contains three volumes:

 NIST Special Publication (SP) 1800-13A: Executive Summary

 NIST SP 1800-13B: Approach, Architecture, and Security Characteristics—what we built and why

 NIST SP 1800-13C: How-To Guides—instructions for building the example solution (you are here)

See Section 2 in Volume B of this guide for a more detailed overview of the different volumes and
sections, and the audiences that may be interested in each.

1.2 Build Overview
The National Cybersecurity Center of Excellence (NCCoE) worked with its build team partners to create a
lab demonstration environment that includes all of the architectural components and functionality
described in Section 4 of Volume B of this build guide. This includes mobile devices with sample

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 2

applications, hardware and software-based authenticators to demonstrate the Fast Identity Online
(FIDO) standards for MFA, and the authentication server and authorization server (AS) components
required to demonstrate the AppAuth authorization flows (detailed in Internet Engineering Task Force
[IETF] Request for Comments [RFC] 8252 [1]) with federated authentication to a Security Assertion
Markup Language (SAML) Identity Provider (IdP) and an OpenID Connect (OIDC) provider. The complete
build includes several systems deployed in the NCCoE lab by StrongKey, Yubico, and Ping Identity as well
as cloud-hosted resources made available by Motorola Solutions and by Nok Nok Labs.

This section of the build guide documents the build process and specific configurations that were used in
the lab.

1.2.1 Usage Scenarios
The build architecture supports three usage scenarios. The scenarios all demonstrate single sign-on
(SSO) among Motorola Solutions Public Safety Experience (PSX) applications and custom-built Apple
iPhone operating system (iOS) demo applications using the AppAuth pattern, but differ in the details of
the authentication process. The three authentication mechanisms are as follows:

 The OAuth AS directly authenticates the user with FIDO Universal Authentication Framework
(UAF); user accounts are managed directly by the service provider.

 The OAuth AS redirects the user to a SAML IdP, which authenticates the user with a password
and FIDO Universal Second Factor (U2F).

 The OAuth AS redirects the user to an OIDC IdP, which authenticates the user with FIDO UAF.

In all three scenarios, once the authentication flow is completed, the user can launch multiple mobile
applications without additional authentication, demonstrating SSO. These three scenarios were chosen
to reflect different real-world implementation options that public safety and first responder (PSFR)
organizations might choose. Larger PSFR organizations may host (or obtain from a service provider) their
own IdPs, enabling them to locally manage user accounts, group memberships, and other user
attributes, and to provide them to multiple relying parties (RPs) through federation. SAML is currently
the most commonly used federation protocol, but OIDC might be preferred for new implementations.
As demonstrated in this build, RPs can support both protocols more or less interchangeably. For smaller
organizations, a service provider might also act in the role of “identity provider of last resort,”
maintaining user accounts and attributes on behalf of organizations.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 3

1.2.2 Architectural Overview
Figure 1-1 shows the lab build architecture.

Figure 1-1 Lab Build Architecture

Figure 1-1 depicts the four environments that interact in the usage scenarios:

 Motorola Solutions cloud—a cloud-hosted environment providing the back-end application
servers for the Motorola Solutions PSX Mapping and Messaging applications, as well as an
OAuth AS that the application servers use to authorize requests from mobile devices

 Nok Nok Labs cloud—a cloud-hosted server running both the Nok Nok Authentication Server
(NNAS) and the Nok Nok Labs Gateway

 NCCoE—the NCCoE lab, including several servers hosted in a vSphere environment running the
IdPs and directory services that would correspond to PSFR organizations’ infrastructure to
support federated authentication to a service provider, like Motorola Solutions. An additional AS
and some demonstration application back ends are also hosted in the NCCoE lab for internal
testing.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 4

 mobile devices connected to public cellular networks with the required client software to
authenticate to, and access, Motorola Solutions back-end applications and the NCCoE lab
systems

The names of the virtual local area networks (VLANs) in the NCCoE lab are meant to depict different
organizations participating in an MSSO scheme:

 SPSD—State Public Safety Department, a PSFR organization with a SAML IdP

 LPSD—Local Public Safety Department, a PSFR organization with an OIDC IdP

 CPSSP—Central Public Safety Service Provider, a software-as-a-service (SaaS) provider serving
the PSFR organizations, analogous to Motorola Solutions

The fictitious .msso top-level domain is simply a reference to the MSSO project. The demonstration
applications hosted in the CPSSP VLAN were used to initially test and validate the federation setups in
the user organization and were later expanded to support the iOS demonstration build.

The arrows in Figure 1-1 depict traffic flows between the three different environments to illustrate the
networking requirements for cross-organizational MSSO flows. This diagram does not depict traffic flows
within environments (e.g., between the IdPs and the Domain Controllers providing directory services).
The depicted traffic flows are described below:

 Mobile device traffic—The PSX client applications on the device connect to the publicly routable
PSX application servers in the Motorola Solutions cloud. The mobile browser also connects to
the Motorola Solutions AS and, in the federated authentication scenarios, the browser is
redirected to the IdPs in the NCCoE lab. The mobile devices use the Pulse Secure Virtual Private
Network (VPN) client to access internal lab services through Network Address Translation (NAT)
addresses established on the pfSense firewall. This enables the use of the internal lab Domain
Name System (DNS) server to resolve the host names under the .msso top-level domain, which
is not actually registered in a public DNS. To support UAF authentication at the lab-hosted OIDC
IdP, the Nok Nok Passport application on the devices also connects to the publicly routable
NNAS instance hosted in the Nok Nok Labs cloud environment.

 Connection to Token Endpoint—The usage scenario where the Motorola Solutions AS redirects
the user to the OIDC IdP in the lab requires the AS to initiate an inbound connection to the IdP’s
Token Endpoint. To enable this, the PingFederate run-time port, 9031, is exposed via NAT
through the NIST firewall. Note that no inbound connection is required in the SAML IdP
integration, as the SAML web browser SSO does not require direct back-channel communication
between the AS and the IdP. SAML authentication requests and responses are transmitted
through browser redirects.

 PingFederate plug-in connection to Nok Nok Application Programming Interfaces (APIs)—To
support UAF authentication, the OIDC IdP includes a PingFederate adapter developed by Nok
Nok Labs that needs to connect to the APIs on the NNAS.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 5

In a typical production deployment, the NNAS would not be directly exposed to the internet; instead,
mobile client interactions with the Authentication Server APIs would traverse a reverse proxy server.
Nok Nok Labs provided a cloud instance of its software as a matter of expedience in completing the lab
build.

Additionally, the use of a VPN client on mobile devices is optional. Many organizations directly expose
their IdPs to the public internet, though some organizations prefer to keep those services internal and
use a VPN to access them. Organizations can decide this based on their risk tolerance, but this build
architecture can function with or without a VPN client on the mobile devices.

1.2.3 General Infrastructure Requirements
Some general infrastructure elements must be in place to support the components of this build guide.
These are assumed to exist in the environment prior to the installation of the architecture components
in this guide. The details of how these services are implemented are not directly relevant to the build.

 DNS—All server names are expected to be resolvable in DNS. This is especially important for
FIDO functionality, as the application identification (App ID) associated with cryptographic keys
is derived from the host name used in application uniform resource locators (URLs).

 Network Time Protocol (NTP)—Time synchronization among servers is important. A clock
difference of five minutes or more is sufficient to cause JavaScript Object Notation (JSON) Web
Token (JWT) validation to fail, for example. All servers should be configured to synchronize time
with a reliable NTP source.

 Certificate Authority (CA)—Hypertext Transfer Protocol Secure (HTTPS) connections should be
used throughout the architecture. Transport Layer Security (TLS) certificates are required for all
servers in the build. If an in-house CA is used to issue certificates, the root and any intermediate
certificates must be provisioned to the trust stores in client mobile devices and servers.

1.3 Typographic Conventions
The following table presents typographic conventions used in this volume.

Typeface/ Symbol Meaning Example

Italics file names and path names,
references to documents
that are not hyperlinks, new
terms, and placeholders

For detailed definitions of terms, see
the NCCoE Glossary.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 6

Typeface/ Symbol Meaning Example

Bold names of menus, options,
command buttons, and
fields

Choose File > Edit.

Monospace command-line input, on-
screen computer output,
sample code examples, and
status codes

mkdir

Monospace Bold command-line user input
contrasted with computer
output

service sshd start

blue text link to other parts of the
document, a web URL, or an
email address

All publications from NIST’s NCCoE
are available at
https://www.nccoe.nist.gov.

2 How to Install and Configure the Mobile Device
This section covers all of the different aspects of installing and configuring the mobile device. There are
several prerequisites and different components that need to work in tandem for the entire SSO
architecture to work.

2.1 Platform and System Requirements
This section covers requirements for mobile devices—both hardware and software—for the SSO and
FIDO authentication components of the architecture to work properly. The two dominant mobile
platforms are Google’s Android and Apple’s iOS. The NCCoE reference architecture incorporates both
iOS and Android devices and applications.

First, for SSO support, the NCCoE reference architecture follows the guidance of the OAuth 2.0 for
Native Apps Best Current Practice (BCP) [1]. That guidance, also known as AppAuth, requires that
developers use an external user-agent (e.g., Google’s Chrome for Android web browser) instead of an
embedded user-agent (e.g., an Android WebView) for their OAuth authorization requests. Because of
this, the mobile platform must support the use of external user-agents.

Second, for FIDO support, this architecture optionally includes two different types of authenticators:
UAF and U2F. The FIDO Specifications Overview presentation [2] explains the difference, as shown in
Figure 2-1.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

https://www.nccoe.nist.gov/

NIST SP 1800-13C: Mobile Application Single Sign-On 7

Figure 2-1 Comparison of UAF and U2F Standards

The following subsections address mobile device requirements to support SSO and FIDO authentication.

2.1.1 Supporting SSO on Android Devices
While it is not strictly required, the BCP recommends that the device provide an external user-agent that
supports “in-application browser tabs,” which Google describes as the Android Custom Tab feature. The
following excerpt is from the AppAuth Android-specific guidance in Appendix B.2 of RFC 8252:

Apps can initiate an authorization request in the browser without the user leaving the app,
through the Android Custom Tab feature which implements the in-app browser tab pattern. The
user's default browser can be used to handle requests when no browser supports Custom Tabs.

Android browser vendors should support the Custom Tabs protocol (by providing an
implementation of the “CustomTabsService” class), to provide the in-app browser tab user
experience optimization to their users. Chrome is one such browser that implements Custom
Tabs.

Any device manufacturer can support Custom Tabs in its Android browser. However, Google
implemented this in its Chrome for Android web browser in September 2015 [3]. Because Chrome is not
part of the operating system (OS) itself but is downloaded from the Google Play Store, recent versions of
Chrome can be used on older versions of Android. In fact, the Chrome Developer website’s page on

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 8

Chrome Custom Tabs [4] states that it can be used on Android Jelly Bean (4.1), which was released in
2012, and up.

To demonstrate SSO, the NCCoE reference architecture utilized the Motorola Solutions PSX App Suite,
which requires Android Lollipop (5.0) or newer.

2.1.2 Supporting SSO on iOS Devices
Apple’s Safari browser is the default external user-agent provided on iOS devices, and iOS has also
supported in-application browser tabs with the SFSafariViewController API [5] since iOS 9. Like Chrome
Custom Tabs, SFSafariViewController provides the functionality of the OS browser without exiting from
the mobile application.

Apple made changes to its in-application browser tab implementation in iOS 11 [6] that impacted SSO
functionality. SFSafariViewController instances created by different applications are now effectively
sandboxed from each other, with no shared cookie store between them. As described in Section 4.4 of
Volume B of this practice guide, the AppAuth pattern depends on shared cookie storage to provide SSO
between applications. Apple introduced a new API called SFAuthenticationSession to provide an in-
application browser tab implementation specifically for authentication with SSO capabilities with access
to the shared Safari cookie store. iOS also prompts for the user’s consent when SFAuthenticationSession
is used. An example of the consent prompt is shown in Figure 2-2.

Figure 2-2 SFAuthenticationSession Consent Prompt

In iOS 12, Apple replaced the SFAuthenticationSession API with ASWebAuthenticationSession [7], which
performs the same functions as SFAuthenticationSession and presents an identical consent prompt. In
lab testing, the build team frequently encountered issues with SFAuthenticationSession where cookies
created in an SFAuthenticationSession spawned by one application were not available in an
SFAuthenticationSession spawned by another application. When this issue occurred, users would be
prompted to authenticate in each application that was launched and SSO did not function properly. The
team has not encountered these issues with ASWebAuthenticationSession, and the SSO capabilities of
in-application browser tabs are much improved in iOS 12.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 9

By default, the AppAuth library for iOS [8] automatically selects an appropriate user-agent based on the
version of iOS installed on the mobile device as shown in Table 2-1.

Table 2-1 AppAuth User-Agent by iOS Version

iOS Version User-Agent

12 and higher ASWebAuthenticationSession

11 SFAuthenticationSession

9 or 10 SFSafariViewController

8 and lower Safari

The build team encountered issues with the FIDO UAF login flow demonstrated in this practice guide
and the iOS in-application browser tab APIs (SFAuthenticationSession and
ASWebAuthenticationSession). In the demo scenario, the login flow begins in the browser, which then
launches the Passport application for user verification and FIDO authentication, and then control is
returned to the browser to complete the authentication flow and return the user to the application.
With ASWebAuthenticationSession, the authentication flow begins successfully in an in-application
browser tab, and the user is redirected to the Passport application to authenticate, but control is not
properly returned to the in-application browser tab when the Passport application closes. See Section
4.3.2 of Volume B of this practice guide for additional details about this issue. The build team speculates
that this issue would generally apply to any login flow that entails launching an external application and
then returning control to an in-application browser tab.

This issue was resolved by overriding the default user-agent selection in the AppAuth library. AppAuth
provides the OIDExternalUserAgentIOSCustomBrowser interface to enable an application to specify the
user-agent that should be used for the login flow. The iOS demo applications were configured to use the
Safari browser instead of an in-application browser tab, which enabled the UAF login flow to succeed.
The user experience with Safari is very similar to that with ASWebAuthenticationSession. The animation
shown when transitioning to the web session is slightly different, and the consent dialogue shown in
Figure 2-2 is not shown. After authentication is completed, however, a different dialogue is displayed,
prompting the user to open the mobile application as shown in Figure 2-3.

Figure 2-3 Safari Transition Prompt

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 10

2.1.3 Supporting FIDO U2F on Android Devices
The device will need the following components for FIDO U2F:

 a web browser compatible with FIDO U2F

 a FIDO U2F client application capable of handling the challenge

 Near Field Communication (NFC) hardware support

Chrome for Android [9] is a U2F-compatible browser. Google has added U2F functionality to the Google
Play Services component of Android [10], so devices running Android 5 and later can natively support
U2F authentication over NFC, Universal Serial Bus (USB), and Bluetooth Low Energy (BLE) with an over-
the-air update to Play Services. To support U2F in the browser, the Google Authenticator application
[11] (available on Android Gingerbread [2.3.3] and up) must also be installed.

2.1.4 Supporting FIDO U2F on iOS Devices
At the time of writing, the U2F login flow demonstrated in this practice guide could not be implemented
on iOS devices. Apple’s Core NFC APIs do not expose required functionality to implement U2F over NFC.
Yubico has published an API enabling the YubiKey Neo to be used for authentication over NFC with an
iOS device, but this implementation uses the one-time password authentication mechanism of the
YubiKey, not the U2F protocol [12]. BLE U2F authenticators can be paired and used with iOS devices, but
their use has been limited. The Google Smart Lock application, which protects Google accounts with U2F
authentication on iOS devices, is the only notable U2F implementation on iOS of which the build team is
aware.

Yubico has announced development of an authenticator with a Lightning adapter, specifically targeting
iOS and Mac devices; and a corresponding mobile software development kit (SDK) for iOS that could
enable U2F authentication in native iOS applications [13]. To enable the AppAuth login flow used in this
practice guide, a U2F-capable browser is also needed. If Apple adds W3C Web Authentication support to
the Safari browser, it may support U2F authentication over Lightning and BLE in the future. Apple has
already added experimental support to the Safari Technology Preview release for Mac OS [14].

2.1.5 Supporting FIDO UAF
Supporting FIDO UAF is fairly similar on Android and iOS devices. The device will need the following
components for FIDO UAF:

 a web browser

 a FIDO UAF client application capable of handling the challenge

 a FIDO UAF authenticator

These components are pictured in Figure 2-4, which is from the FIDO UAF Architectural Overview [15].

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 11

Figure 2-4 FIDO UAF Architectural Overview

While the overview refers to the last two components (client and authenticator) as separate
components, these components can—and often do—come packaged in a single application. The NCCoE
reference architecture utilizes the Nok Nok Passport application for Android [16] and iOS [17] to provide
these two components. In addition to the applications, the device will need to provide some hardware
component to support the FIDO UAF authenticator. For example, for biometric-based FIDO UAF
authenticators, a camera would be needed to support face or iris scanning, a microphone would be
needed to support voice prints, and a fingerprint sensor would be needed to support fingerprint
biometrics. Of course, if a personal identification number (PIN) authenticator is used, a specific
hardware sensor is not required. Beyond the actual input method of the FIDO UAF factor, additional
(optional) hardware considerations for a UAF authenticator include secure key storage for registered
FIDO key pairs, storage of biometric templates, and execution of matching functions (e.g., within
dedicated hardware or on processor trusted execution environments).

2.2 How to Install and Configure the Mobile Applications
This section covers the installation and configuration of the mobile applications needed for various
components of the reference architecture: SSO, FIDO U2F, and FIDO UAF.

2.2.1 How to Install and Configure SSO-Enabled Applications
For SSO-enabled applications, there is no universal set of installation and configuration procedures;
these will vary depending on the design choices of the application manufacturer. For the Android demo,
the NCCoE reference architecture uses the Motorola Solutions PSX App Suite Version 5.4 [18].

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 12

This PSX platform included several applications for the public safety community. Our setup consisted of
three applications: PSX Messenger for text, photo, and video communication; PSX Mapping for shared
location awareness; and PSX Cockpit to centralize authentication and identity information across the
other applications. These applications cannot be obtained from a public venue (e.g., the Google Play
Store); rather, the binaries must be obtained from Motorola Solutions and installed via other means,
such as a Mobile Device Management (MDM) solution or private application store.

For the iOS demo, the team built two iOS demonstration applications—a mapping application called
map-demo and a chat application called chat-demo. These applications were built by using Apple’s
XCode integrated development environment and installed on lab devices using developer certificates.

2.2.1.1 Configuring the PSX Cockpit Application
 Open the Cockpit application. Your screen should look like Figure 2-5.

Figure 2-5 PSX Cockpit Setup

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 13

 For DEVICE SERVICE ID, select a Device Service ID in the range given to you by your
administrator. Note that these details will be provided by Motorola Solutions if you are using
their service offering, or by your administrator if you are hosting the PSX application servers in
your own environment. Each device should be configured with a unique Device Service ID
corresponding to the username from the username range. For example, the NCCoE lab used a
Device Service ID of 22400 to correspond to a username of 2400.

 For SERVER ADDRESS, use the Server Address given to you by your administrator. For example,
the NCCoE lab used a Server Address of uns5455.imw.motorolasolutions.com.

 If a Use SUPL APN checkbox appears, leave it unchecked.

 Tap NEXT. Your screen should look like Figure 2-6.

Figure 2-6 PSX Cockpit Setup, Continued

 Tap SIGN IN.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 14

 Log in with the authentication procedure determined by the AS and IdP policies. Note that if
UAF is used, a FIDO UAF authenticator must be enrolled before this step can be completed. See
Section 2.2.3 for details on FIDO UAF enrollment. After you log in, your screen should look like
Figure 2-7.

Figure 2-7 PSX Cockpit Group List Selection

 Tap Create new list of groups. This is used to select which organizationally defined groups of
users you can receive data updates for in the other PSX applications.

 Tap OKAY. Your screen should look like Figure 2-8.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 15

Figure 2-8 PSX Cockpit Groups

 Check the checkboxes for the groups that you wish to use. Note that it may take a short time for
the groups to appear.

 Tap on the upper-right check mark. Your screen should look like Figure 2-9.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 16

Figure 2-9 PSX Cockpit Group List Setup Complete

 Enter a group list name (e.g., “mylist”), and tap SAVE.

 Tap the upper-right check mark to select the list. Your screen should look like Figure 2-10.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 17

Figure 2-10 PSX Cockpit User Interface

 On the Cockpit screen, you can trigger an emergency (triangle icon in the upper right). Set your
status (drop-down menu under your name); or reselect roles and groups, see configuration, and
sign off (hamburger menu to the left of your name, and then tap username).

 If you pull down your notifications, you should see icons and text indicating Reporting interval:
120 seconds, Signed In: <date> <time>, Connected, and Registered.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 18

2.2.1.2 Configuring the PSX Mapping Application
 Open the Mapping application. You should see the screen shown in Figure 2-11.

Figure 2-11 PSX Mapping User Interface

 Select the Layers icon in the lower-right corner. Group names should appear under Layers.

 Select a group. Your screen should look like Figure 2-12.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 19

Figure 2-12 PSX Mapping Group Member Information

 The locations of the devices that are members of that group should appear as dots on the map.

 Select a device. A pop-up will show the user of the device and icons for phoning and messaging
that user.

 Selecting the Messenger icon for the selected user will take you to the Messenger application,
where you can send a message to the user.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 20

2.2.1.3 Configuring the PSX Messenger Application
 Open the Messenger application. Your screen should look like Figure 2-13.

Figure 2-13 PSX Messenger User Interface

 Your screen should show People and Groups. Select one of them.

 A list of people or groups to which you can send a message should appear. Select one of them.
Your screen should look like Figure 2-14.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 21

Figure 2-14 PSX Messenger Messages

 You are now viewing the messaging window. You can type text for a message and attach a
picture, video, voice recording, or map.

 Tap the Send icon. The message should appear on your screen.

 Tap the Pivot icon in the upper-right corner of the message window. Select Locate, and you will
be taken to the Mapping application with the location of the people or group you selected.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 22

2.2.2 How to Install and Configure a FIDO U2F Authenticator
This section covers the installation and usage of a FIDO U2F authenticator on an Android mobile device.
As explained in Section 2.1.4, the U2F login flow is not supported on iOS devices. The NCCoE reference
architecture utilizes the Google Authenticator application on the mobile device and a Yubico YubiKey
NEO as a hardware token. The application provides an interface between the Chrome browser and the
U2F capabilities built into Play Services and is available on Google’s Play Store [11].

2.2.2.1 Installing Google Authenticator
 On your Android device, open the Play Store application.

 Search for Google Authenticator, and install the application. There is no configuration needed
until you are ready to register a FIDO U2F token with a StrongKey server.

2.2.2.2 Registering the Token
In the architecture that is laid out in this practice guide, there is no out-of-band process to register the
user’s U2F token. This takes place the first time the user tries to log in with whatever SSO-enabled
application they are using. For instance, when using the PSX Cockpit application, once the user tries to
sign into an IdP that has U2F enabled and has successfully authenticated with a username and
password, they will be presented with the screen shown in Figure 2-15.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 23

Figure 2-15 FIDO U2F Registration

Because the user has never registered a U2F token, that is the only option the user sees.

 Click Register, and the web page will activate the Google Authenticator application, which asks
you to use a U2F token to continue (Figure 2-15 above).

 Hold the U2F token to your device, and the token will be registered to your account and you will
be redirected to the U2F login screen again.

2.2.2.3 Authenticating with the Token
Now, because the system has a U2F token on file for the user, the user has the option to authenticate.

 Click Authenticate (Figure 2-16), and the Google Authenticator application will be activated
once more.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 24

 Hold the U2F token to your device, and then the authentication will be successful and the SSO
flow will continue.

Figure 2-16 FIDO U2F Authentication

2.2.3 How to Install and Configure a FIDO UAF Client
This section covers the installation and usage of a FIDO UAF client on the mobile device. Any FIDO UAF
client can be used, but the NCCoE reference architecture utilizes the Nok Nok Passport application
(hereafter referred to as “Passport”). The Passport application functions as the client-side UAF
application and is available on Google’s Play Store [16] and Apple’s App Store [17]. The following excerpt
is from the Play Store page:

Passport from Nok Nok Labs is an authentication app that supports the Universal Authentication
Framework (UAF) protocol from the FIDO Alliance (www.fidoalliance.org).

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

http://www.fidoalliance.org/

NIST SP 1800-13C: Mobile Application Single Sign-On 25

Passport allows you to use out-of-band authentication to authenticate to selected websites on a
laptop or desktop computer. You can use the fingerprint sensor on FIDO UAF-enabled devices
(such as the Samsung Galaxy S® 6, Fujitsu Arrows NX, or Sharp Aquos Zeta) or enter a simple PIN
on non-FIDO enabled devices. You can enroll your Android device by using Passport to scan a QR
code displayed by the website, then touch the fingerprint sensor or enter a PIN. Once enrolled,
you can authenticate using a similar method. Alternatively, the website can send a push
notification to your Android device and trigger the authentication.

This solution lets you use your Android device to better protect your online account, without
requiring passwords or additional hardware tokens.

In our reference architecture, we used a Quick Response (QR) code to enroll the device onto Nok Nok
Labs’ test server.

2.2.3.1 Installing Passport on Android
 On your Android device, open the Play Store application.

 Search for Nok Nok Passport, and install the application. There is no configuration needed until
you are ready to enroll the device with a Nok Nok Labs server.

Normally, the user will never need to open the Passport application during authentication; it will
automatically be invoked by the SSO-enabled application (e.g., PSX Cockpit). Instead of entering a
username and password into a Chrome Custom Tab, the user will be presented with the Passport screen
to use the user’s UAF credential.

2.2.3.2 Installing Passport on iOS
 On your iOS device, open the App Store application.

 Search for Nok Nok Passport, and install the application. There is no configuration needed until
you are ready to enroll the device with a Nok Nok Labs server.

As with the Android application, the Passport application for iOS is invoked automatically during login
with a UAF-enabled server.

2.2.3.3 Enrolling the Device
This section details the steps to enroll a device to an NNAS. First, you need a device that has Passport
installed. Second, you need to use another computer (preferably a desktop or laptop) to interact with
your NNAS web interface.

Note: Users are not authenticated during registration. We are using the “tutorial” application provided
with the NNAS. This sample implementation does not meet the FIDO requirement of authentication prior

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 26

to registration. The production version of the NNAS may require additional steps and may have a
different interface.

Screenshots that demonstrate the enrollment process are shown in Figure 2-17 through Figure 2-24.

 First, use your computer to navigate to the NNAS web interface. You will be prompted for a
username and password; enter your administrator credentials and click Log In (Figure 2-17).

Figure 2-17 Nok Nok Labs Tutorial Application Authentication

 Once you have logged in to the NNAS as an administrator, you need to identify which user you
want to manage. Enter the username and click Login (Figure 2-18).

Note: As stated above, this is the tutorial application, so it prompts for only a username, not a
password. A production environment would require user authentication.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 27

Figure 2-18 Nok Nok Labs Tutorial Application Login

 Once you have selected the user, you will need to start the FIDO UAF registration process. To
begin, click Register (Figure 2-19).

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 28

Figure 2-19 FIDO UAF Registration Interface

 You will see a window with a QR code and a countdown (Figure 2-20). You have three minutes
to finish the registration process with your device.

 Once the QR image appears, launch the Passport application on the phone. The Passport
application activates the device camera to enable capturing the QR code by centering
the code in the square frame in the middle of the screen (Figure 2-21).

 Once the QR code is scanned, the application prompts the user to select the type of ver-
ification (fingerprint, PIN, etc.) to use (Figure 2-21). The selections may vary based on
the authenticator modules installed on the device. Figure 2-21 shows the Passport appli-
cation on an Android device. Figure 2-22 shows the same flow on an iOS device. On iOS
devices that support Face ID, such as the iPhone X, Face ID is available as a user verifica-
tion option.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 29

Figure 2-20 FIDO UAF Registration QR Code

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 30

Figure 2-21 FIDO UAF Registration Device Flow, Android Device

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 31

Figure 2-22 FIDO UAF Registration Device Flow, iPhone X

 The user is then prompted to perform user verification with the selected method. In the
example shown in Figure 2-23, a fingerprint authenticator is registered. The user is prompted for
a fingerprint scan to complete registration. The fingerprint authenticator uses a fingerprint
previously registered in the Android screen-lock settings. If a PIN authenticator were registered,
the user would be prompted to set a PIN instead.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 32

Figure 2-23 FIDO UAF Fingerprint Authenticator, Android Device

 If user verification is successful, then a new UAF key pair is generated, the public key is sent to
the server, and registration is completed (Figure 2-24).

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 33

Figure 2-24 FIDO UAF Registration Success

2.3 How Application Developers Must Integrate AppAuth for SSO
Application developers can easily integrate AppAuth to add SSO capabilities to their applications. The
first step to doing this is reading through the documentation on GitHub for AppAuth for Android [19] or
iOS [8]. After doing so, an application developer can begin the integration of AppAuth. The degree of
this integration can vary—for instance, you may choose to utilize user attributes to personalize the

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 34

user’s application experience. The following sections describe AppAuth integration for Android and iOS
applications.

For either platform, the mobile application must be registered with the OAuth AS and given a client ID as
described in Section 3.3. The client ID will be needed when building the mobile application.

2.3.1 AppAuth Integration for Android
In this example, we use Android Studio 3.0, Android Software Development Kit 25, and Gradle 2.14.1.

2.3.1.1 Adding the Library Dependency
 Edit your application’s build.gradle file, and add this line to its dependencies (note that the

AppAuth library will most likely be updated in the future, so you should use the most recent
version for your dependency, not necessarily the one in this document):

===
dependencies {
...
 compile 'net.openid:appauth:0.7.0'
}
===

2.3.1.2 Adding Activities to the Manifest
 First, you need to identify your AS’s host name, OAuth redirect path, and what scheme was set

when you registered your application. The scheme here is contrived, but it is common practice
to use reverse DNS style names; you should choose whatever aligns with your organization’s
common practices. Another alternative to custom schemes is to use App Links.

 Edit your AndroidManifest.xml file, and add these lines:

===

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 package="com.example.app">
...
 <activity
 android:name="net.openid.appauth.RedirectUriReceiverActivity"
 tools:node="replace">
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 <category android:name="android.intent.category.BROWSABLE" />
 <data
 android:host="as.example.com"
 android:path="/oauth2redirect"
 android:scheme="myappscheme" />
 </intent-filter>

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 35

 </activity>
 <activity android:name=".activity.AuthResultHandlerActivity" />
 <activity android:name=".activity.AuthCanceledHandlerActivity" />
 </application>
</manifest>

===

2.3.1.3 Creating Activities to Handle Authorization Responses
 Create a utility class for reusable code (Utility), and create activities to handle successful

authorizations (AuthResultHandlerActivity) and canceled authorizations
(AuthCanceledHandlerActivity):

===

public class Utility {
 public static AuthorizationService getAuthorizationService(Context context)
{
 AppAuthConfiguration appAuthConfig = new AppAuthConfiguration.Builder()
 .setBrowserMatcher(new BrowserWhitelist(
 VersionedBrowserMatcher.CHROME_CUSTOM_TAB,
 VersionedBrowserMatcher.SAMSUNG_CUSTOM_TAB))
 // the browser matcher above allows you to choose which in-app
browser
 // tab providers will be supported by your app in its OAuth2 flow
 .setConnectionBuilder(new ConnectionBuilder() {
 @NonNull
 public HttpURLConnection openConnection(@NonNull Uri uri)
 throws IOException {
 URL url = new URL(uri.toString());
 HttpURLConnection connection =
 (HttpURLConnection) url.openConnection();
 if (connection instanceof HttpsURLConnection) {
 // optional: use your own trust manager to set a custom
 // SSLSocketFactory on the HttpsURLConnection
 }
 return connection;
 }
 }).build();

 return new AuthorizationService(context, appAuthConfig);
 }

 public static AuthState restoreAuthState(Context context) {
 // we use SharedPreferences to store a String version of the JSON
 // Auth State, and here we retrieve it to convert it back to a POJO
 SharedPreferences sharedPreferences =
 PreferenceManager.getDefaultSharedPreferences(context);
 String jsonString = sharedPreferences.getString("AUTHSTATE", null);
 if (!TextUtils.isEmpty(jsonString)) {
 try {

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 36

 return AuthState.jsonDeserialize(jsonString);
 } catch (JSONException jsonException) {
 // handle this appropriately
 }
 }
 return null;
 }
}

===

public class AuthResultHandlerActivity extends Activity {

 private static final String TAG = AuthResultHandlerActivity.class.getName();

 private AuthState mAuthState;
 private AuthorizationService mAuthService;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 AuthorizationResponse res =
AuthorizationResponse.fromIntent(getIntent());
 AuthorizationException ex =
AuthorizationException.fromIntent(getIntent());
 mAuthState = new AuthState(res, ex);
 mAuthService = Utility.getAuthorizationService(this);

 if (res != null) {
 Log.d(TAG, "Received AuthorizationResponse");
 performTokenRequest(res.createTokenExchangeRequest());
 } else {
 Log.d(TAG, "Authorization failed: " + ex);
 }
 }

 @Override

 protected void onDestroy() {

 super.onDestroy();

 mAuthService.dispose();

 }

 private void performTokenRequest(TokenRequest request) {
 TokenResponseCallback callback = new TokenResponseCallback() {
 @Override
 public void onTokenRequestCompleted(
 TokenResponse tokenResponse,
 AuthorizationException authException) {
 receivedTokenResponse(tokenResponse, authException);

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 37

 }
 };
 mAuthService.performTokenRequest(request, callback);
 }

 private void receivedTokenResponse(TokenResponse tokenResponse,
 AuthorizationException authException) {
 Log.d(TAG, "Token request complete");
 if (tokenResponse != null) {
 mAuthState.update(tokenResponse, authException);

 // persist auth state to SharedPreferences
 PreferenceManager.getDefaultSharedPreferences(this)
 .edit()
 .putString("AUTHSTATE", mAuthState.jsonSerializeString())
 .commit();

 String accessToken = mAuthState.getAccessToken();
 if (accessToken != null) {
 // optional: pull claims out of JWT (name, etc.)
 }
 } else {
 Log.d(TAG, " ", authException);
 }
 }
}

===

public class AuthCanceledHandlerActivity extends Activity {

 private static final String TAG =
AuthCanceledHandlerActivity.class.getName();

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 Log.d(TAG, "OpenID Connect authorization flow canceled");

 // go back to MainActivity
 finish();
 }
}

===

2.3.1.4 Executing the OAuth 2 Authorization Flow
 In whatever activity you are using to initiate authentication, add the necessary code to use the

AppAuth SDK to execute the OAuth 2 authorization flow:

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 38

===

...

// some method, usually a "login" button, activates the OAuth2 flow

String OAUTH_AUTH_ENDPOINT =
"https://as.example.com:9031/as/authorization.oauth2";
String OAUTH_TOKEN_ENDPOINT = "https://as.example.com:9031/as/token.oauth2";
String OAUTH_REDIRECT_URI = "myappscheme://app.example.com/oauth2redirect";
String OAUTH_CLIENT_ID = "myapp";
String OAUTH_PKCE_CHALLENGE_METHOD = "S256"; // options are "S256" and "plain"

// CREATE THE SERVICE CONFIGURATION
AuthorizationServiceConfiguration config = new
AuthorizationServiceConfiguration(
 Uri.parse(OAUTH_AUTH_ENDPOINT), // auth endpoint
 Uri.parse(OAUTH_TOKEN_ENDPOINT), // token endpoint
 null // registration endpoint
);

// OPTIONAL: Add any additional parameters to the authorization request
HashMap<String, String> additionalParams = new HashMap<>();
additionalParams.put("acr_values", "urn:acr:form");

// BUILD THE AUTHORIZATION REQUEST
AuthorizationRequest.Builder builder = new AuthorizationRequest.Builder(
 config,
 OAUTH_CLIENT_ID,
 ResponseTypeValues.CODE,
 Uri.parse(OAUTH_REDIRECT_URI))
 .setScopes("profile") // scope is optional, set whatever is needed by
your app
 .setAdditionalParameters(additionalParams);

// SET UP PKCE CODE VERIFIER
String codeVerifier = CodeVerifierUtil.generateRandomCodeVerifier();
String codeVerifierChallenge =
CodeVerifierUtil.deriveCodeVerifierChallenge(codeVerifier);
builder.setCodeVerifier(codeVerifier, codeVerifierChallenge,

 OAUTH_PKCE_CHALLENGE_METHOD);

AuthorizationRequest request = builder.build();

// PERFORM THE AUTHORIZATION REQUEST
// this pauses and leaves the current activity
Intent postAuthIntent = new Intent(this, AuthResultHandlerActivity.class);
Intent authCanceledIntent = new Intent(this,
AuthCanceledHandlerActivity.class);
mAuthService.performAuthorizationRequest(
 request,

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 39

 PendingIntent.getActivity(this, request.hashCode(), postAuthIntent, 0),
 PendingIntent.getActivity(this, request.hashCode(), authCanceledIntent,
0));

...

// when the activity resumes, check if the OAuth2 flow was successful

@Override
protected void onResume() {
 super.onResume();

 AuthState authState = Utility.restoreAuthState(this);
 if (authState != null) {

 // we are authorized!
 // proceed to the next activity that requires an access token
 }
}

...

===

2.3.1.5 Fetching and Using the Access Token
 After you have proceeded from the prior activity, you can fetch your access token. If some time

has passed since you obtained the access token, you may need to use your refresh token to get
a new access token. AppAuth handles both cases the same way. Implement the following code
wherever you need to use the access token:

===

...

// assuming we have an instance of a Context as mContext...

// ensure we have a fresh access token to perform any future actions
final AuthorizationService authService =
Utility.getAuthorizationService(mContext);
AuthState authState = Utility.restoreAuthState(mContext);
authState.performActionWithFreshTokens(authService, new
AuthState.AuthStateAction() {
 @Override
 public void execute(String accessToken, String idToken,

 AuthorizationException ex) {
 JWT jwt = null;
 if (ex != null) {
 // negotiation for fresh tokens failed, check ex for more details

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 40

 } else {
 // we can now use accessToken to access remote services

 // this is typically done by including the token in an HTTP header,

 // or in a handshake transaction if another transport protocol is
used
 }
 authService.dispose();
 }
});

...

===

2.3.2 AppAuth Integration for iOS
The iOS demo applications were built with XCode 10.1 for iOS deployment target 11.0. using the Swift
programming language.

2.3.2.1 Adding the Library Dependency
The AppAuth library can be added to an XCode project by using either the CocoaPods or Carthage
dependency manager. The CocoaPods method automatically uses the official released version of the
library. To use a particular code branch or to get recent updates not available in the release version,
Carthage must be used. The official release should be suitable for the majority of applications.

To add the AppAuth library by using CocoaPods:

1. Create a Podfile in the root directory of the project. The following is a sample Podfile from the
maps-demo application that adds AppAuth and two other libraries.

===
source 'https://github.com/CocoaPods/Specs.git'
target 'map-demo-app-ios' do
 pod 'GoogleMaps'
 pod 'GooglePlaces'
 pod 'AppAuth'
end
===

2. Open a terminal, navigate to the root directory of the project, and run the command:

pod install

3. In XCode, close any open projects. Click File-Open, navigate to the root of the project, and open
the file <project-name>.xcworkspace.

To add the AppAuth library by using Carthage:

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 41

1. Create a Cartfile with the following contents in the root directory of the project:

===
github "openid/AppAuth-iOS" "master"
===

2. Open a terminal, navigate to the root directory of the project, and run the command:

carthage bootstrap

3. In XCode, click on the project in the project navigator and select the General tab. Under Linked
Frameworks and Libraries, click the plus icon to add a framework.

4. Click Add Other…. A file selection dialogue should open and display the root folder of the
project. Navigate to the Carthage/Build/iOS subfolder, select AppAuth.framework, and click
Open. The Frameworks and Libraries interface is shown in Figure 2-25.

Figure 2-25 Linked Frameworks and Libraries

5. On the Build Phases tab, click the plus icon in the top left corner of the editor and select New
Run Script Phase as shown in Figure 2-26.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 42

Figure 2-26 Creating a New Run Script Phase

6. Add the following command to the Run Script:

/usr/local/bin/carthage copy-frameworks

7. Click the plus icon under Input Files and add the following entry:

$(SRCROOT)/Carthage/Build/iOS/AppAuth.framework

Figure 2-27 shows a completed Run Script.

Figure 2-27 Carthage Run Script

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 43

Once either of the above procedures is completed, you should be able to import AppAuth into your
project without compiler errors.

2.3.2.2 Registering a Custom URL Scheme
To enable the AS to send a redirect through the browser back to your mobile application, you must
either register a custom URL scheme or use Universal Links. This example shows the use of a custom URL
scheme. This scheme must be included in the redirect_uri registered with the AS; see Section 3.3 for
details on OAuth client registration. To configure the custom URL scheme:

1. In the XCode Project Navigator, select the Info.plist file.

2. Select URL Types and click the Plus icon to add a type.

3. Under the created item, click on the selector icon and choose URL Schemes.

4. Edit the item value to match the URL scheme. Figure 2-28 shows a custom URL scheme of
“org.mitre.chatdemo.”

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 44

Figure 2-28 Custom URL Scheme

2.3.2.3 Handling Authorization Responses
Add the following lines to AppDelegate.swift to handle authorization responses submitted to your
application’s redirect_uri:

===
var currentAuthorizationFlow:OIDAuthorizationFlowSession?
func application(_ app: UIApplication, open url: URL, options:
[UIApplicationOpenURLOptionsKey : Any] = [:]) -> Bool {

if let authorizationFlow = self.currentAuthorizationFlow,
authorizationFlow.resumeAuthorizationFlow(with: url) {

self.currentAuthorizationFlow = nil
return true

}
return false

}
===

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 45

2.3.2.4 Executing the OAuth 2 Authorization Flow
In the View Controller that handles authentication events, add the necessary code to use AppAuth to
submit authorization requests to the AS. The configuration parameters for the AS, such as the URLs for
the authorization and token endpoints, can be automatically discovered if the AS supports OpenID
Connect Discovery; otherwise, these parameters must be provided either in settings or in the code. In
this example, they are specified in the code. This example also demonstrates how to specify the user-
agent for the authorization flow; in this case, Safari will be used.

===
class LogInViewController: UIViewController, OIDAuthStateChangeDelegate,
OIDAuthStateErrorDelegate {
 let kAppAuthExampleAuthStateKey = authState";

 ...

 func authenticateUsingLab() {
 var configuration: OIDServiceConfiguration =
OIDServiceConfiguration(authorizationEndpoint: URL(string:
"https://as1.cpssp.msso:9031/as/authorization.oauth2")!, tokenEndpoint: URL(string:
"https://as1.cpssp.msso:9031/as/token.oauth2")!)

 guard let redirectURI = URL(string:
"org.mitre.chatdemo:/msso.nccoe.nist/oauth2redirect") else {
 print("Error creating URL for :
org.mitre.chatdemo:/msso.nccoe.nist/oauth2redirect")
 return
 }

 guard let appDelegate = UIApplication.shared.delegate as? AppDelegate else {
 print("Error accessing AppDelegate")
 return
 }

 // builds authentication request
 let request = OIDAuthorizationRequest(configuration: configuration,
 clientId: "chatdemo",
 clientSecret: nil,
 scopes: ["testScope"],
 redirectURL: redirectURI,
 responseType: OIDResponseTypeCode,
 additionalParameters: nil)

 print("Initiating authorization request with scope: \(request.scope ??
"DEFAULT_SCOPE")")

 doAuthWithAutoCodeExchange(configuration: configuration, request: request,
appDelegate: appDelegate)
 }

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 46

 func doAuthWithAutoCodeExchange(configuration: OIDServiceConfiguration, request:
OIDAuthorizationRequest, appDelegate: AppDelegate) {

 let coordinator: OIDAuthorizationUICoordinatorCustomBrowser =
OIDAuthorizationUICoordinatorCustomBrowser.customBrowserSafari()

 appDelegate.currentAuthorizationFlow = OIDAuthState.authState(byPresenting:
request, uiCoordinator: coordinator) { authState, error in
 if let authState = authState {
 self.assignAuthState(authState: authState)
 self.segueToChat()
 } else {
 print("Authorization error: \(error?.localizedDescription ??
"DEFAULT_ERROR")")
 self.assignAuthState(authState: nil)
 }
 }
 func saveState(){
 // for production usage consider using the OS Keychain instead
 if authState != nil{
 let archivedAuthState = NSKeyedArchiver.archivedData(withRootObject:
authState!)
 UserDefaults.standard.set(archivedAuthState, forKey:
kAppAuthExampleAuthStateKey)
 }
 else{
 UserDefaults.standard.set(nil, forKey: kAppAuthExampleAuthStateKey)
 }
 UserDefaults.standard.synchronize()
 }

 func loadState(){
 // loads OIDAuthState from NSUSerDefaults
 guard let archivedAuthState = UserDefaults.standard.object(forKey:
kAppAuthExampleAuthStateKey) as? NSData else{
 return
 }
 guard let authState = NSKeyedUnarchiver.unarchiveObject(with: archivedAuthState
as Data) as? OIDAuthState else{
 return
 }
 assignAuthState(authState: authState)
 }

 func assignAuthState(authState:OIDAuthState?){
 if (self.authState == authState) {
 return;
 }
 self.authState = authState
 self.authState?.stateChangeDelegate = self
 self.saveState()
 }

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 47

 func didChange(_ state: OIDAuthState) {
 authState = state
 authState?.stateChangeDelegate = self
 self.saveState()
 }

 func authState(_ state: OIDAuthState, didEncounterAuthorizationError error: Error)
{
 print("Received authorization error: \(error)")
 }
}
===

2.3.2.5 Fetching and Using the Access Token
The access token can be retrieved from the authState object. If the access token has expired, the
application may need to use a refresh token to obtain a new access token or initiate a new authorization
request if it does not have an active refresh token. Access tokens are typically used in accordance with
RFC 6750 [20], most commonly in the Authorization header of a Hypertext Transfer Protocol (HTTP)
request to an API server. The following example shows a simple usage of an access token to call an API:

===
public func requestChatRooms() {
 let urlString = "\(protocolIdentifier)://\(ipAddress):\(port)/getChatRooms"
 print("URLString \(urlString)")
 guard let url = URL(string: urlString) else { return }
 let token: String? = self.authState?.lastTokenResponse?.accessToken
 var request = URLRequest(url: url)
 request.httpMethod = "GET"
 request.setValue("Bearer \(token)", forHTTPHeaderField: "Authorization")
 URLSession.shared.dataTask(with: request) { (data, response, error) in
 if error != nil {
 print(error!.localizedDescription)
 }
 else {
 guard let data = data else { return }
 let json = try? JSONSerialization.jsonObject(with: data, options: [])

 if let array = json as? [Any] {
 if let firstObject = array.first {
 if let dictionary = firstObject as? [String: String] {
 self.chatRooms = dictionary
 self.loadRooms()
 }
 }
 }
 }
 }.resume()
}
===

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 48

AppAuth also provides a convenience function, performActionWithFreshTokens, which will
automatically handle token refresh if the current access token has expired.

3 How to Install and Configure the OAuth 2 AS

3.1 Platform and System Requirements
Ping Identity is used as the AS for this build. The AS issues access tokens to the client after successfully
authenticating the resource owner and obtaining authorization as specified in RFC 6749, The OAuth
Authorization Framework [21].

The requirements for Ping Identity can be categorized into three groups: software, hardware, and
network.

3.1.1 Software Requirements
The software requirements are as follows:

 OS: Microsoft Windows Server, Oracle Enterprise Linux, Oracle Solaris, Red Hat Enterprise, SUSE
Linux Enterprise

 Virtual systems: VMware, Xen, Windows Hyper-V

 Java environment: Oracle Java Standard Edition

 Data integration: Ping Directory, Microsoft Active Directory (AD), Oracle Directory Server,
Microsoft Structured Query Language (SQL) Server, Oracle Database, Oracle MySQL 5.7,
PostgreSQL

3.1.2 Hardware Requirements
The minimum hardware requirements are as follows:

 Intel Pentium 4, 1.8-gigahertz (GHz) processor

 1 gigabyte (GB) of Random Access Memory (RAM)

 1 GB of available hard drive space

A detailed discussion on this topic and additional information can be found at
https://documentation.pingidentity.com/pingfederate/pf82/index.shtml#gettingStartedGuide/concept/
systemRequirements.html.

3.1.3 Network Requirements
Ping Identity identifies several ports to be open for different purposes. These purposes can include
communication with the administrative console, runtime engine, cluster engine, and Kerberos engine. A
detailed discussion on each port can be found at

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

https://documentation.pingidentity.com/pingfederate/pf82/index.shtml#gettingStartedGuide/concept/systemRequirements.html
https://documentation.pingidentity.com/pingfederate/pf82/index.shtml#gettingStartedGuide/concept/systemRequirements.html

NIST SP 1800-13C: Mobile Application Single Sign-On 49

https://documentation.pingidentity.com/pingfederate/pf84/index.shtml#gettingStartedGuide/pf_t_inst
allPingFederateRedHatEnterpriseLinux.html.

In this implementation, we needed ports to be opened to communicate with the administrative console
and the runtime engine.

For this experimentation, we have used the configuration identified in the following subsections.

3.1.3.1 Software Configuration

The software configuration is as follows:

 OS: CentOS Linux Release 7.3.1611 (Core)

 Virtual systems: Vmware ESXI 6.5

 Java environment: OpenJDK Version 1.8.0_131

 Data integration: AD

3.1.3.2 Hardware Configuration
The hardware configuration is as follows:

 Processor: Intel(R) Xeon(R) central processing unit (CPU) E5-2420 0 at 1.90 GHz

 Memory: 2 GB

 Hard drive: 25 GB

3.1.3.3 Network Configuration
The network configuration is as follows:

 9031: This port allows access to the runtime engine; this port must be accessible to client
devices and federation partners.

 9999: This port allows the traffic to the administrative console; only PingFederate administrators
need access.

3.2 How to Install the OAuth 2 AS
Before the installation of Ping Identity AS, the prerequisites identified in the following subsections need
to be fulfilled.

3.2.1 Java Installation
Java 8 can be installed in several ways on CentOS 7 using yum. Yum is a package manager on the
CentOS 7 platform that automates software processes, such as installation, upgrade, and removal, in a
consistent way.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

https://documentation.pingidentity.com/pingfederate/pf84/index.shtml#gettingStartedGuide/pf_t_installPingFederateRedHatEnterpriseLinux.html
https://documentation.pingidentity.com/pingfederate/pf84/index.shtml#gettingStartedGuide/pf_t_installPingFederateRedHatEnterpriseLinux.html

NIST SP 1800-13C: Mobile Application Single Sign-On 50

 Download the Java Development Kit (JDK) in the appropriate format for your environment, from
Oracle’s website; for CentOS, the Red Hat Package Manager (RPM) download can be used:
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html.

 As root, install the RPM by using the following command, substituting the actual version of the
downloaded file:

rpm -ivh jdk-8u151-linux-x64.rpm

 Alternatively, the JDK can be downloaded in .tar.gz format and unzipped in the appropriate
location (i.e., /usr/share on CentOS 7).

3.2.2 Java Post Installation
The alternatives command maintains symbolic links determining default commands. This command
can be used to select the default Java command. This is helpful even in cases where there are multiple
installations of Java on the system.

 Use the following command to select the default Java command:

alternatives --config java

There are three programs that provide “java.”

 Selection Command

 1 /usr/java/jre1.8.0_111/bin/java

*+ 2 java-1.8.0-openjdk.x86_64 (/usr/lib/jvm/java-1.8.0-openjdk-
1.8.0.131-3.b12.el7_3.x86_64/jre/bin/java)

 3 /usr/java/jdk1.8.0_131/jre/bin/java

Enter to keep the current selection[+], or type selection number:

This presents the user with a configuration menu for choosing a Java instance. Once a selection
is made, the link becomes the default command systemwide.

 To make Java available to all users, the JAVA_HOME environment variable is set by using the
following command:

echo export JAVA_HOME="/usr/java/latest" > /etc/profile.d/javaenv.sh

 For cryptographic functions, download the Java Cryptography Extension (JCE) Unlimited Strength
Jurisdiction Policy Files 8 from
https://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

NIST SP 1800-13C: Mobile Application Single Sign-On 51

 Decompress and extract the downloaded file. The installation procedure is described in the
Readme document. In the lab, local_policy.jar was extracted to the default location, <java-
home>/lib/security.Network Configuration.

 Check if the firewall is running or not by using the command below. If it is up, it will return a
status that shows it is running:

firewall-cmd --state

 If it is not running, activate the firewall by using the following command:

sudo systemctl start firewalld.service

 Check if the required ports, 9031 and 9999, are open by using the following command:

firewall-cmd --list-ports

 This command will return the following values:

6031/tcp 9999/udp 9031/tcp 6031/udp 9998/udp 9031/udp 9999/tcp 9998/tcp
8080/tcp

From the returned ports, we can determine which ports and protocols are open.

 In case the required ports are not open, issue the command below. It should return
success.

firewall-cmd --zone=public --permanent --add-port=9031/tcp

success

 Reload the firewall by using the following command to make the rule change take effect:

firewall-cmd --reload

Success

 Now, when the open ports are listed, the required ports should show up:

firewall-cmd --zone=public --list-ports

6031/tcp 9999/udp 9031/tcp 6031/udp 9998/udp 9031/udp 9999/tcp 9998/tcp
8080/tcp 5000/tcp

3.2.3 PingFederate Installation
Ping installation documentation is available at
https://documentation.pingidentity.com/pingfederate/pf82/index.shtml -
gettingStartedGuide/pf_t_installPingFederateRedHatEnterpriseLinux.html.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

https://documentation.pingidentity.com/pingfederate/pf82/index.shtml#gettingStartedGuide/pf_t_installPingFederateRedHatEnterpriseLinux.html
https://documentation.pingidentity.com/pingfederate/pf82/index.shtml#gettingStartedGuide/pf_t_installPingFederateRedHatEnterpriseLinux.html

NIST SP 1800-13C: Mobile Application Single Sign-On 52

Some important points are listed below:

 Obtain a Ping Identity license. It can be acquired from
https://www.pingidentity.com/en/account/sign-on.html.

 For this experiment, installation was done using the zip file. Installation was done at /usr/share.

 The license was updated.

 The PingFederate service can be configured as a service that automatically starts at system boot.
PingFederate provides instructions for doing this on different OSs. In the lab, the Linux
instructions at the link provided below were used. Note that while the instructions were written
for an init.d-based system, these instructions will also work on a systemd-based system.

https://documentation.pingidentity.com/pingfederate/pf82/index.shtml -
gettingStartedGuide/pf_t_installPingFederateServiceLinuxManually.html

The following configuration procedures are completed in the PingFederate administrative console,
which is available at https://<ping-server-hostname>:9999/pingfederate/app.

3.2.4 Certificate Installation
During installation, PingFederate generates a self-signed TLS certificate, which is not trusted by desktop
or mobile device browsers. A certificate should be obtained from a trusted internal or external CA and
should be installed on the PingFederate server. The private key and signed certificate can be uploaded
and activated for use on the run-time server port and the admin port by navigating to Server Settings in
the console and clicking on SSL Server Certificates.

In addition, most server roles described in this guide will require the creation of a signing certificate. This
is required for a SAML or OIDC IdP, and for an OAuth AS if access tokens will be issued as JWTs. To
create or import a signing certificate, under Server Configuration–Certificate Management, click Signing
& Decryption Keys & Certificates. A self-signed certificate can be created, or a trusted certificate can be
obtained and uploaded there.

3.3 How to Configure the OAuth 2 AS
Configuration of a Ping OAuth 2 AS is described at
https://documentation.pingidentity.com/pingfederate/pf82/index.shtml#concept_usingOauthMenuSele
ctions.html.

This guide documents the configuration for an AS serving the role of the idm.sandbox server hosted in
the Motorola Solutions cloud instance, as depicted in Figure 1-1. This AS is configured to support the
three usage scenarios—local user authentication at the AS, redirection to a SAML IdP, and redirection to
an OIDC IdP—and to initiate the correct login flow based on an IdP discovery mechanism.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

https://www.pingidentity.com/en/account/sign-on.html
https://documentation.pingidentity.com/pingfederate/pf82/index.shtml#gettingStartedGuide/pf_t_installPingFederateServiceLinuxManually.html
https://documentation.pingidentity.com/pingfederate/pf82/index.shtml#gettingStartedGuide/pf_t_installPingFederateServiceLinuxManually.html
https://documentation.pingidentity.com/pingfederate/pf82/index.shtml#concept_usingOauthMenuSelections.html
https://documentation.pingidentity.com/pingfederate/pf82/index.shtml#concept_usingOauthMenuSelections.html

NIST SP 1800-13C: Mobile Application Single Sign-On 53

An understanding of the PingFederate OAuth implementation helps provide context for the
configurations documented in this guide. PingFederate supports several different authentication flows
and mechanisms, but there is a common framework for how user attributes are mapped into OAuth
tokens. This framework is depicted in Figure 3-1, which is taken from PingFederate’s documentation at
https://documentation.pingidentity.com/pingfederate/pf83/index.shtml#concept_mappingOauthAttrib
utes.html.

Figure 3-1 Access Token Attribute Mapping Framework

The overall OAuth processing flow at the AS is as follows:

1. The AS receives an OAuth authorization request from an unauthenticated user.

2. The AS authenticates the user through the configured authentication adapters, IdP connections,
and/or authentication policies.

3. Information from adapters or policy contracts, optionally combined with user information
retrieved from data stores such as Lightweight Directory Access Protocol (LDAP), is used to build
a persistent grant context. The two mandatory attributes in the persistent grant context are:

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

https://documentation.pingidentity.com/pingfederate/pf83/index.shtml#concept_mappingOauthAttributes.html
https://documentation.pingidentity.com/pingfederate/pf83/index.shtml#concept_mappingOauthAttributes.html

NIST SP 1800-13C: Mobile Application Single Sign-On 54

 USER_KEY—This is a globally unique user identifier. For ASs that interact with multiple
IdPs, this name should be resistant to naming collisions across user organizations (e.g.,
email address or distinguished name).

 USER_NAME—If the user is prompted to authorize the request, this name will be
displayed on the page, so a user-friendly name, such as [givenName lastName], could be
used here; the name does not need to be unique.

4. If authorization prompts are enabled, the user is prompted to approve the authorization
request; for this lab build, these prompts were disabled on the assumption that fast access to
applications is a high priority for the PSFR community.

5. If the request is authorized, a second mapping process takes place to populate the access token
with information from the persistent grant and, optionally, from adapters, policy contracts, or
data stores.

Note that persistent grant attributes are stored and can be retrieved and reused when the client uses a
refresh token to obtain a new access token, whereas attributes that are looked up in the second stage
would be looked up again during the token refresh request. Storing attributes in the persistent grant can
therefore reduce the need for repeated directory queries; however, it may be preferable to always
query some attributes that are subject to change (like account status) again when a new access token is
requested. In addition, it is important to note that storing persistent grant attributes requires a
supported relational database or LDAP data store.

The following steps go through the configuration of the AS.

 Enable the PingFederate installation to work as an AS. This can be done in the following steps:

 Under Main, click the Server Configuration section tab, and then click Server Settings.

 In Server Settings, click the Roles & Protocols tab. The Roles & Protocols screen will ap-
pear as shown in Figure 3-2.

i. Click ENABLE OAUTH 2.0 AUTHORIZATION SERVER (AS) ROLE.

ii. Click ENABLE IDENTITY PROVIDER (IDP) ROLE AND SUPPORT THE FOLLOWING,
and then under it, click SAML 2.0. Although this server does not act as a SAML
IdP, it is necessary to enable the IdP role and at least one protocol to configure
the local user authentication use case.

iii. Click ENABLE SERVICE PROVIDER (SP) ROLE AND SUPPORT THE FOLLOWING,
and then under it, click SAML 2.0 and OPENID CONNECT; this enables integra-
tion with both types of IdPs.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 55

Figure 3-2 Server Roles for AS

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 56

 Also under Server Settings, on the Federation Info tab, enter the BASE URL and SAML
2.0 ENTITY ID (Figure 3-3). The BASE URL should use a public DNS name that is resolva-
ble by any federation partners. The SAML 2.0 ENTITY ID is simply an identifier string that
must be unique among federation partners; it is recommended to be a Uniform Re-
source Identifier (URI), per the SAML 2.0 Core specification [22].

Figure 3-3 Federation Info

 The next step is to configure the OAuth AS. Click the OAuth Settings section tab under Main.

 Click Authorization Server Settings under the Authorization Server header. This displays
the Authorization Server Settings (Figure 3-4).

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 57

Figure 3-4 AS Settings

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 58

The default settings are suitable for the lab build architecture; organizations may wish
to customize these default settings in accordance with organizational security policy or
usage requirements. Some notes on individual settings are provided below:

 AUTHORIZATION CODE TIMEOUT (SECONDS): Once an authorization code has
been returned to a client, it must be exchanged for an access token within this
interval. This reduces the risk of an unauthorized client obtaining an access
token through brute-force guessing or intercepting a valid client’s code. Proof
Key for Code Exchange (PKCE) [23], as implemented by the AppAuth library, is
another useful mechanism to protect the authorization code.

 AUTHORIZATION CODE ENTROPY (BYTES): length of the authorization code
returned by the AS to the client, in bytes

 REFRESH TOKEN LENGTH (CHARACTERS): length of the refresh token, in
characters

 ROLL REFRESH TOKEN VALUES (DEFAULT POLICY): When selected, the OAuth
AS generates a new refresh token value when a new access token is obtained.

 MINIMUM INTERVAL TO ROLL REFRESH TOKENS (HOURS): the minimum
number of hours that must pass before a new refresh token value can be issued

 REUSE EXISTING PERSISTENT ACCESS GRANTS FOR GRANT TYPES:

• IMPLICIT: Consent from the user is requested only for the first OAuth
resource request associated with the grant.

• AUTHORIZATION CODE: Same as above if the BYPASS AUTHORIZATION
FOR PREVIOUSLY APPROVED PERSISTENT GRANTS is selected; this can
be used to prompt the user for authorization only once to avoid
repeated prompts for the same client.

 PASSWORD CREDENTIAL VALIDATOR: Required for HTTP Basic authentication if
the OAuth Representational State Transfer Web Service is used for managing
client applications; this functionality was not used for this build.

 Next, configure scopes, as required, for the application. Click the OAuth Settings section tab,
and then click Scope Management. The specific scope values will be determined by the client
application developer. Generally speaking, scopes refer to different authorizations that can be
requested by the client and granted by the user. Access tokens are associated with the scopes
for which they are authorized, which can limit the authorities granted to clients. Figure 3-5
shows several scopes that were added to the AS for this lab build that have specific meanings in
the PSX applications suite.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 59

Figure 3-5 Scopes

 Define an Access Token Management Profile. This profile determines whether access tokens are
issued as simple reference token strings or as JWTs. For this lab build, JWTs were used. JWTs are
signed and optionally encrypted, so resource servers can validate them locally and they can
contain user attributes and other information. Reference tokens are also a viable option, but
resource servers must contact the AS’s introspection endpoint to determine whether they are
valid and must obtain the granted scopes and any other information associated with them. The
Access Token Management Profile also defines any additional attributes that will be associated
with the token.

 Create an Access Token Manager by following these steps:

i. Click the OAuth Settings section tab, click Access Token Management, and then
click Create New Instance.

ii. On the Type tab, give the instance a meaningful name and ID, and select the to-
ken type (Figure 3-6).

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 60

Figure 3-6 Access Token Management Instance

 On the next tab, Instance Configuration, select a symmetric key or certificate to use for JWT
signing (Figure 3-7). In this instance, a signing certificate was created as described in
Section 3.2.4. Tokens can also optionally be encrypted using JSON Web Encryption (JWE) [24]; in
this case, the client developer would provide a certificate in order to receive encrypted
messages. JWE was not used in the lab build.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 61

Figure 3-7 Access Token Manager Instance Configuration

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 62

 On the Access Token Attribute Contract tab, add the two values realm and sub to the attribute
contract (Figure 3-8).

Figure 3-8 Access Token Manager Attribute Contract

 The Resource URIs and Access Control tabs were not used for this build. Click Save to complete
the Access Token Manager.

 Next, one or more OAuth clients need to be registered with the AS. In the Motorola Solutions
use case, the PSX Cockpit application is registered as a client. OAuth Client registration is
described for PingFederate at:
https://documentation.pingidentity.com/pingfederate/pf82/index.shtml#concept_configuringCl
ient.html.

To create a new client, click the OAuth Settings section tab, click Clients, and then click Create
New. Clients are displayed on the rightmost side of the screen in the OAuth Settings window.
Once Create New is clicked, the screen shown in Figure 3-9 and Figure 3-10 will appear. Due to
the vertical size of the pages of this document, the screenshot is divided into two parts for
legibility.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

https://documentation.pingidentity.com/pingfederate/pf82/index.shtml#concept_configuringClient.html
https://documentation.pingidentity.com/pingfederate/pf82/index.shtml#concept_configuringClient.html

NIST SP 1800-13C: Mobile Application Single Sign-On 63

Figure 3-9 OAuth Client Registration, Part 1

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 64

Figure 3-10 OAuth Client Registration, Part 2

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 65

The following are notes on the parameters on this screen:

 CLIENT ID: This is a required parameter. This is the unique identifier accompanied with
each request that is presented to the AS’s token and authorization endpoints. For this
lab build, Motorola Solutions assigned a client ID of “ssoclient_nist” for the instances of
their applications on the test devices.

 CLIENT AUTHENTICATION: This may be set to NONE, CLIENT SECRET (for HTTP basic
authentication), or CLIENT TLS CERTIFICATE. For native mobile application clients, there
is no way to protect a client secret or private key and provide it to all instances of the
application with any guarantee of confidentiality, as a user might be able to
reverse-engineer the application to obtain any secrets delivered with it, or to debug the
application to capture any secrets delivered at runtime. Therefore, a value of NONE is
acceptable for native mobile applications, when mitigated with the use of PKCE. For web
clients, servers are capable of protecting secrets; therefore, some form of client
authentication should be required.

 REDIRECT URIS: Redirect URIs are the URIs to which the OAuth AS may redirect the
resource owner’s user-agent after authorization is obtained. A redirect URI is used with
the Authorization Code and Implicit grant types. This value is typically provided by the
application developer to the AS administrator.

 ALLOWED GRANT TYPES: These are the allowed grant types for the client. For this lab
build, the Authorization Code grant type was used exclusively.

 DEFAULT ACCESS TOKEN MANAGER: This is the Access Token Manager profile to be
used for this client.

 PERSISTENT GRANTS EXPIRATION: This setting offers the option to override the global
AS persistent grants settings for this client.

 REFRESH TOKEN ROLLING POLICY: This setting offers the option to override the global
AS token rolling policy settings for this client.

Once these values are set, click Save to store the client.

This completes the required configuration for the AS’s interactions with OAuth clients. The following
section outlines the steps to set up the AS to authenticate users.

3.4 How to Configure the OAuth 2 AS for Authentication
In this section, the AS is configured to authenticate users locally or through federation with a SAML or
OIDC IdP. These settings depend on the selection of roles and protocols, as shown in Figure 3-2;
therefore, ensure that has been completed before proceeding.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 66

3.4.1 How to Configure Direct Authentication
The AS was configured to authenticate users with FIDO UAF authentication. This depends on the NNAS,
Nok Nok Labs Gateway, and Nok Nok Labs UAF Plugin for PingFederate. See Section 5 for the installation
and configuration instructions for those components. This section assumes that those components have
already been installed and configured.

3.4.1.1 Configure Adapter Instance
 First, an instance of the FIDO UAF adapter must be configured. Click the IdP Configuration

section tab, and then click Adapters under Application Integration.

 Click Create New Instance to create an IdP adapter instance. This will bring up the new tabbed
screen shown in Figure 3-11.

 On the Type tab, the INSTANCE NAME and INSTANCE ID are internal identifiers and can
be set to any meaningful values. The TYPE selection, “FIDO Adapter,” will not appear
until the Nok Nok Labs UAF plugin has been successfully installed on the PingFederate
server as described in Section 5.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 67

Figure 3-11 Create Adapter Instance

 On the IdP Adapter tab, specify the URLs for the Nok Nok Labs API and Gateway end-
points (Figure 3-12).

i. The NNL SERVER POLICY NAME field can be used to select a custom policy, if
one has been defined on the Nok Nok Labs server; for this build, the default pol-
icy was used.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 68

Figure 3-12 FIDO Adapter Settings

 The Extended Contract tab also stayed as the default for the adapter, which provides
the riskscore, transactionid, transactiontext, and username values (Figure 3-13). If de-
sired, additional attributes could be added to the contract and looked up in a user direc-
tory, based on the username returned from the adapter.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 69

Figure 3-13 FIDO Adapter Contract

 On the Adapter Attributes tab, select the Pseudonym checkbox for username. Pseudo-
nyms were not used in the lab build, but a selection is required on this tab.

 There is no need to configure an adapter contract, unless attributes have been added on
the Extended Contract tab. Clicking Done and then Save completes the configuration of
the adapter. Clicking the adapter name in the list of adapters brings up the Adapter In-
stance Summary tab, which lists all of the configured settings (Figure 3-14).

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 70

Figure 3-14 FIDO Adapter Instance Summary

Some additional configurations are needed to tie this authentication adapter to the issuance of an
OAuth token. It is possible to directly map the adapter to the access token context, but because the
adapter will be incorporated into an authentication policy in this case, an Authentication Policy Contract
Mapping is used instead.

3.4.1.2 Create Policy Contract
 To create a Policy Contract, navigate to the IdP Configuration section tab, and select Policy

Contracts under Authentication Policies. A policy contract defines the set of attributes that will
be provided by an authentication policy.

 Click Create New Contract.

 On the Contract Info tab, give the contract a meaningful name (Figure 3-15).

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 71

Figure 3-15 Policy Contract Information

 On the Contract Attributes tab, add a value called username (Figure 3-16).

Figure 3-16 Policy Contract Attributes

 Click Done, and then click Save to save the new contract.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 72

3.4.1.3 Create Policy Contract Mapping
 Create a mapping from the policy contract to the OAuth persistent grant. Click the OAuth

Settings section tab, and then click Authentication Policy Contract Mapping under Token &
Attribute Mapping.

 Select the newly created policy contract, and then click Add Mapping (Figure 3-17).

Figure 3-17 Create Authentication Policy Contract Mapping

 An attribute source could be added at this point to look up additional user attributes, but this is
not necessary. Click Save.

 Skip the Attribute Sources & User Lookup tab.

 On the Contract Fulfillment tab, map both USER_KEY and USER_NAME to the subject value
returned from the policy contract (Figure 3-18).

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 73

Figure 3-18 Authentication Policy Contract Fulfillment

 No issuance criteria were specified. Click Next, and then click Save to complete the mapping.

3.4.1.4 Create Access Token Mapping
Finally, an access token mapping needs to be created. In this simple case, the adapter only provides a
single attribute (username) and it is stored in the persistent grant, so a default attribute mapping can be
used.

 On the OAuth Settings section tab, under Token & Attribute Mapping, click Access Token
Mapping.

 Select Default for the CONTEXT (Figure 3-19).

 Select the ACCESS TOKEN MANAGER created previously (Figure 3-19).

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 74

Figure 3-19 Create Access Token Attribute Mapping

 Click Add Mapping.

 Click Next to skip the Attribute Sources & User Lookup tab.

 On the Contract Fulfillment tab, configure sources and values for the realm and sub
contracts (Figure 3-20). In this case, realm is set to the text string motorolasolu-
tions.com. Click Next.

Figure 3-20 Access Token Mapping Contract Fulfillment

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 75

 Click Next through the Issuance Criteria tab, and then click Save.

 To complete the setup for direct authentication, the FIDO UAF adapter needs to be included in
an authentication policy as described in Section 3.4.4.2.

3.4.2 How to Configure SAML Authentication
This section explains how to configure the AS to accept SAML authentication assertions from a SAML 2.0
IdP. This configuration is for RP-initiated SAML web browser SSO, where the authentication flow begins
at the AS and the user is redirected to the IdP. Here, it is assumed that all of the steps outlined in
Section 3.4 have been completed, particularly enabling the SP role and protocols.

3.4.2.1 Create IdP Connection
Establishing the relationship between the AS and IdP requires coordination between the administrators
of the two servers, which will typically belong to two separate organizations. The administrators of the
SAML IdP and RP will need to exchange their BASE URL and SAML 2.0 ENTITY ID values (available on the
Federation Info tab under Server Settings) to complete the configuration. The IdP administrator must
also provide the signing certificate of the IdP. If assertions will be encrypted, the AS administrator will
need to provide the IdP administrator with the certificate to be used for the public key. Alternatively,
administrators can export their SAML metadata and provide it to the other party to automate parts of
the setup.

 On the SP Configuration section tab, click Create New under IdP Connections.

 On the Connection Type tab, select BROWSER SSO PROFILES, and choose SAML 2.0 for
the PROTOCOL (Figure 3-21). If these options are not present, ensure that the roles are
selected correctly in Server Settings.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 76

Figure 3-21 Create IdP Connection

 On the Connection Options tab, select BROWSER SSO, and then under it, OAUTH AT-
TRIBUTE MAPPING (Figure 3-22).

Figure 3-22 IdP Connection Options

 Metadata import was not configured for the lab build; therefore, skip the Import
Metadata tab.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 77

 On the General Info tab, enter the PARTNER’S ENTITY ID (CONNECTION ID) and BASE
URL of the IdP, and provide a CONNECTION NAME (Figure 3-23).

Figure 3-23 IdP Connection General Info

 On the Browser SSO tab, click Configure Browser SSO. The Browser SSO setup has mul-
tiple sub-pages.

i. On the SAML Profiles tab, select SP-Initiated SSO. The User-Session Creation
settings are summarized on the Summary tab; they extract the user ID and
email address from the SAML assertion (Figure 3-24).

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 78

Figure 3-24 IdP Connection–User-Session Creation

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 79

ii. On the OAuth Attribute Mapping Configuration tab, select MAP DIRECTLY INTO
PERSISTENT GRANT. Configure the OAuth attribute mapping as shown in Figure
3-25. This maps both required values in the persistent grant context to the
SAML subject. Click Next, then Next again to skip the Issuance Criteria tab. Click
Save.

Figure 3-25 IdP Connection OAuth Attribute Mapping

iii. Click Next to proceed to the Protocol Settings tab. The Protocol Settings config-
ure specifics of the SAML protocol, such as the allowed bindings. Configure
these as shown in Figure 3-26. When finished, click Save, which will return you
to the Browser SSO tab of the IdP Connection settings.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 80

Figure 3-26 IdP Connection—Protocol Settings

 Click Next. On the Credentials tab, the IdP’s signing certificate can be uploaded. This is
not necessary if the certificate is signed by a trusted CA.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 81

3.4.2.2 Create Policy Contract
 Create a policy contract as described in Section 3.4.1.2, with the attributes subject, mail, and uid

(Figure 3-27).

Figure 3-27 Policy Contract for SAML RP

3.4.2.3 Create Policy Contract Mapping
 Create an OAuth policy contract mapping for the newly created policy as described in

Section 3.4.1.3, mapping USER_NAME and USER_KEY to subject (Figure 3-28).

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 82

Figure 3-28 Contract Mapping for SAML RP

 To complete the setup for SAML authentication, kspd.msso adapter needs to be included in an
authentication policy as described in Section 3.4.4.2.

3.4.3 How to Configure OIDC Authentication
As with the configuration of a SAML IdP connection, integrating the AS with an OIDC IdP requires
coordination between the administrators of the two systems. The administrator of the IdP must create
an OIDC client registration before the connection can be configured on the AS side. The AS administrator
must provide the redirect URI and, if encryption of the ID Token is desired, a public key. Unlike with
SAML, there is no metadata file to exchange; however, if the IdP supports the OIDC discovery endpoint,
the client can automatically obtain many of the required configuration settings from the discovery URL.

This section assumes that the AS role and OIDC SP support have been enabled via Server Settings, as
described in Section 3.4. This section also uses the same authentication policy contract as the SAML
authentication implementation. Create the policy contract as described in Section 3.4.2.2, if it does not
already exist.

3.4.3.1 Create IdP Connection
 On the SP Configuration section tab, click Create New under IdP Connections.

 On the Connection Type tab, select BROWSER SSO PROFILES, and then under it, select
OpenID Connect for the PROTOCOL (Figure 3-29).

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 83

Figure 3-29 IdP Connection Type

 On the Connection Options tab, select BROWSER SSO, and then under it, select OAUTH
ATTRIBUTE MAPPING (Figure 3-30).

Figure 3-30 IdP Connection Options

 On the General Info tab, enter the ISSUER value for the IdP (Figure 3-31). This is the
BASE URL setting available on the Federation Info tab, under the Server Configuration
section tab on the IdP. Then click Load Metadata, which causes the AS to query the IdP’s

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 84

discovery endpoint. The message “Metadata successfully loaded” should appear. Pro-
vide a CONNECTION NAME, and enter the CLIENT ID and CLIENT SECRET provided by
the IdP administrator.

Figure 3-31 IdP Connection General Info

 On the Browser SSO tab, click Configure Browser SSO, then click Configure User-Ses-
sion Creation. The User-Session Creation page will appear.

i. On the Target Session Mapping tab, click Map New Authentication Policy.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 85

ii. On the Authentication Policy Contract tab, select the AUTHENTICATION POLICY
CONTRACT created in Section 3.4.2.2 (in the example shown in Figure 3-32, it is
called myContractName). If the policy contract has not been created, click Man-
age Authentication Policy Contracts, and create it now.

Figure 3-32 IdP Connection Authentication Policy Contract

iii. On the Attribute Retrieval tab, leave the default setting (use only the attributes
available in the provider claims).

iv. On the Contract Fulfillment tab, map the mail, subject, and uid attributes to the
email, sub, and sub provider claims (Figure 3-33).

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 86

Figure 3-33 IdP Connection Policy Contract Mapping

v. No Issuance Criteria were configured; therefore, skip the Issuance Criteria tab.

vi. Click Next, then Done, and then click Done again to exit the User-Session Crea-
tion tab.

vii. On the OAuth Attribute Mapping Configuration tab, select Map Directly into
Persistent Grant, and then click Configure OAuth Attribute Mapping.

viii. Click Next to skip the Data Store tab. On the Contract Fulfillment tab, map both
USER_NAME and USER_KEY to the sub provider claim (Figure 3-34).

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 87

Figure 3-34 IdP Connection OAuth Attribute Mapping

ix. Click Done to exit the OAuth Attribute Mapping Configuration setup. The Pro-
tocol Settings should be automatically populated through the information gath-
ered from the discovery endpoint (Figure 3-35). If necessary, the scopes to be
requested can be customized on the Protocol Settings tab; in the lab, these set-
tings remained at the default.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 88

Figure 3-35 IdP Connection Protocol Settings

x. Click Done to exit the Browser SSO configuration setup.

 On the Activation & Summary tab, a Redirect URI will be generated (Figure 3-36). Pro-
vide this information to the IdP administrator, as it needs to be configured in the
OpenID Client settings on the IdP side.

i. The Connection Status can also be configured to ACTIVE or INACTIVE on this
tab.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 89

Figure 3-36 IdP Connection Activation and Summary

 Click Save to complete the IdP Connection setup.

3.4.3.2 Create the Policy Contract Mapping
The same policy contract mapping created earlier for the SAML integration can also be used for OIDC
integration, as the attribute names are identical. If this policy contract mapping has not already been
created, refer to Section 3.4.2.3 to create it.

3.4.4 How to Configure the Authentication Policy

3.4.4.1 Install the Domain Selector Plugin
When a single AS is integrated with multiple IdPs, it needs a means of determining which IdP can
authenticate each user. In the lab build, a domain selector is used to determine whether the AS should
authenticate the user locally, redirect to the SAML IdP, or redirect to the OIDC IdP. The domain selector
prompts the user to enter the user’s email address or domain. The specified domain is used to select
which branch of the authentication policy should be applied. Upon successful authentication, the
domain selector sets a cookie in the browser to record the domain selection to avoid prompting the user
each time that the user authenticates.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 90

PingFederate includes sample code for a Domain Selector plugin. Before the Domain Selector can be
used in an authentication policy, it must be built. The source code for the selector is located under the
PingFederate directory, in the directory sdk/plugin-src/authentication-selector-example.

 Complete the following steps to build the selector:

 Edit the build.local.properties file in the PingFederate SDK directory to set the tar-
get plugin as follows:

target-plugin.name=authentication-selector-example

 Run the following commands to build and install the plugin:

$ ant clean-plugin

$ ant jar-plugin

$ ant deploy-plugin

$ sudo service pingfederate restart

 Once installed, the Domain Selector can be configured with the required values. On the IdP
Configuration section tab, click Selectors under Authentication Policies.

 Click Create New Instance.

 On the Type tab, provide a meaningful name and ID for the selector instance (Figure
3-37). For the TYPE, select Domain Authentication Selector.

Figure 3-37 Authentication Selector Instance

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 91

 The next tab, Authentication Selector, prompts for the HyperText Markup Language
(HTML) template for the page that will prompt the user to enter the domain or email
address (Figure 3-38). The default value will use the template delivered with the
adapter; if desired, a custom template can be used instead to modify the appearance of
the page. Provide a cookie name, which will be used to persist the domain selection. Fi-
nally, the age of the cookie can be modified. By default, users will be prompted again to
enter their domain after 30 days.

Figure 3-38 Authentication Selector Details

 On the Selector Result Values tab, specify the expected domain values (Figure 3-39).
When the domain selector is used in an access policy, different policy branches will be
created for each of these values. In this case, if the domain is motorolasolutions.com,
the user will be authenticated locally; if it is lpsd.msso or spsd.msso, the user will be re-
directed to the corresponding IdP to authenticate.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 92

Figure 3-39 Selector Result Values

 Click Done, and then click Save to complete the selector configuration.

3.4.4.2 Define the Authentication Policy
 On the IdP Configuration page, click Policies under Authentication Policies.

 Select the three checkboxes at the top of the Manage Authentication Policies page,
which are shown in Figure 3-40.

Figure 3-40 Policy Settings

 Select the Domain Selector as the first element in the policy (Figure 3-41). This will cre-
ate policy branches for the three values defined for the policy selector.

i. Select the corresponding authentication mechanism for each domain. The ex-
ample shown in Figure 3-41 uses the IdP connections for the lpsd.msso and
spsd.msso, as well as the “fidoonly” adapter for local authentication of users in
the motorolasolutions.com domain.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 93

Figure 3-41 Authentication Policy

ii. There is no need to specify Options or Success Rules. For the two IdP connec-
tions, apply the myContractName policy contract upon success, with the con-
tract mapping configured as shown in Figure 3-42.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 94

Figure 3-42 Policy Contract Mapping for IdP Connections

 For the “fidoonly” adapter, apply the fidoAuthContract with the contract mapping
shown in Figure 3-43.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 95

Figure 3-43 Policy Contract Mapping for Local Authentication

This completes the configuration of the AS.

4 How to Install and Configure the Identity Providers
PingFederate 8.3.2.0 was used for the SAML and OIDC IdP installs. The system requirements and
installation process for PingFederate are identical to the OAuth AS installation documentation in
Section 3.1 and Section 3.2. The IdP configuration sections pick up the installation process after the
software has been installed, at the selection of roles and protocols.

4.1 How to Configure the User Store
Each IdP uses its own AD forest as a user store. AD was chosen due to its widespread use across many
organizations. For the purposes of this project, any LDAP directory could have served the same purpose,
but in a typical organization, AD would be used for other functions, such as workstation login and
authorization to applications, shared drives, printers, and other services. The Active Directory Users and
Computers console (Figure 4-1) was used to create user accounts and set attributes.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 96

Figure 4-1 Active Directory Users and Computers

In addition to the user accounts that log in to the lab applications, a service account must be created to
enable the IdP to access and query the AD. This user’s LDAP Distinguished Name (DN) and password (in
the example shown in Figure 4-1) are used in the PingFederate directory integration described below.

The procedure for connecting a PingFederate IdP to an LDAP directory is the same for a SAML or OIDC
IdP. Documentation is provided at
https://documentation.pingidentity.com/pingfederate/pf82/index.shtml#concept_configuringLdapConn
ection.html.

 To start the process, click the Server Configuration section tab on the left side of the
PingFederate administrative console. The screen shown in Figure 4-2 will appear.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

https://documentation.pingidentity.com/pingfederate/pf82/index.shtml#concept_configuringLdapConnection.html
https://documentation.pingidentity.com/pingfederate/pf82/index.shtml#concept_configuringLdapConnection.html

NIST SP 1800-13C: Mobile Application Single Sign-On 97

Figure 4-2 Server Configuration

 Click Data Stores under SYSTEM SETTINGS.

 On the next screen, click Add New Data Store.

 The screen shown in Figure 4-3 will appear. On the Data Store Type tab, select LDAP for
the data store type.

i. Click Next.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 98

Figure 4-3 Data Store Type

 On the LDAP Configuration tab, enter the connection parameters for your AD or LDAP
environment (Figure 4-4). Some notes on the fields on this tab are provided below. Click
Save to exit the LDAP configuration screen once the required settings have been en-
tered.

 HOST NAME(S): Enter the Fully Qualified Domain Name (FQDN) or the complete
Internet Protocol (IP) address of an AD domain controller. A port number can be
specified if AD is running on non-standard ports.

 LDAP TYPE: This is the LDAP server in use—AD in this case.

 BIND ANONYMOUSLY: For AD environments, allowing anonymous BIND
(Berkeley Internet Name Domain) is not recommended.

 USER DN: This is the Distinguished Name of the PingFederate user account
created in AD; in this build architecture, this account is used only for querying
AD, so it does not require any special privileges.

 PASSWORD: This is the password for the PingFederate AD user.

 USE LDAPS: This can be enabled if AD is configured to serve LDAP over TLS.

 MASK VALUES IN LOG: This prevents attributes returned from this data source
from being exposed in server logs.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 99

Figure 4-4 LDAP Data Store Configuration

4.2 How to Install and Configure the SAML Identity Provider
 On the Server Configuration screen, click Server Settings.

 On the Roles & Protocols tab, enable roles and protocols to configure the server as a
SAML IdP (Figure 4-5).

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 100

Figure 4-5 Server Roles for SAML IdP

 On the Federation Info tab, specify the BASE URL and SAML 2.0 ENTITY ID of the IdP
(Figure 4-6). The BASE URL should be a URL resolvable by your mobile clients. The EN-
TITY ID should be a meaningful name that is unique among federation partners; in this
case, the FQDN of the server is used.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 101

Figure 4-6 SAML IdP Federation Info

4.2.1 Configuring Authentication to the IdP
This example configures an authentication policy that requires the user to authenticate with username
and password and then with a FIDO U2F token.

4.2.1.1 Configure the Password Validator
 On the Server Configuration section tab, click Password Credential Validators under

Authentication.

 Click Create New Instance.

 On the Type tab, for the TYPE, choose LDAP Username Password Credential Validator
(Figure 4-7). This example will authenticate AD usernames and passwords by using the
AD data store defined in Section 4.1.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 102

Figure 4-7 Create Password Credential Validator

 On the Instance Configuration tab, specify the parameters for searching the LDAP direc-
tory for user accounts (Figure 4-8). Select the data store created in Section 4.1, and en-
ter the appropriate search base and filter. This example will search for a sAMAccount-
Name matching the username entered on the login form.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 103

Figure 4-8 Credential Validator Configuration

 The Extended Contract tab enables the retrieval of additional attributes from the LDAP
server, which can be used in assertions to RPs (Figure 4-9). The example shown in
Figure 4-9 adds several AD attributes to the contract.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 104

Figure 4-9 Password Credential Validator Extended Contract

 Finally, the Summary tab shows all of the values for the configured validator
(Figure 4-10).

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 105

Figure 4-10 Password Validator Summary

 Click Done, and then click Save to complete the setup of the password validator.

4.2.1.2 Configure the HTML Form Adapter
 On the IdP Configuration section tab, click Adapters.

 Click Create New Instance.

 On the Type tab, create the name and ID of the adapter, and select the HTML Form IdP
Adapter for the TYPE (Figure 4-11).

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 106

Figure 4-11 HTML Form Adapter Instance

 On the IdP Adapter tab, add the Password Validator instance created in the previous
section (Figure 4-12). This tab provides several options for customizing the login page
and supporting password resets and password recovery that would be relevant to a Pro-
duction deployment. In the lab, password resets were not supported, and these fields
stayed at their default values.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 107

Figure 4-12 Form Adapter Settings

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 108

 On the Extended Contract tab, the same attributes returned from AD by the Password
Validator are added to the adapter contract to make them available for further use by
the IdP (Figure 4-13).

Figure 4-13 Form Adapter Extended Contract

 On the Adapter Attributes tab, select the Pseudonym checkbox for the username at-
tribute.

 There is no need to configure anything on the Adapter Contract Mapping tab, as all at-
tributes are provided by the adapter. Click Done, and then click Save to complete the
Form Adapter configuration.

4.2.1.3 Configure the FIDO U2F Adapter
Before this step can be completed, the FIDO U2F server, StrongKey CryptoEngine (SKCE), must be
installed and configured, and the StrongKey U2F adapter for PingFederate must be installed on the IdP.
See Section 6 for details on completing these tasks.

 On the IdP Configuration section tab, click Adapters.

 Click Create New Instance.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 109

 Enter meaningful values for INSTANCE NAME and INSTANCE ID. For the TYPE, select
“StrongAuth FIDO Adapter.” Click Next.

Figure 4-14 Create U2F Adapter Instance

 On the IdP Adapter tab, keep the default value of the HTML FORM TEMPLATE NAME to
use the template that is provided with the StrongKey U2F plugin, or specify a custom
template if desired to change the design of the user interface (Figure 4-15). The FIDO
SERVER URL, DOMAIN ID, SKCE SERVICE USER, and SKCE SERVICE USER PASSWORD are
determined in the setup of the SKCE; refer to Section 6 for details.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 110

Figure 4-15 U2F Adapter Settings

 There is no need to extend the contract for the U2F adapter; therefore, skip the Ex-
tended Contract tab.

 On the Adapter Attributes tab, select the Pseudonym checkbox for the username at-
tribute.

 There is also no need for an Adapter Contract Mapping; therefore, skip the Adapter
Contract Mapping tab.

 Click Done, and then click Save.

4.2.1.4 Configure the Authentication Policies
 On the IdP Configuration page, click Policies.

 Under Manage Authentication Policies, click the ENABLE IDP AUTHENTICATION POLI-
CIES checkbox, and create a policy that starts with the HTML Form Adapter action
(Figure 4-16).

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 111

i. On the Success branch, add the FIDO U2F adapter (FIDOADPT) for the Action.

ii. Click Save.

Figure 4-16 IdP Authentication Policy

4.2.2 Configure the SP Connection
Each RP that will receive authentication assertions from the IdP must be configured as an SP connection.
As explained in Section 3.4.2.1, this activity requires coordination between the administrators of the IdP
and the RP to provide the necessary details to configure the connection. Exchanging metadata files can
help automate some of the configuration process.

This section documents the configuration for the SP connection between the SAML IdP in the NCCoE lab
and the OAuth AS in the Motorola Solutions cloud instance.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 112

 To create a new SP connection, click the IdP Configuration section tab, and then click Create
New under SP Connections.

 On the Connection Type tab, select BROWSER SSO PROFILES, and select the SAML 2.0
protocol (Figure 4-17). In this case, SAML 2.0 is pre-selected because no other protocols
are enabled on this IdP.

Figure 4-17 SP Connection Type

 On the Connection Options tab, only BROWSER SSO needs to be selected.

 If metadata for the SP is available, it can be imported on the Import Metadata tab. This
metadata can be specified in the form of a file upload or URL.

 On the General Info tab, enter the PARTNER’S ENTITY ID (CONNECTION ID)
(Figure 4-18); this must match the ENTITY ID configured on the Federation Info tab in
the Server Configuration of the SP. The SP’s BASE URL should also be added on this
General Info tab.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 113

Figure 4-18 SP Connection General Info

 On the Browser SSO tab, click Configure Browser SSO. This opens another multi-tabbed
configuration screen.

i. On the SAML Profiles tab, different SSO and Single Log-Out (SLO) profiles can be
enabled (Figure 4-19). Only SP-INITIATED SSO is demonstrated in this lab build.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 114

Figure 4-19 SP Browser SSO Profiles

ii. On the Assertion Lifetime tab, time intervals during which SPs should consider
assertions valid can be configured in minutes before and after assertion crea-
tion. In the lab, these were both set to the default of five minutes.

iii. On the Assertion Creation tab, click Configure Assertion Creation. This opens a
new multi-tabbed configuration screen.

1) On the Identity Mapping tab, select the STANDARD mapping (Figure 4-20).
The other options are more suitable for situations where identifiers are
sensitive or where there are privacy concerns over the tracking of users.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 115

Figure 4-20 Assertion Identity Mapping

2) On the Attribute Contract tab, extend the contract to include the mail and
uid attributes with the basic name format (Figure 4-21). Other attributes
can be added here as needed.

Figure 4-21 Assertion Attribute Contract

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 116

3) On the Authentication Source Mapping tab, attributes provided by au-
thentication adapters and policy contracts can be mapped to the assertion
attribute contract, identifying which data will be used to populate the as-
sertions. The FIDO U2F adapter and the HTML Form Adapter should appear
under Adapter Instance Name. Select the HTML Form Adapter, as it can
provide the needed attributes from LDAP via the Password Validator and
the AD data store connection. This brings up another multi-tabbed configu-
ration screen.

 The Adapter Instance tab shows the attributes that are returned by
the selected adapter. Click Next.

 The Mapping Method tab provides options to query additional data
stores to build the assertions, but in this case, all of the required at-
tributes are provided by the HTML Form Adapter. Select USE ONLY
THE ADAPTER CONTRACT VALUES IN THE SAML ASSERTION.

 On the Attribute Contract Fulfillment tab, map the SAML_SUBJECT,
mail, and uid attributes to the username, mail, and userPrincipal-
Name adapter values (Figure 4-22).

Figure 4-22 Assertion Attribute Contract Fulfillment

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 117

 No Issuance Criteria are required; therefore, skip the Issuance Criteria
tab.

 Click Done to exit the IdP Adapter Mapping.

4) Click Done to exit the Assertion Creation.

iv. On the Protocol Settings tab, options such as additional SAML bindings, signa-
ture policy details, and assertion encryption policies can be specified
(Figure 4-23). For the lab build, these values stayed at their default settings.

Figure 4-23 Browser SSO Protocol Settings

v. Click Done to exit Browser SSO.

 On the Credentials tab, the certificate to use for signing assertions can be specified. A
self-signed certificate can be generated by PingFederate, or a trusted certificate can be
obtained and uploaded. Click Configure Credentials to create or manage signing creden-
tials.

 On the Activation & Summary tab, the connection status can be set to ACTIVE. All con-
figured settings for the SP connection are also displayed for verification.

 Click Save to complete the SP connection configuration.

This completes the configuration of the SAML IdP.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 118

4.3 How to Install and Configure the OIDC Identity Provider
 On the Server Configuration section tab, click Server Settings.

 On the Roles & Protocols tab, enable the roles and protocols as shown in Figure 4-24.
Although the OIDC IdP does not actually use the SAML protocol, some required configu-
ration settings are unavailable if the IdP role is not enabled.

Figure 4-24 OIDC IdP Roles

 On the Federation Info tab, specify the BASE URL and SAML 2.0 ENTITY ID. The BASE
URL must be a URL that is exposed to clients.

 On the OAuth Settings section tab, click Authorization Server Settings to configure general
OAuth and OIDC parameters. The OIDC IdP’s settings on this page are identical to those for the
OAuth AS; refer to Section 3.3 for notes on these settings.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 119

 On the OAuth Settings section tab, click Scope Management. Add the scopes defined in the
OpenID Connect Core specification [25]:

 openid

 profile

 email

 address

 phone

4.3.1 Configuring Authentication to the OIDC IdP
In the lab architecture, the OIDC IdP supports FIDO UAF authentication through integration with the
NNAS and the Nok Nok Labs Gateway, using the Nok Nok FIDO UAF adapter for PingFederate.
Configuring UAF authentication to the OIDC IdP cannot be completed until the Nok Nok Labs servers are
available and the UAF plugin has been installed on the IdP server as specified in Section 5.

4.3.1.1 Configure the FIDO UAF Plugin
The steps to configure the FIDO UAF plugin for the OIDC IdP are identical to those documented in
Section 3.4.1.1 for direct authentication using UAF at the AS. The only difference in the lab build was the
URLs for the NNAS and the Nok Nok Labs Gateway, as the AS and the OIDC IdP used two different
instances of the Nok Nok Labs server.

4.3.1.2 Configure an Access Token Management Instance
 On the OAuth Settings section tab, click Access Token Management.

 Click Create New Instance.

 On the Type tab, provide an INSTANCE NAME and INSTANCE ID (Figure 4-25).

i. Select Internally Managed Reference Tokens for the TYPE.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 120

Figure 4-25 Create Access Token Manager

Although we have selected reference tokens, the ID Token is always issued in
the form of a JWT. The token that is being configured here is not the ID Token,
but rather the access token that will be issued to authorize the RP to call the
userinfo endpoint at the IdP to request additional claims about the user.
Because this access token only needs to be validated by the OIDC IdP itself,
reference tokens are sufficient. In the Authorization Code flow, the RP obtains
both the ID Token and the access token in exchange for the authorization code
at the IdP’s token endpoint.

 Click the Instance Configuration tab to configure some security properties of the access
token, such as its length and lifetime (Figure 4-26). For the lab build, the default values
were accepted.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 121

Figure 4-26 Access Token Manager Configuration

 On the Access Token Attribute Contract tab, extend the contract with any attributes
that will be included in the ID Token (Figure 4-27). In the example shown in Figure 4-27,
several attributes that will be queried from AD have been added.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 122

Figure 4-27 Access Token Attribute Contract

 There is no need to configure the Resource URIs or Access Control tabs; these tabs can
be skipped.

 Click Done, and then click Save.

4.3.1.3 Configure an IdP Adapter Mapping
The IdP Adapter Mapping determines how the persistent grant attributes are populated using
information from authentication adapters.

 Click the OAuth Settings section tab, and then click IdP Adapter Mapping.

 Select the UAF adapter instance created in Section 4.3.1.1, and then click Add Mapping.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 123

 On the Contract Fulfillment tab, map both USER_KEY and USER_NAME to the
username value returned from the adapter (Figure 4-28).

Figure 4-28 Access Token Contract Fulfillment

4.3.1.4 Configure an Access Token Mapping
The Access Token Mapping determines how the access token attribute contract is populated. In this
example, the values returned from the adapter are supplemented with attributes retrieved from AD,
and issuance criteria are used to require the user to be actually found in AD for a token to be issued.
Depending on the credential and access life-cycle processes used in a given organization, there may be a
lag in deactivating the authenticator or the AD account when a user’s access is terminated.
Organizations’ authentication policies should account for these conditions and should allow or deny
access appropriately.

 On the OAuth Settings section tab, click Access Token Mapping.

 Under CONTEXT and ACCESS TOKEN MANAGER, select the IdP Adapter and Access Token
Manager created in the preceding steps, and click Add Mapping.

 On the Attribute Sources & User Lookup tab, click Add Attribute Source. This brings up
another multi-tabbed configuration.

i. On the Data Store tab, give the attribute source an ID and description
(Figure 4-29). For ACTIVE DATA STORE, select the user store created in
Section 4.1.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 124

Figure 4-29 Data Store for User Lookup

ii. On the LDAP Directory Search tab, specify the BASE DN and SEARCH SCOPE,
and add the AD attributes to be retrieved (Figure 4-30). When specifying attrib-
utes, it is necessary to first select the root object class that contains the attrib-
ute. Common attributes associated with user accounts may be derived from the
User or OrganizationalPerson class, for example. Refer to Microsoft’s AD
Schema documentation [26] to identify the class from which a given attribute is
derived.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 125

Figure 4-30 Attribute Directory Search

iii. On the LDAP Filter tab, create the filter to select the relevant user account. In
this example, the username from the adapter is matched against the AD SAM
account name:

sAMAccountName=${adapter.username}

iv. Click Done to exit the attribute source configuration.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 126

 On the Contract Fulfillment tab, specify the source and value to use for each attribute in
the access token attribute contract (Figure 4-31).

Figure 4-31 Access Token Contract Fulfillment

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 127

 On the Issuance Criteria tab, define a rule that will prevent token issuance if the user
account doesn’t exist in AD (Figure 4-32). In this case, the objectClass attribute, which
all AD objects have, is checked for the Value called user. If no user account is found in
AD, this attribute will have no Value, the Condition will be false, and the specified Error
Result will appear in the PingFederate server log.

Figure 4-32 Access Token Issuance Criteria

 Click Done, and then click Save to finish the Access Token Attribute Mapping configura-
tion.

4.3.1.5 Configure an OIDC Policy
 On the OAuth Settings tab, click OpenID Connect Policy Management.

 Click Add Policy.

 On the Manage Policy tab, create a POLICY ID and NAME, and select the INCLUDE USER
INFO IN ID TOKEN checkbox (Figure 4-33). This selection means that the user’s attrib-
utes will be included as claims in the ID Token JWT. The advantage of this approach is
that the RP can directly obtain user attributes from the ID Token without making addi-
tional requests to the IdP. The alternative is to include only a subject claim in the ID To-
ken, and to have the RP call the IdP’s userinfo endpoint to obtain additional user attrib-
utes.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 128

Figure 4-33 OIDC Policy Creation

 On the Attribute Contract tab, the set of attributes in the contract can be edited
(Figure 4-34). The contract is automatically populated with the standard claims defined
in the OIDC Core specification. In the example shown in Figure 4-34, some claims have
been removed and others have been added to accommodate the attribute available
from AD.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 129

Figure 4-34 OIDC Policy Attribute Contract

 Skip the Attribute Sources & User Lookup tab; there is no need to retrieve additional
attributes.

 On the Contract Fulfillment tab, populate the OIDC attributes with the corresponding
values from the Access Token context (Figure 4-35).

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 130

Figure 4-35 OIDC Policy Contract Fulfillment

 There is no need for additional issuance criteria; therefore, skip the Issuance Criteria
tab.

 Click Save to complete the OIDC Policy configuration.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 131

4.3.2 Configuring the OIDC Client Connection
Registering a client at an OIDC IdP is analogous to creating an SP connection at a SAML IdP. Some
coordination is required between the administrators of the two systems. The client ID and client secret
must be provided to the RP, and the RP must provide the redirect URI to the IdP.

 To add a client, click the OAuth Settings section tab, and then click Create New under Clients.

 Create a CLIENT ID and CLIENT SECRET (Figure 4-36). If mutual TLS authentication is
being used instead, the RP must provide its certificate, which can be uploaded to the
client creation page. Only the Authorization Code grant type is needed for this integra-
tion. In the example shown in Figure 4-36, user prompts to authorize the sharing of the
user’s attributes with the RP have been disabled in favor of streamlining access to appli-
cations.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 132

Figure 4-36 OIDC Client Configuration

This completes configuration of the OIDC IdP.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 133

5 How to Install and Configure the FIDO UAF
Authentication Server

For the lab build environment, the Nok Nok Labs S3 Authentication Suite provides FIDO UAF integration.
The S3 Authentication Suite can support a variety of different deployments and architectures, as
described in the Solution Guide [27]. This section briefly describes the overall deployment architecture
used for this build.

The Nok Nok Labs SDKs can be directly integrated into mobile applications, providing UAF client
functionality directly within the application. This deployment would be more suitable to use cases that
do not involve federation, where the requirement is to authenticate users directly at the application
back end. Nok Nok Labs also provides “Out-of-Band” (OOB) integration. OOB can support workflows
where a mobile device is used for true OOB authentication of logins or transactions initiated on another
device, such as a laptop or workstation. OOB also can be used for authentication flows in a mobile web
browser, including OAuth authorization flows or IdP authentication, as implemented in this build by
using the AppAuth pattern.

When OOB is used in a cross-device scenario, the user must first register the mobile device by scanning
a QR code displayed in the browser. Subsequent authentication requests can be sent by push
notification to the registered device. When the OOB flow is initiated in a mobile browser, however, the
authentication request can be sent directly to the application running the Nok Nok Labs SDK by using
mobile platform technologies to open links directly in mobile applications (App Links for Android, or
Universal Links for iOS). The FIDO client that processes the OOB authentication request can be either a
custom application incorporating the Nok Nok Labs SDK, or the Nok Nok Labs Passport application,
which provides a ready-made implementation.

The components of the Nok Nok Labs deployment for this build architecture are as follows:

 Nok Nok Labs Passport—provides UAF client functionality as well as Authenticator-Specific
Modules (ASMs) and authenticators on the mobile device

 Nok Nok Labs PingFederate UAF Adapter—a PingFederate plugin providing integration between
a PingFederate AS or IdP and the NNAS, enabling UAF authentication or transaction verification
to be integrated into PingFederate authentication policies

 NNAS—provides core UAF server functionality, including the generation and verification of
challenges, as well as APIs for interactions with UAF clients and the PingFederate Adapter

 Nok Nok Labs Gateway—provides a simplified interface to request FIDO operations from the
Authentication Server, as well as integration with the existing application session management
infrastructure

 Nok Nok Labs Gateway Tutorial Application—a demonstration web application implementation
that provides simple U2F and UAF authentication and registration workflows

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 134

In a typical production implementation, the gateway functions for authenticator management
(registration and de-registration) would require strong authentication implemented through the
Gateway’s session management integration. Nok Nok Labs’ documentation for the PingFederate plugin
provides examples for defining a “reg” OAuth scope to request authenticator registration. An OAuth
Scope Authentication Selector could be used in a PingFederate authentication policy to trigger the
required strong authentication process.

5.1 Platform and System Requirements
The following subsections list the hardware, software, and network requirements for the various Nok
Nok Labs components.

5.1.1 Hardware Requirements
Nok Nok Labs specifies the following minimum hardware requirements for the NNAS and Nok Nok Labs
Gateway components. The requirements for acceptable performance will depend on the anticipated
user population and server load. See the Enabling Scalability & Availability section of the Solution Guide
for architecture guidance on deploying the NNAS in a clustered configuration.

 Processor: 1 CPU

 Memory: 4 GB RAM

 Hard disk drive size: 10 GB

5.1.2 Software Requirements
Complete software requirements for the NNAS are provided in the Nok Nok Labs Authentication Server
Administration Guide [28]. The major requirements are summarized below:

 OS: Red Hat Enterprise Linux 7 or CentOS 7

 Relational database system: MySQL 5.7.10 or later versions, Oracle Database 12c, or PostgreSQL
9.2 or 9.4

 Application server: Apache Tomcat 8.0.x or 8.5.x

 Java: Oracle JDK Version 8

 Build tool: Apache Ant 1.7 or later versions

 For clustered deployments: Redis 2.8 or later versions

 Google Cloud Messenger (GCM) or Apple Push Notification System (APNS), if using push
messages

The Nok Nok Labs PingFederate Adapter is compatible with PingFederate 8.1.3 or later versions.

The Nok Nok Labs Gateway is also deployed in Tomcat.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 135

5.2 How to Install and Configure the FIDO UAF Authentication Server
The installation process for the Authentication Server is documented in the Administration Guide. A
high-level summary is provided below, with notes relevant to the lab build:

 Install the OS and dependent software, including Java and Tomcat. The database can be
installed on the same host as Tomcat, or remotely. Provision a TLS certificate for the server and
configure Tomcat to use TLS.

 The configuration for push notifications to support OOB authentication is not required for this
build; push notifications would be used when the mobile device is used to authenticate logins or
transactions initiated on a separate device.

 Follow the instructions to generate an encryption key and encrypt database credentials in the
installation script. Encrypting the push notification credentials is not required, unless that
functionality will be used.

 For this lab build, the standalone installation was used. The standalone option uses the
PostgreSQL database on the same host as the Authentication Server and also installs the Tutorial
application.

 After running the installation script, delete the encryption key (NNL_ENCRYPTION_KEY_BASE64)
from nnl-install-conf.sh.

 For this lab build, the default policies and authenticators were used. In a production
deployment, policies could be defined to control the authenticator types that could be
registered and used to authenticate.

 Provisioning a Facet ID is not necessary for the OOB integration with Nok Nok Labs Passport, as
used in the lab. If the Nok Nok Labs SDK were integrated with a custom mobile application, then
the Facet ID would need to be configured, and the facets.uaf file would need to be published at
a URL where it is accessible to clients.

 Application link/universal link integration (optional)—In the lab, the default setting using an
application link under https://app.noknok.com was used. This is acceptable for testing, but in a
production deployment, an application link pointing to the IdP’s actual domain name would
typically be used. It should be noted that the FQDN for the application link must be different
from the authentication endpoint (i.e., the IdP’s URL) at least by sub-domain.

 Configure tenant-specific and global parameters. For the lab build, a single tenant was used.
Many parameters can stay at the default settings. Some notes on specific parameters are
provided below:

• uaf.application.id—This should be a URL that is accessible to clients. In a production
deployment, the AS may not be accessible, so this may need to be hosted on a different
server.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

https://app.noknok.com/

NIST SP 1800-13C: Mobile Application Single Sign-On 136

• uaf.facet.id—There is no need to modify the Facet ID setting to enable the use of the
Passport application for OOB authentication; however, if other custom applications were
directly integrating the Nok Nok Labs SDK, they would need to be added here.

 For a production deployment, client certificate authentication to the Authentication Server
should be enabled. This is done by configuring the Tomcat HTTP connector to require client
certificates. This requires provisioning a client certificate for the gateway (and any other servers
that need to call the Nok Nok Labs APIs). See the notes in Section 5.3 of the Administration
Guide about configuring the Gateway to use client certificate authentication. A general
reference on configuring TLS in Tomcat 8 can be found at https://tomcat.apache.org/tomcat-
8.0-doc/ssl-howto.html.

5.3 How to Install and Configure the FIDO UAF Gateway Server
The Nok Nok Labs Gateway application is delivered as a Web Archive (WAR) file that can be deployed to
a Tomcat server. For the lab build, it was deployed on the same server as the NNAS.

Configure the required settings in the nnlgateway.properties file, including the settings listed below:

 mfas_location—NNAS URL

 server.auth.enabled—should be set to true; also requires configuring the trust-store settings

 client.auth.enabled—see notes in Section 5.2 above; should be enabled for strong client
authentication in production deployments; also requires configuring the keystore settings

In addition, the Gateway Tutorial application was installed by deploying the gwtutorial.war file and
configuring the required URLs in gwtutorial.properties.

5.4 How to Install and Configure the FIDO UAF Adapter for the OAuth 2 AS
Nok Nok Labs provided a tar file containing a set of software tools for integration and testing with
PingFederate. Version 5.1.0.501 of the Ping Integration library was used for the lab build. The
installation process is summarized below; refer to the Nok Nok PingFederate Adapter Integration Guide
[29] for full details:

1. Extract the adapter folder from the nnl-ping-integration-5.1.0.501.tar file onto the PingFederate
server where the adapter will be installed.

2. Stop PingFederate if it is running, and run the installation script. The path to the PingFederate
installation is passed as an argument; run the script by using an account with write access to the
PingFederate installation:
$./adapter-deploy.sh /usr/share/pingfederate-8.2.2/pingfederate

3. Configure the adapter.properties file (located in the PingFederate directory under
server/default/conf) as required for the server and client TLS authentication settings specified

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

https://tomcat.apache.org/tomcat-8.0-doc/ssl-howto.html
https://tomcat.apache.org/tomcat-8.0-doc/ssl-howto.html

NIST SP 1800-13C: Mobile Application Single Sign-On 137

earlier in the Authentication Server configuration. If push notifications are enabled, configure
the relevant settings.

4. The Configure Session Manager and Deploy Nok Nok Gateway OOB sections of the Integration
Guide provide settings to use PingFederate to protect the Registration endpoint on the Nok Nok
Labs Gateway. This could be used in conjunction with the custom “reg” scope and a
PingFederate authentication policy to require strong authentication prior to UAF authenticator
registration. This configuration was not tested in the lab.

The Configure PingFederate Console section of the Integration Guide walks through the complete
configuration of a PingFederate OIDC provider. See Section 4.3 of this guide for the procedure to
configure the OpenID Provider.

6 How to Install and Configure the FIDO U2F
Authentication Server

The SKCE from StrongKey performs the FIDO U2F server functionality in the build architecture.
StrongKey’s main product is the StrongKey Tellaro Appliance, but the company also distributes much of
its software under the Lesser General Public License (LGPL), published by the Free Software Foundation.
SKCE 2.0 Build 163 was downloaded from its repository on Sourceforge and was used for this build. For
more information, documentation, and download links, visit the vendor’s site at
https://sourceforge.net/projects/skce/.

6.1 Platform and System Requirements
The following subsections document the software, hardware, and network requirements for SKCE 2.0.

6.1.1 Software Requirements
StrongKey’s website lists the OSs on which SKCE has been tested:

 CentOS 6.X or 7.X, 64-bit

 Windows 7 Professional, 64-bit

Since SKCE is a Java application, in theory it should be able to run on any OS that supports a compatible
version of Java and the other required software. The application was built with the Oracle JDK Version 8,
Update 72. For this build, SKCE was installed on a CentOS 7.4 server; therefore, these steps assume a
Linux installation.

SKCE can be installed manually or with an installation script included in the download. SKCE depends on
other software components, including an SQL database, an LDAP directory server, and the Glassfish Java
application server. By default, the script will install MariaDB, OpenDJ, and Glassfish all on a single server.
SKCE can also utilize AD for LDAP.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

https://sourceforge.net/projects/skce/

NIST SP 1800-13C: Mobile Application Single Sign-On 138

For this build, the scripted installation was used with the default software components. The required
software components, which are listed below, must be downloaded prior to running the installation
script:

 Glassfish 4.1

 Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files 8

 JDK 8, Update 121

 OpenDJ 3.0.0

 MariaDB 10.1.22

 MariaDB Java Client

See StrongKey’s scripted installation instructions for details and download links:
https://sourceforge.net/p/skce/wiki/Install%20StrongKey%20CryptoEngine%202.0%20%28Build%20163
%29%20Scripted/.

To download OpenDJ, you must register for a free account for ForgeRock BackStage.

SKCE can also utilize an AD LDAP service. The LDAP directory contains system user accounts for
managing the SKCE (generating cryptographic keys, etc.). Data pertaining to registered users and
authenticators is stored in the SQL database, not in LDAP.

6.1.2 Hardware Requirements
StrongKey recommends installing SKCE on a server with at least 10 GB of available disk space and 4 GB
of RAM.

6.1.3 Network Requirements
The SKCE API is hosted on Transmission Control Protocol (TCP) port 8181. Any applications that request
U2F registration, authentication, or deregistration actions from the SKCE need to be able to connect on
this port. Glassfish runs an HTTPS service on this port. Use firewall-cmd, iptables, or any other system
utility for manipulating the firewall to open this port.

Other network services listen on the ports listed below. For the scripted installation, where all these
services are installed on a single server, there is no need to adjust firewall rules for these services
because they are only accessed from localhost.

 3306—MariaDB listener

 4848—Glassfish administrative console

 1389—OpenDJ LDAP service

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

https://sourceforge.net/p/skce/wiki/Install%20StrongKey%20CryptoEngine%202.0%20%28Build%20163%29%20Scripted/
https://sourceforge.net/p/skce/wiki/Install%20StrongKey%20CryptoEngine%202.0%20%28Build%20163%29%20Scripted/

NIST SP 1800-13C: Mobile Application Single Sign-On 139

6.2 How to Install and Configure the FIDO U2F Authentication Server
StrongKey’s scripted installation process is documented at
https://sourceforge.net/p/skce/wiki/Install%20StrongKey%20CryptoEngine%202.0%20%28Build%20163
%29%20Scripted/.

The installation procedure consists of the following steps:

 Downloading the software dependencies to the server where SKCE will be installed

 Making any required changes to the installation script

 Running the script as root/administrator

 Performing post-installation configuration

The installation script creates a “strongauth” Linux user and installs all software under
/usr/local/strongauth. Rather than reproduce the installation steps, this section provides some notes on
the installation procedure:

 Download the software: Download and unzip the SKCE build to a directory on the server where
SKCE is being installed. Download all installers as directed in the SKCE instructions to the same
directory.

 Change software versions as required in the install script: If different versions of any of the
software dependencies were downloaded, update the file names in the install script (install-
skce.sh). Using different versions of the dependencies, apart from minor point-release versions,
is not recommended. For the lab build, JDK Version 8u151 was used instead of the version
referenced in the instructions. This required updating the JDK and JDKVER settings in the file.

 Change passwords in the install script: Changing the default passwords in the delivered script is
strongly recommended. The defaults are readily discoverable, as they are distributed with the
software. Passwords should be stored in a password vault or other agency-approved secure
storage. Once the installation script has been run successfully, the script should be deleted or
sanitized to remove passwords. The following lines in the install script contain passwords:

LINUX_PASSWORD=ShaZam123 # For 'strongauth' account

GLASSFISH_PASSWORD=adminadmin # Glassfish Admin password

MYSQL_ROOT_PASSWORD=BigKahuna # MySQL 'root' password

MYSQL_PASSWORD=AbracaDabra # MySQL 'skles' password

SKCE_SERVICE_PASS=Abcd1234! # Webservice user 'service-cc-ce' password

SAKA_PASS=Abcd1234!

SERVICE_LDAP_BIND_PASS=Abcd1234!

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

https://sourceforge.net/p/skce/wiki/Install%20StrongKey%20CryptoEngine%202.0%20%28Build%20163%29%20Scripted/
https://sourceforge.net/p/skce/wiki/Install%20StrongKey%20CryptoEngine%202.0%20%28Build%20163%29%20Scripted/

NIST SP 1800-13C: Mobile Application Single Sign-On 140

SEARCH_LDAP_BIND_PASS=Abcd1234!

 Set the Application ID URL: The Application ID setting in install-skce.sh should point to a URL that
will be accessible to clients where the app.json file can be downloaded. The default location is a
URL on the SKCE server, but the SKCE would not be exposed to mobile clients in a typical
production deployment. In the lab, app.json was hosted on the PingFederate server hosting the
IdP in the following location:

/usr/share/pingfederate-8.3.2/pingfederate/server/default/conf/template/assets/scripts

which enables the file to be accessed by clients at the following URL:

https://idp1.spsd.msso:9031/assets/scripts/app.json.

 Run the script: install-skce.sh must be run as the root user. If the install script terminates with an
error, troubleshoot and correct any problems before continuing.

 (For CentOS 7) Create firewall rule: The install script attempts to open the required port using
iptables, which does not work on CentOS 7. In that case, the following commands will open the
port:

firewall-cmd --permanent --add-port 8181/tcp

success

firewall-cmd --reload

success

 Install additional libraries: Depending on how CentOS was installed, some additional libraries
may be required to run the graphical key custodian setup tool. In the lab, the SKCE server did
not include X11 or a graphical desktop, so the key custodian setup was run over Secure Shell
(SSH) with X11 forwarding. To install additional libraries needed for this setup, run the following
commands:

yum install libXrender

yum install libXtst

Note that running the graphical configuration tool over SSH also requires configuring X11
forwarding in the SSH daemon (sshd) on the server and using the -X command line option when
connecting from an SSH client.

 Run the key custodian setup tool: In production deployments, the use of a Hardware Security
Module (HSM) and USB drive for the security officer and key custodian credentials is strongly
recommended. In the lab, the software security module was used. Also, the lab setup utilized a
single SKCE server; in this case, all instructions pertaining to copying keys to a secondary
appliance can be ignored.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 141

 Restart Glassfish: On CentOS 7, run the following command:

$ sudo systemctl restart glassfishd

 Complete Steps 5.1 and 5.2 in the SKCE installation instructions to activate the cryptographic
module.

 Complete Step 5.3 in the SKCE installation instructions to create the domain signing key. When
prompted for the Application ID, use the URL referenced above in the Application ID setting of
the install-skce.sh script.

 Complete Step 6 if you are installing secondary SKCE instances; this was not done for this build
but is recommended for a production installation.

 Install a TLS certificate (optional): The SKCE installation script creates a self-signed certificate for
the SKCE. It is possible to use the self-signed certificate, though PingFederate and any other
servers that integrate with the SKCE would need to be configured to trust it. However, many
organizations will have their own CAs, and will want to generate a trusted certificate for the
SKCE for production use. To generate and install the certificate, follow the steps listed below:

 The keystore used by the SKCE Glassfish server is listed below:

/usr/local/strongauth/glassfish4/glassfish/domains/domain1/config/keystor
e.jks

 The default password for the keystore is “changeit”.

 Use keytool to generate a keypair and certificate signing request. For example, the fol-
lowing commands generate a 2048-bit key pair with the alias “msso” and export a Cer-
tificate Signing Request (CSR):

$ keytool -genkeypair -keyalg RSA -keysize 2048 -alias msso -keystore
keystore.jks

$ keytool -certreq -alias msso -file strongauth.req -keystore
keystore.jks

 Submit the CSR to your organization’s CA, and import the signed certificate along with
the root and any intermediates:

$ keytool -import -trustcacerts -alias msso-root -file lab-certs/root.pem
-keystore keystore.jks

$ keytool -import -alias msso -file lab-certs/strongauth.lpsd.msso.cer -
keystore keystore.jks

 To configure the SKCE to use the new certificate, log in to the Glassfish administrative
console on the SKCE server. The console runs on Port 4848; the username is “admin,”
and the password will be whatever was configured for GLASSFISH_PASSWORD in the
install-skce.sh script.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 142

i. Navigate to Configurations, server-config, HTTP Service, Http Listeners, http-
listener-2, as shown in Figure 6-1. On the SSL tab, set the Certificate NickName
to the alias that was created with the “keytool -genkeypair” command above.

Figure 6-1 Glassfish SSL Settings

 Click Save, and then restart glassfish. If logged on as the glassfish user, run the following
command:

$ sudo service glassfishd restart

 In a browser, access the SKCE web service on Port 8181, and ensure that it is using the
newly created certificate.

 For the FIDO Engine tests below to complete successfully, the main CA trust store for
the JDK will need to be updated with your organization’s CA certificate. This can also be
done with keytool:

$ keytool -import -trustcacerts -file lab-certs/root.pem -keystore
$JAVA_HOME/jre/lib/security/cacerts

 Test the FIDO Engine: Follow the testing instructions under Step 4 at the following URL:
https://sourceforge.net/p/skce/wiki/Test%20SKCE%202.0%20Using%20a%20Client%20Program
%20%28Build%20163%29/#4test-skcefido-engine.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

https://sourceforge.net/p/skce/wiki/Test%20SKCE%202.0%20Using%20a%20Client%20Program%20%28Build%20163%29/#4test-skcefido-engine
https://sourceforge.net/p/skce/wiki/Test%20SKCE%202.0%20Using%20a%20Client%20Program%20%28Build%20163%29/#4test-skcefido-engine

NIST SP 1800-13C: Mobile Application Single Sign-On 143

There are additional tests on that web page to test the other cryptographic functions of the
SKCE; however, only the FIDO Engine tests are critical for this build.

If the FIDO Engine tests are completed without errors, proceed to Section 6.3 to integrate the SKCE with
the IdP. If any errors are encountered, the Glassfish log file (located at
/usr/local/strongauth/glassfish4/glassfish/domains/domain1/logs/server.log) should contain messages
to aid in troubleshooting.

6.3 How to Install and Configure the FIDO U2F Adapter for the IdP
To incorporate FIDO U2F authentication into a login flow at the IdP, some integration is needed to
enable the IdP to call the SKCE APIs. In the lab build architecture, FIDO U2F authentication was
integrated into a SAML IdP. PingFederate has a plugin architecture that enables the use of custom and
third-party adapters in the authentication flow. StrongKey provides a PingFederate plugin to enable
PingFederate IdPs (or AS) to support U2F authentication. This section describes the installation of the
plugin on a PingFederate server. For details on how to integrate U2F authentication to a login flow, see
Section 4.2.1.3.

The StrongKey plugin for PingFederate is delivered in a zip file containing documentation and all of the
required program files.

 To begin the installation process, upload the zip file to the PingFederate server where the
StrongKey plugin will be installed, and unzip the files.

 If Apache Ant is not already installed on the server, install it now by using the server’s package
manager. For CentOS, this can be done by running the following command:

yum install ant

 Once Apache Ant is installed, follow the “Installation” instructions in the StrongKey – Ping
Federate FIDO IdP Adapter Installation Guide [30], which consist of copying the plugin files to
the required directories in the PingFederate installation, and running build.sh. If the script runs
successfully, it will build the plugin using Ant and restart PingFederate.

 Follow the steps in “Table 2: Configure the SKCE” in the Installation Guide. For this build, the
app.json file needs to be copied to a browser-accessible location on the PingFederate server
where the plugin is being installed. In the lab, we placed it under the following location:

/usr/share/pingfederate-8.3.2/pingfederate/server/default/conf/template/assets/scripts

 This enables the app.json to be accessed at the URL
https://idp1.spsd.msso:9031/assets/scripts/app.json. Note that Steps 4 and 5 in Table 2 of the
Installation Guide are required only if the SKCE is using the default self-signed certificate; if a
trusted certificate was installed as described in Section 6.2, then those steps can be skipped.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 144

 Download the JQuery 2.2.0 library at the URL below, and save it to the scripts folder referenced
above: https://code.jquery.com/jquery-2.2.0.min.js.

 Follow the steps in “Table 3: Configure the Ping Federate Instance” in the Installation Guide.
Importing the SKCE self-signed certificate is not required if a trusted certificate was created.
Installation of the JCE unlimited policy was described in the PingFederate installation
instructions in Section 3, so that too can be skipped at this point, if it has already been done.
Steps 7-9 should be completed in any case.

 Follow the steps in “Table 4: Configuring the FIDO Adapter” in the Installation Guide. In Step 5,
the Domain ID typically should be set to “1,” unless you have defined multiple domains in the
SKCE. For the username and password, use the values configured earlier in install-skce.sh.

 “Table 5: Ping Federate OAuth Configuration Steps” in the Installation Guide provides an
example of how to incorporate U2F into a login flow, along with username/password form login,
by creating a composite adapter that includes the login form and U2F adapters, and using a
selector to activate the composite adapter whenever an OAuth authorization request includes
the scope value “ldap.” Alternatively, the individual adapters can be called directly in an
authentication policy. See Chapter 4 of the Installation Guide for additional examples of using
U2F in authentication policies.

6.3.1 FIDO U2F Registration in Production
By default, the StrongKey Ping plugin enables the registration of U2F authenticators. In production, an
authorized registration process should be established to provide adequate assurance in the binding of
the authenticator to a claimed identity. If the FIDO adapter is accessible after single-factor password
authentication, organizations may want to disable the registration functionality. See Section B.5 in
Volume B of this guide for a discussion of FIDO enrollment.

7 Functional Tests
The MSSO architecture has a number of interoperating components, which can make troubleshooting
difficult. This section describes tests than can be performed to validate that individual components are
working as expected. If issues are encountered with the overall SSO flow, these tests may help identify
the problem area.

7.1 Testing FIDO Authenticators
The FIDO Alliance implements a Functional Certification Program, in which products are evaluated for
conformance to the UAF and U2F specifications. Purchasing FIDO-certified authenticators can help avoid
potential authenticator implementation issues. Information on the certification program is available at
https://fidoalliance.org/certification/, and the FIDO Alliance website also lists certified products.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

https://code.jquery.com/jquery-2.2.0.min.js
https://fidoalliance.org/certification/

NIST SP 1800-13C: Mobile Application Single Sign-On 145

Some resources are available to help troubleshoot individual authenticators:

 The Yubico demonstration site provides an interface for testing registration and authentication
with U2F authenticators: https://demo.yubico.com/u2f.

 The Nok Nok Labs Gateway Tutorial Application supports testing of the registration,
authentication, and transaction verification functions of FIDO UAF authenticators.

7.2 Testing FIDO Servers

The StrongKey SKCE documentation includes instructions on testing U2F authenticator registration,
authentication, de-registration, and other functions. See Step 14 in Section 6.2.

To test the NNAS, Nok Nok Labs provides the OnRamp mobile application in the Google Play Store and
the Apple App Store to test the server APIs with UAF authenticators.

7.3 Testing IdPs
If federated authentication is failing, the issue may lie at the IdP or the AS. The PingFederate server log
(located by default under <pingfederate-directory>/log/server.log), on both ends, should provide
relevant messages.

In some cases, it may be beneficial to look at the assertions being issued by the IdP and to check for the
expected attributes. This could be done by integrating a demonstration application as a federation client
and debugging the data returned in the assertion. For SAML, projects like SimpleSAMLphp
(https://simplesamlphp.org/) provide an implementation that is easy to deploy. It is also possible to
perform this testing without installing additional tools.

One method for SAML is to use Chrome Remote Debugging for Android devices:
https://developers.google.com/web/tools/chrome-devtools/remote-debugging/.

By logging the authentication flow in the Network pane of Chrome’s developer tools, the SAML response
can be extracted and viewed. The authentication flow with the SAML IdP configured in this practice
guide consists of a series of calls to the SSO.ping URL at the IdP. Because the SAML POST binding is used,
the final SSO.ping response includes an HTML form that submits the SAML response back to the AS. The
SAML response can be found in an input element in the page content:

<input type="hidden" name="SAMLResponse"
value="PHNhbWxwOlJlc3BvbnNlIFZlcnNpb249IjIuMCIgSUQ9Iko1T2xNNlZxZW5lVnpBU2doSHlsakFLYlI
uOCIgSXNzdWVJbnN0YW50PSIyMDE3LTExLTEzVDEzOjQ5OjE3LjEwMFoiIEluUmVzcG9uc2VUbz0iS2RwMXVfZ
HFPMHlNX2Z0YWVldWJnRjlvMFBYIiBEZXN0aW5hdGlvbj0iaHR0cHM6Ly9pZG0uc2FuZGJveC5tb3Rvcm9sYXN
vbHV0aW9ucy5jb20vc3AvQUNTLnNhbWwyIiB4bWxuczpzYW1scD0idXJuOm9hc2lzOm5hbWVzOnRjOlNBTUw6M
i4wOnByb3RvY29sIj48c2FtbDpJc3N1ZXIgeG1sbnM6c2FtbD0idXJuOm9hc2lzOm5hbWVzOnRjOlNBTUw6Mi4
wOmFzc2VydGlvbiI+aWRwMS5zcHNkLm1zc288L3NhbWw6SXNzdWVyPjxkczpTaWduYXR1cmUgeG1sbnM6ZHM9I
mh0dHA6Ly93d3cudzMub3JnLzIwMDAvMDkveG1sZHNpZyMiPgo8ZHM6U2lnbmVkSW5mbz4KPGRzOkNhbm9uaWN
hbGl6YXRpb25NZXRob2QgQWxnb3JpdGhtPSJodHRwOi8vd3d3LnczLm9yZy8yMDAxLzEwL3htbC1leGMtYzE0b

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

https://demo.yubico.com/u2f
https://simplesamlphp.org/
https://developers.google.com/web/tools/chrome-devtools/remote-debugging/

NIST SP 1800-13C: Mobile Application Single Sign-On 146

iMiLz4KPGRzOlNpZ25hdHVyZU1ldGhvZCBBbGdvcml0aG09Imh0dHA6Ly93d3cudzMub3JnLzIwMDEvMDQveG1
sZHNpZy1tb3JlI3JzYS1zaGEyNTYiLz4KPGRzOlJlZmVyZW5jZSBVUkk9IiNKNU9sTTZWcWVuZVZ6QVNnaEh5b
GpBS2JSLjgiPgo8ZHM6VHJhbnNmb3Jtcz4KPGRzOlRyYW5zZm9ybSBBbGdvcml0aG09Imh0dHA6Ly93d3cudzM
ub3JnLzIwMDAvMDkveG1sZHNpZyNlbnZlbG9wZWQtc2lnbmF0dXJlIi8+CjxkczpUcmFuc2Zvcm0gQWxnb3Jpd
GhtPSJodHRwOi8vd3d3LnczLm9yZy8yMDAxLzEwL3htbC1leGMtYzE0biMiLz4KPC9kczpUcmFuc2Zvcm1zPgo
8ZHM6RGlnZXN0TWV0aG9kIEFsZ29yaXRobT0iaHR0cDovL3d3dy53My5vcmcvMjAwMS8wNC94bWxlbmMjc2hhM
jU2Ii8+CjxkczpEaWdlc3RWYWx1ZT4xdlFpcUNVNmlZYTMzdlFtKzcxbEVsVm1pUUh6T2U5cytBTTdQYTk4Vlp
BPTwvZHM6RGlnZXN0VmFsdWU+CjwvZHM6UmVmZXJlbmNlPgo8L2RzOlNpZ25lZEluZm8+CjxkczpTaWduYXR1c
mVWYWx1ZT4KTHpSbUJhclk2bndGS3ZydjdTL29WYWNJSWRJRUY4eUloV0JXT0NHZ3pyMWtONGVzVi9CU3lLQ1N
XYjhKU1h3QzhWRHNNUnRXOENMNQpVRFV0NTV1OXRCa05Wanh2NWR0NStOYXQ5eWtmdnhXbU9kcGVJVTBzMXNuM
UJHdytkOTRoZUlCYVdJWE1ZOVlRaDlnV3Q2Sll0OVFhCmRGdDZrRUY1S1NDS1FBQVNlbTEyT2xLV29GK2JSbG1
HNGVsbTVMTTh1N0E3Wi9hRnZ1cDNDNmV5ZEpwK1IxaStaK0F6NHlXdmMvNmEKYnlLMTBPZ05pLzBibnprazd3L
0psdHk0ZlVEcVd6bXJyRFpwSEJ4ZkFMVW5UV2RPVDVJeko3bmpMQWtBYVN0NDYwWjUyblpBOGFBYgpVbzA4T0t
EYnZVaS9UZ2xTcUZjcDJSYStCaE9DbUR3OWJvTG9udz09CjwvZHM6U2lnbmF0dXJlVmFsdWU+CjwvZHM6U2lnb
mF0dXJlPjxzYW1scDpTdGF0dXM+PHNhbWxwOlN0YXR1c0NvZGUgVmFsdWU9InVybjpvYXNpczpuYW1lczp0Yzp
TQU1MOjIuMDpzdGF0dXM6U3VjY2VzcyIvPjwvc2FtbHA6U3RhdHVzPjxzYW1sOkFzc2VydGlvbiBJRD0iSF9tL
ldIR29VUVBELjNjVlA0MVhDVVh4YkdLIiBJc3N1ZUluc3RhbnQ9IjIwMTctMTEtMTNUMTM6NDk6MTcuMTU1WiI
gVmVyc2lvbj0iMi4wIiB4bWxuczpzYW1sPSJ1cm46b2FzaXM6bmFtZXM6dGM6U0FNTDoyLjA6YXNzZXJ0aW9uI
j48c2FtbDpJc3N1ZXI+aWRwMS5zcHNkLm1zc288L3NhbWw6SXNzdWVyPjxzYW1sOlN1YmplY3Q+PHNhbWw6TmF
tZUlEIEZvcm1hdD0idXJuOm9hc2lzOm5hbWVzOnRjOlNBTUw6MS4xOm5hbWVpZC1mb3JtYXQ6dW5zcGVjaWZpZ
WQiPnVuY2NvZXRlc3Q0PC9zYW1sOk5hbWVJRD48c2FtbDpTdWJqZWN0Q29uZmlybWF0aW9uIE1ldGhvZD0idXJ
uOm9hc2lzOm5hbWVzOnRjOlNBTUw6Mi4wOmNtOmJlYXJlciI+PHNhbWw6U3ViamVjdENvbmZpcm1hdGlvbkRhd
GEgUmVjaXBpZW50PSJodHRwczovL2lkbS5zYW5kYm94Lm1vdG9yb2xhc29sdXRpb25zLmNvbS9zcC9BQ1Muc2F
tbDIiIE5vdE9uT3JBZnRlcj0iMjAxNy0xMS0xM1QxMzo1NDoxNy4xNTVaIiBJblJlc3BvbnNlVG89IktkcDF1X
2RxTzB5TV9mdGFlZXViZ0Y5bzBQWCIvPjwvc2FtbDpTdWJqZWN0Q29uZmlybWF0aW9uPjwvc2FtbDpTdWJqZWN
0PjxzYW1sOkNvbmRpdGlvbnMgTm90QmVmb3JlPSIyMDE3LTExLTEzVDEzOjQ0OjE3LjE1NVoiIE5vdE9uT3JBZ
nRlcj0iMjAxNy0xMS0xM1QxMzo1NDoxNy4xNTVaIj48c2FtbDpBdWRpZW5jZVJlc3RyaWN0aW9uPjxzYW1sOkF
1ZGllbmNlPmN0b1BpbmdGZWRfZW50aXR5SUQ8L3NhbWw6QXVkaWVuY2U+PC9zYW1sOkF1ZGllbmNlUmVzdHJpY
3Rpb24+PC9zYW1sOkNvbmRpdGlvbnM+PHNhbWw6QXV0aG5TdGF0ZW1lbnQgU2Vzc2lvbkluZGV4PSJIX20uV0h
Hb1VRUEQuM2NWUDQxWENVWHhiR0siIEF1dGhuSW5zdGFudD0iMjAxNy0xMS0xM1QxMzo0OToxNy4xNTNaIj48c
2FtbDpBdXRobkNvbnRleHQ+PHNhbWw6QXV0aG5Db250ZXh0Q2xhc3NSZWY+dXJuOm9hc2lzOm5hbWVzOnRjOlN
BTUw6Mi4wOmFjOmNsYXNzZXM6dW5zcGVjaWZpZWQ8L3NhbWw6QXV0aG5Db250ZXh0Q2xhc3NSZWY+PC9zYW1sO
kF1dGhuQ29udGV4dD48L3NhbWw6QXV0aG5TdGF0ZW1lbnQ+PHNhbWw6QXR0cmlidXRlU3RhdGVtZW50PjxzYW1
sOkF0dHJpYnV0ZSBOYW1lPSJ1aWQiIE5hbWVGb3JtYXQ9InVybjpvYXNpczpuYW1lczp0YzpTQU1MOjIuMDphd
HRybmFtZS1mb3JtYXQ6YmFzaWMiPjxzYW1sOkF0dHJpYnV0ZVZhbHVlIHhzaTp0eXBlPSJ4czpzdHJpbmciIHh
tbG5zOnhzPSJodHRwOi8vd3d3LnczLm9yZy8yMDAxL1hNTFNjaGVtYSIgeG1sbnM6eHNpPSJodHRwOi8vd3d3L
nczLm9yZy8yMDAxL1hNTFNjaGVtYS1pbnN0YW5jZSI+dW5jY29ldGVzdDQ8L3NhbWw6QXR0cmlidXRlVmFsdWU
+PC9zYW1sOkF0dHJpYnV0ZT48c2FtbDpBdHRyaWJ1dGUgTmFtZT0ibWFpbCIgTmFtZUZvcm1hdD0idXJuOm9hc
2lzOm5hbWVzOnRjOlNBTUw6Mi4wOmF0dHJuYW1lLWZvcm1hdDpiYXNpYyI+PHNhbWw6QXR0cmlidXRlVmFsdWU
geHNpOnR5cGU9InhzOnN0cmluZyIgeG1sbnM6eHM9Imh0dHA6Ly93d3cudzMub3JnLzIwMDEvWE1MU2NoZW1hI
iB4bWxuczp4c2k9Imh0dHA6Ly93d3cudzMub3JnLzIwMDEvWE1MU2NoZW1hLWluc3RhbmNlIj51bmNjb2V0ZXN
0NDwvc2FtbDpBdHRyaWJ1dGVWYWx1ZT48L3NhbWw6QXR0cmlidXRlPjwvc2FtbDpBdHRyaWJ1dGVTdGF0ZW1lb
nQ+PC9zYW1sOkFzc2VydGlvbj48L3NhbWxwOlJlc3BvbnNlPg=="/>

The “value” string is the base64-encoded SAML response. A few lines of Python can get the SAML
response into a readable format. In this example, the value above has been saved to a file called
samlresp.txt:

$ python
Python 2.7.10 (default, Feb 7 2017, 00:08:15)
[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.34)] on darwin

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 147

Type "help", "copyright", "credits" or "license" for more information.
>>> import base64
>>> import xml.dom.minidom
>>> respFile = open("samlresp.txt", "r")
>>> respStr = base64.b64decode(respFile.read())
>>> respXml = xml.dom.minidom.parseString(respStr)
>>> print(respXml.toprettyxml())
<?xml version="1.0" ?>
<samlp:Response Destination="https://idm.sandbox.motorolasolutions.com/sp/ACS.saml2"
ID="J5OlM6VqeneVzASghHyljAKbR.8" InResponseTo="Kdp1u_dqO0yM_ftaeeubgF9o0PX"
IssueInstant="2017-11-13T13:49:17.100Z" Version="2.0"
xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol">
 <saml:Issuer
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">idp1.spsd.msso</saml:Issuer>
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 <ds:SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-
more#rsa-sha256"/>
 <ds:Reference URI="#J5OlM6VqeneVzASghHyljAKbR.8">
 <ds:Transforms>
 <ds:Transform
Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>
 <ds:Transform
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>
<ds:DigestValue>1vQiqCU6iYa33vQm+71lElVmiQHzOe9s+AM7Pa98VZA=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>
LzRmBarY6nwFKvrv7S/oVacIIdIEF8yIhWBWOCGgzr1kN4esV/BSyKCSWb8JSXwC8VDsMRtW8CL5
UDUt55u9tBkNVjxv5dt5+Nat9ykfvxWmOdpeIU0s1sn1BGw+d94heIBaWIXMY9YQh9gWt6JYt9Qa
dFt6kEF5KSCKQAASem12OlKWoF+bRlmG4elm5LM8u7A7Z/aFvup3C6eydJp+R1i+Z+Az4yWvc/6a
byK10OgNi/0bnzkk7w/Jlty4fUDqWzmrrDZpHBxfALUnTWdOT5IzJ7njLAkAaSt460Z52nZA8aAb
Uo08OKDbvUi/TglSqFcp2Ra+BhOCmDw9boLonw==
</ds:SignatureValue>
 </ds:Signature>
 <samlp:Status>
 <samlp:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>
 </samlp:Status>
 <saml:Assertion ID="H_m.WHGoUQPD.3cVP41XCUXxbGK" IssueInstant="2017-11-
13T13:49:17.155Z" Version="2.0" xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
 <saml:Issuer>idp1.spsd.msso</saml:Issuer>
 <saml:Subject>
 <saml:NameID Format="urn:oasis:names:tc:SAML:1.1:nameid-
format:unspecified">unccoetest4</saml:NameID>
 <saml:SubjectConfirmation

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 148

Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">
 <saml:SubjectConfirmationData
InResponseTo="Kdp1u_dqO0yM_ftaeeubgF9o0PX" NotOnOrAfter="2017-11-13T13:54:17.155Z"
Recipient="https://idm.sandbox.motorolasolutions.com/sp/ACS.saml2"/>
 </saml:SubjectConfirmation>
 </saml:Subject>
 <saml:Conditions NotBefore="2017-11-13T13:44:17.155Z" NotOnOrAfter="2017-
11-13T13:54:17.155Z">
 <saml:AudienceRestriction>
<saml:Audience>ctoPingFed_entityID</saml:Audience>
 </saml:AudienceRestriction>
 </saml:Conditions>
 <saml:AuthnStatement AuthnInstant="2017-11-13T13:49:17.153Z"
SessionIndex="H_m.WHGoUQPD.3cVP41XCUXxbGK">
 <saml:AuthnContext>
<saml:AuthnContextClassRef>urn:oasis:names:tc:SAML:2.0:ac:classes:unspecified</saml:Au
thnContextClassRef>
 </saml:AuthnContext>
 </saml:AuthnStatement>
 <saml:AttributeStatement>
 <saml:Attribute Name="uid"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">
 <saml:AttributeValue
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="xs:string">unccoetest4</saml:AttributeValue>
 </saml:Attribute>
 <saml:Attribute Name="mail"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">
 <saml:AttributeValue
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="xs:string">unccoetest4</saml:AttributeValue>
 </saml:Attribute>
 </saml:AttributeStatement>
 </saml:Assertion>
</samlp:Response>

>>>

In the above example, two attributes, uid and mail, are asserted, but the mail attribute does not
contain a valid email address.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 149

For OIDC, because the ID Token is retrieved over a back-channel connection between the RP and the
IdP, it cannot be observed in browser traffic. As with SAML, creating a test application is one method of
testing, but manual testing is also possible by using a few software tools:

 Register an OIDC client with a client secret and a redirect URI that points to a nonexistent
server. A redirect URI value like https://127.0.0.1/test-url will work, assuming that you do
not have a web server running on your machine. In a desktop browser, submit an authentication
request with a URL like the one listed below:

https://op1.lpsd.msso:9031/as/authorization.oauth2?client_id=marktest&response_type=code&
scope=openid%20address%20test%20phone%20openid%20profile%20name%20email

 Replace the server name and client ID with the correct values for your environment; also make
sure that the scope parameter includes openid and any other expected scopes. Authenticate to
the IdP. In this case, because the FIDO UAF adapter is in use but is being accessed through a
desktop browser, it initiates an OOB authentication, which can be completed on the mobile
device. Once authentication is completed, the browser will attempt to access the redirect URL,
which will result in a connection error because no web server is running on localhost. However,
the authorization code can be extracted from the URL:

https://127.0.0.1/test-url?code=Iv-pND_3o7_aJ5nFMcD-WbrVENrW7w5V75Cupx9G

The authorization code can be submitted to the IdP’s token endpoint in a POST to obtain the ID Token.
There are numerous ways to do this. Postman is a simple graphical-user-interface tool for testing APIs
and can be used to submit the request: https://www.getpostman.com.

Figure 7-1 shows Postman being used to retrieve an ID Token. A POST request is submitted to the OIDC
IdP’s token endpoint; by default, the token endpoint URL is the base URL, followed by /as/token.oauth2.
The authorization code is included as a query parameter. The client ID and client secret are used as the
HTTP basic authorization username and password.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

https://www.getpostman.com/

NIST SP 1800-13C: Mobile Application Single Sign-On 150

Figure 7-1 Using Postman to Obtain the ID Token

The response body is a JSON object, including the ID Token as well as an access token that can be used
to access the userinfo endpoint. As with the SAML assertion, a few lines of Python can render the ID
Token (which is a JWT) into a readable format:

$ python
Python 2.7.10 (default, Feb 7 2017, 00:08:15)
[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.34)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import jwt
>>> import json
>>> idTokenStr =
"eyJhbGciOiJSUzI1NiIsImtpZCI6Ikl3ZUVzcExQTUR5STVIME1xUnVRY18ifQ.eyJzdWIiOiJ1bmN
jb2V0ZXN0NCIsInVwZGF0ZWRfYXQiOjE0OTk5ODM5NzgsIm5hbWUiOiJUZXN0IDQgVU5DQ29FIiwicH
JlZmVycmVkX3VzZXJuYW1lIjoidW5jY29ldGVzdDQiLCJnaXZlbl9uYW1lIjoiVGVzdCA0IiwiZmFta
Wx5X25hbWUiOiJVTkNDb0UiLCJlbWFpbCI6InVuY2NvZXRlc3Q0QGxwc2QubXNzbyIsImF1ZCI6Im1h
cmt0ZXN0IiwianRpIjoiMmwya1FpTlVsNW9VaG5MeUEwVUxTZiIsImlzcyI6Imh0dHBzOlwvXC9vcDE
ubHBzZC5tc3NvOjkwMzEiLCJpYXQiOjE1MTA1ODU4MzUsImV4cCI6MTUxMDU4NjEzNX0.G0EzK7jxXz
sHHMpPbCk_e_rUF3MEW9JxMxvzlWW-
wu0i2gQHRPZUytR2RxfghfJaCilb9LNv_HT7Jfa8LAHjkII7AmHa4QDqL0ne2UMbJlchraBKuoZt3zl
KhfTMxl0gJPVAMp9L6DwXYmG1D2zMl92s7dvkB7su-
6A2xAxyCynH7mIFwpCaJ3Nswk0TiXNCR0Ry6j_eJ9dFd9hFYCRw0LTvzGig073h058pIe-
xE47r_XhjDD5GiFGuoQhmPfCKxImibUmL3H4fhx9LMel_oG7DF4divsfo6H5TC_9UBccKf0AUdQoT2K

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 151

x3PyTSYAdouYwfo6klUYxoF-bjjfGpOg"
>>> idToken = jwt.decode(idTokenStr, verify=False)
>>> print json.dumps(idToken, indent=4)
{
 "family_name": "UNCCoE",
 "aud": "marktest",
 "sub": "unccoetest4",
 "iss": "https://op1.lpsd.msso:9031",
 "preferred_username": "unccoetest4",
 "updated_at": 1499983978,
 "jti": "2l2kQiNUl5oUhnLyA0ULSf",
 "given_name": "Test 4",
 "exp": 1510586135,
 "iat": 1510585835,
 "email": "unccoetest4@lpsd.msso",
 "name": "Test 4 UNCCoE"
}
>>>

This merely decodes the claims in the JWT without verifying the signature. If there is an issue with
signature validation or trust in the signing key, these errors will be reported in the PingFederate server
log.

7.4 Testing the AS
One simple step that can help identify problems at the AS is turning on the authorization prompts. This
can be done on a per-client basis by deselecting the BYPASS AUTHORIZATION APPROVAL setting on the
client configuration page in the OAuth Settings section in the AS console. If the authorization prompt is
displayed (Figure 7-2), this demonstrates that authentication has succeeded, and the list of scopes being
requested by the client is displayed and can be verified.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 152

Figure 7-2 Authorization Prompt

It is also possible to manually obtain an access token by using the same procedure that was used in the
previous section to obtain an ID Token; the only difference is that an OAuth request typically would not
include the openid scope. If the issued access token is a JWT, it can be analyzed using Python as
described above.

If the token is not a JWT (i.e., a Reference Token management scheme is in use), the access token can be
submitted to the AS’s introspection endpoint as specified in RFC 7662 [31]. The default location of the
introspection endpoint for PingFederate is the base URL, followed by /as/introspect.oauth2. The request
is submitted as a POST, with the access token in a query parameter called token. Basic authentication
can be used with the client ID and secret as a username and password. The client must be authorized to
call the introspection endpoint by selecting Access Token Validation (Client is a Resource Server) under
Allowed Grant Types in the client configuration on the AS.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 153

Figure 7-3 shows a token introspection request and response in Postman.

Figure 7-3 Token Introspection Request and Response

7.5 Testing the Application
One last potential problem area in this SSO architecture is the back-end application, which must accept
and validate access tokens. Troubleshooting methods there will depend on the design of the application.
Building robust instrumentation and error reporting into RP applications will help identify problems. If
the application validates JWT access tokens, then establishing and maintaining trust in the AS’s signing
certificate, including maintenance when the certificate is replaced, is essential to avoid validation
problems. Clock synchronization between the AS and the RP is also important; a time difference of five
minutes or more can cause validation errors as well.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 154

Appendix A Abbreviations and Acronyms
AD Active Directory
API Application Programming Interface
APNS Apple Push Notification System
App ID Application Identification
AppAuth Application Authentication System
AS Authorization Server
ASM Authenticator-Specific Module
BCP Best Current Practice
BIND Berkeley Internet Name Domain
BLE Bluetooth Low Energy
CA Certificate Authority
CPSSP Central Public Safety Service Provider
CPU Central Processing Unit
CRADA Cooperative Research and Development Agreement
CSR Certificate Signing Request
DN Distinguished Name
DNS Domain Name System
FIDO Fast Identity Online
FQDN Fully Qualified Domain Name
GB Gigabyte
GCM Google Cloud Messenger
GHz Gigahertz
HSM Hardware Security Module
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
ID Identification
IdP Identity Provider
IETF Internet Engineering Task Force
iOS iPhone Operating System
IP Internet Protocol
IT Information Technology
JCE Java Cryptography Extension

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 155

JDK Java Development Kit
JSON JavaScript Object Notation
JWE JSON Web Encryption
JWT JSON Web Token
LDAP Lightweight Directory Access Protocol
LGPL Lesser General Public License
LPSD Local Public Safety Department
MDM Mobile Device Management
MFA Multifactor Authentication
MSSO Mobile Single Sign-On
NAT Network Address Translation
NCCoE National Cybersecurity Center of Excellence
NFC Near Field Communication
NIST National Institute of Standards and Technology
NNAS Nok Nok Authentication Server
NTP Network Time Protocol
OIDC OpenID Connect
OOB Out-of-Band
OS Operating System
PIN Personal Identification Number
PKCE Proof Key for Code Exchange
PSFR Public Safety and First Responder
PSX Public Safety Experience
PTT Push to Talk
QR Quick Response
RAM Random Access Memory
RFC Request for Comments
RP Relying Party
RPM Red Hat Package Manager
SaaS Software as a Service
SAML Security Assertion Markup Language
SDK Software Development Kit
SKCE StrongKey CryptoEngine
SLO Single Log-Out
SP Service Provider, Special Publication

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 156

SPSD State Public Safety Department
SQL Structured Query Language
SSH Secure Shell
SSO Single Sign-On
TCP Transmission Control Protocol
TLS Transport Layer Security
U2F Universal Second Factor
UAF Universal Authentication Framework
URI Uniform Resource Identifier
URL Uniform Resource Locator
USB Universal Serial Bus
VLAN Virtual Local Area Network
VPN Virtual Private Network
W3C World Wide Web Consortium
WAR Web Archive

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

NIST SP 1800-13C: Mobile Application Single Sign-On 157

Appendix B References
[1] W. Denniss and J. Bradley, "OAuth 2.0 for Native Apps," BCP 212, RFC 8252, DOI

10.17487/RFC8252, October 2017. Available: https://www.rfc-editor.org/info/rfc8252.

[2] FIDO Alliance, "FIDO Specifications Overview: UAF & U2F," 20 May 2016. Available:
https://www.slideshare.net/FIDOAlliance/fido-specifications-overview-uaf-u2f.

[3] Google, "Chrome custom tabs smooth the transition between apps and the web," Android
Developers Blog, 2 September 2015. Available: https://android-
developers.googleblog.com/2015/09/chrome-custom-tabs-smooth-transition.html.

[4] Google, "Chrome Custom Tabs," 6 May 2016. Available:
https://developer.chrome.com/multidevice/android/customtabs.

[5] Apple, “SFSafariViewController,” 2019. Available:
https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller.

[6] D. Waite, “Single Sign-on and iOS 11,” Ping Identity, 8 August 2017. Available:
https://www.pingidentity.com/en/company/blog/2017/08/08/single_sign-
on_and_ios_11.html.

[7] Apple, “ASWebAuthenticationSession,” 2019. Available:
https://developer.apple.com/documentation/authenticationservices/aswebauthentication
session.

[8] OpenID Foundation, "openid/AppAuth-iOS," GitHub, 2019. Available:
https://github.com/openid/AppAuth-iOS.

[9] Google, "Google Chrome: Fast & Secure," Google Play, 2018. Available:
https://play.google.com/store/apps/details?id=com.android.chrome.

[10] Google, "FIDO2 API for Android," 24 February 2020. Available:
https://developers.google.com/identity/fido/android/native-apps.

[11] Google, "Google Authenticator," Google Play, Available:
https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2.

[12] J. Chong, “iPhone Support for YubiKey OTP via NFC,” Yubico, 25 October 2017. Available:
https://www.yubico.com/blog/iphone-support-yubikey-otp-via-nfc/.

[13] J. Chong, “Yubico Extends Mobile SDK for iOS to Lightning,” Yubico, 30 August 2018.
Available: https://www.yubico.com/blog/yubico-extends-mobile-sdk-for-ios-to-lightning/.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

https://www.rfc-editor.org/info/rfc8252
https://www.slideshare.net/FIDOAlliance/fido-specifications-overview-uaf-u2f
https://android-developers.googleblog.com/2015/09/chrome-custom-tabs-smooth-transition.html
https://android-developers.googleblog.com/2015/09/chrome-custom-tabs-smooth-transition.html
https://developer.chrome.com/multidevice/android/customtabs
https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller
https://www.pingidentity.com/en/company/blog/2017/08/08/single_sign-on_and_ios_11.html
https://www.pingidentity.com/en/company/blog/2017/08/08/single_sign-on_and_ios_11.html
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession
https://github.com/openid/AppAuth-iOS
https://play.google.com/store/apps/details?id=com.android.chrome
https://developers.google.com/identity/fido/android/native-apps
https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2
https://www.yubico.com/blog/iphone-support-yubikey-otp-via-nfc/
https://www.yubico.com/blog/yubico-extends-mobile-sdk-for-ios-to-lightning/

NIST SP 1800-13C: Mobile Application Single Sign-On 158

[14] J. Davis, “Release Notes for Safari Technology Preview 71,” 5 December 2018. Available:
https://webkit.org/blog/8517/release-notes-for-safari-technology-preview-71/.

[15] S. Machani, R. Philpott, S. Srinivas, J. Kemp and J. Hodges, "FIDO UAF Architectural
Overview, FIDO Alliance Implementation Draft," 2 February 2017. Available:
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-uaf-overview-v1.1-id-
20170202.html.

[16] Nok Nok Labs Inc., "Nok Nok™ Passport," Google Play, Available:
https://play.google.com/store/apps/details?id=com.noknok.android.passport2.

[17] Nok Nok Labs Inc., "Nok Nok™ Passport," Apple App Store, Available:
https://itunes.apple.com/us/app/nok-nok-passport/id1050437340.

[18] Motorola Solutions, "Broadband Push to Talk (PTT) Services" Available:
https://www.motorolasolutions.com/en_us/products/broadband-push-to-talk.html.

[19] OpenID Foundation, "openid/AppAuth-Android," GitHub, Available:
https://github.com/openid/AppAuth-Android.

[20] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization Framework: Bearer Token Usage,"
RFC 6750, DOI 10.17487/RFC6750, October 2012. Available: https://www.rfc-
editor.org/info/rfc6750.

[21] D., Hardt, Ed., "The OAuth 2.0 Authorization Framework," RFC 6749, DOI
10.17487/RFC6749," October 2012. Available: https://www.rfc-editor.org/info/rfc6749.

[22] S. Cantor, J. Kemp, R. Philpott and E. Maler, "Assertions and Protocols for the OASIS
Security Assertion Markup Language (SAML) V2.0," 15 March 2005. Available:
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf.

[23] N. E. Sakimura, J. Bradley and N. Agarwal, "Proof Key for Code Exchange by OAuth Public
Clients," RFC 7636, DOI 10.17487/RFC7636, September 2015. Available: https://www.rfc-
editor.org/info/rfc7636.

[24] M. Jones and J. Hildebrand, "JSON Web Encryption (JWE)," RFC 7516, May 2015. Available:
https://tools.ietf.org/html/rfc7516.

[25] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros and C. Mortimore, "OpenID Connect
Core 1.0 incorporating errata set 1," 8 November 2014. Available:
http://openid.net/specs/openid-connect-core-1_0.html.

[26] Microsoft Corporation, "Active Directory Schema," Available:
https://msdn.microsoft.com/en-us/library/ms675085(v=vs.85).aspx.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

https://webkit.org/blog/8517/release-notes-for-safari-technology-preview-71/
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-uaf-overview-v1.1-id-20170202.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-uaf-overview-v1.1-id-20170202.html
https://play.google.com/store/apps/details?id=com.noknok.android.passport2
https://itunes.apple.com/us/app/nok-nok-passport/id1050437340
https://www.motorolasolutions.com/en_us/products/broadband-push-to-talk.html
https://github.com/openid/AppAuth-Android
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc6749
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://www.rfc-editor.org/info/rfc7636
https://www.rfc-editor.org/info/rfc7636
https://tools.ietf.org/html/rfc7516
http://openid.net/specs/openid-connect-core-1_0.html
https://msdn.microsoft.com/en-us/library/ms675085(v=vs.85).aspx

NIST SP 1800-13C: Mobile Application Single Sign-On 159

[27] Nok Nok Labs, Inc., "Nok Nok Labs S3 Authentication Suite Solution Guide," v5.1.1, 2017.

[28] Nok Nok Labs, Inc., "Nok Nok Authentication Server Administration Guide," v5.1.1, 2017.

[29] Nok Nok Labs, Inc., "Nok Nok PingFederate Adapter Integration Guide," v1.0.1, 2017.

[30] StrongKey, Inc., "PingFederate FIDO IdP Adapter Installation Guide," Revision 2, 2017.

[31] J. Richer, Ed., "OAuth 2.0 Token Introspection," RFC 7662, October 2015. Available:
https://tools.ietf.org/html/rfc7662.

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.1800-13.

https://tools.ietf.org/html/rfc7662

	psfr-mobile-sso-nist-sp1800-13-covers.pdf
	psfr-mobile-sso-nist-sp1800-13a
	psfr-mobile-sso-nist-sp1800-13-covers.pdf
	psfr-mobile-sso-nist-sp1800-13a.pdf

	psfr-mobile-sso-nist-sp1800-13b
	psfr-mobile-sso-nist-sp1800-13-covers.pdf
	psfr-mobile-sso-nist-sp1800-13b.pdf
	1 Summary
	1.1 Challenge
	1.1.1 Easing User Authentication Requirements
	1.1.2 Improving Authentication Assurance
	1.1.3 Federating Identities and User Account Management

	1.2 Solution
	1.3 Benefits

	2 How to Use This Guide
	2.1 Typographic Conventions

	3 Approach
	3.1 Audience
	3.2 Scope
	3.3 Assumptions
	3.4 Business Case
	3.5 Risk Assessment
	3.5.1 PSFR Risks
	3.5.2 Mobile Ecosystem Threats
	3.5.3 Authentication and Federation Threats

	3.6 Systems Engineering
	3.7 Technologies

	4 Architecture
	4.1 General Architectural Considerations
	4.1.1 SSO with OAuth 2.0, IETF RFC 8252, and AppAuth Open-Source Libraries
	4.1.2 Identity Federation
	4.1.3 FIDO and Authenticator Types

	4.2 High-Level Architecture
	4.3 Detailed Architecture Flow
	4.3.1 SAML and U2F Authentication Flow
	4.3.2 OpenID Connect and UAF Authentication Flow

	4.4 Single Sign-On with the OAuth Authorization Flow
	4.5 Application Developer Perspective of the Build
	4.6 Identity Provider Perspective of the Build
	4.7 Token and Session Management

	5 Security Characteristic Analysis
	5.1 Assumptions and Limitations
	5.2 Threat Analysis
	5.2.1 Mobile Ecosystem Threat Analysis
	5.2.2 Authentication and Federation Threat Analysis

	5.3 Scenarios and Findings
	B.1 Identity Proofing
	B.2 Mobile Device Security
	B.3 Mobile Application Security
	B.4 Enterprise Mobility Management
	B.5 FIDO Enrollment Process
	C.1 SSO with OAuth 2.0, IETF RFC 8252, and AppAuth Open-Source Libraries
	C.1.1 Attributes and Authorization

	C.2 Federation
	C.3 Authenticator Types
	C.3.1 UAF Protocol
	C.3.2 U2F Protocol
	C.3.3 FIDO 2
	C.3.4 FIDO Key Registration
	C.3.5 FIDO Authenticator Attestation
	C.3.6 FIDO Deployment Considerations

	Word Bookmarks
	m9wlvrsog8r6
	kix.z776zdrdnkmz
	o0ec7olx08ec
	kix.5frm2sjfwj6w
	oyekmlz02rqb
	6xu7xof8r9dr
	kix.andhlixp1vzp
	a4taxps11iac
	AppendixA
	8v6tzkpujo8k
	AppB
	B1
	B4
	AppC
	AppendixC
	C1
	C1
	C2
	C3
	6skicn2hkl19
	ew2qjivmdu4f
	raf166lgyw1w
	xykvtikkcwal
	ykgqe8cjibtq
	nijhdri049t8
	19cs2biobr7b
	11uq6kyojcua
	533ib3r7ay8s
	x21zvm9farqf
	yk7d1nnhzn5
	osw76nwarilh
	5gbwqdry30bg
	ton6vlrcl174
	muecbg3f4vwl
	4sm4fhghtpg
	ymv0of2jodtc
	phnh3nkkx9qv
	l6nmzvfaxqgo
	609qhlnvrogh
	pbry3epp8ha3
	tcqrj4sx8czc
	Reference1
	Reference2
	Reference3
	Reference4
	Reference5
	Reference6
	Reference7
	Reference8
	Reference9
	Reference10
	Reference11
	Reference12
	Reference13
	Reference14
	Reference15
	Reference16
	Reference17
	Reference18
	Reference19
	Reference20
	Reference21
	Reference22
	Reference23
	Reference24
	Reference25
	Reference26
	Reference27
	Reference28
	Reference29
	Reference30
	Reference31
	Reference32
	Reference33
	Reference34

	psfr-mobile-sso-nist-sp1800-13c
	psfr-mobile-sso-nist-sp1800-13-covers.pdf
	psfr-mobile-sso-nist-sp1800-13c.pdf
	1 Introduction
	1.1 Practice Guide Structure
	1.2 Build Overview
	1.2.1 Usage Scenarios
	1.2.2 Architectural Overview
	1.2.3 General Infrastructure Requirements

	1.3 Typographic Conventions

	2 How to Install and Configure the Mobile Device
	2.1 Platform and System Requirements
	2.1.1 Supporting SSO on Android Devices
	2.1.2 Supporting SSO on iOS Devices
	2.1.3 Supporting FIDO U2F on Android Devices
	2.1.4 Supporting FIDO U2F on iOS Devices
	2.1.5 Supporting FIDO UAF

	2.2 How to Install and Configure the Mobile Applications
	2.2.1 How to Install and Configure SSO-Enabled Applications
	2.2.1.1 Configuring the PSX Cockpit Application
	2.2.1.2 Configuring the PSX Mapping Application
	2.2.1.3 Configuring the PSX Messenger Application

	2.2.2 How to Install and Configure a FIDO U2F Authenticator
	2.2.2.1 Installing Google Authenticator
	2.2.2.2 Registering the Token
	2.2.2.3 Authenticating with the Token

	2.2.3 How to Install and Configure a FIDO UAF Client
	2.2.3.1 Installing Passport on Android
	2.2.3.2 Installing Passport on iOS
	2.2.3.3 Enrolling the Device

	2.3 How Application Developers Must Integrate AppAuth for SSO
	2.3.1 AppAuth Integration for Android
	2.3.1.1 Adding the Library Dependency
	2.3.1.2 Adding Activities to the Manifest
	2.3.1.3 Creating Activities to Handle Authorization Responses
	2.3.1.4 Executing the OAuth 2 Authorization Flow
	2.3.1.5 Fetching and Using the Access Token

	2.3.2 AppAuth Integration for iOS
	2.3.2.1 Adding the Library Dependency
	2.3.2.2 Registering a Custom URL Scheme
	2.3.2.3 Handling Authorization Responses
	2.3.2.4 Executing the OAuth 2 Authorization Flow
	2.3.2.5 Fetching and Using the Access Token

	3 How to Install and Configure the OAuth 2 AS
	3.1 Platform and System Requirements
	3.1.1 Software Requirements
	3.1.2 Hardware Requirements
	3.1.3 Network Requirements
	3.1.3.1 Software Configuration
	3.1.3.2 Hardware Configuration
	3.1.3.3 Network Configuration

	3.2 How to Install the OAuth 2 AS
	3.2.1 Java Installation
	3.2.2 Java Post Installation
	3.2.3 PingFederate Installation
	3.2.4 Certificate Installation

	3.3 How to Configure the OAuth 2 AS
	3.4 How to Configure the OAuth 2 AS for Authentication
	3.4.1 How to Configure Direct Authentication
	3.4.1.1 Configure Adapter Instance
	3.4.1.2 Create Policy Contract
	3.4.1.3 Create Policy Contract Mapping
	3.4.1.4 Create Access Token Mapping

	3.4.2 How to Configure SAML Authentication
	3.4.2.1 Create IdP Connection
	3.4.2.2 Create Policy Contract
	3.4.2.3 Create Policy Contract Mapping

	3.4.3 How to Configure OIDC Authentication
	3.4.3.1 Create IdP Connection
	3.4.3.2 Create the Policy Contract Mapping

	3.4.4 How to Configure the Authentication Policy
	3.4.4.1 Install the Domain Selector Plugin
	3.4.4.2 Define the Authentication Policy

	4 How to Install and Configure the Identity Providers
	4.1 How to Configure the User Store
	4.2 How to Install and Configure the SAML Identity Provider
	4.2.1 Configuring Authentication to the IdP
	4.2.1.1 Configure the Password Validator
	4.2.1.2 Configure the HTML Form Adapter
	4.2.1.3 Configure the FIDO U2F Adapter
	4.2.1.4 Configure the Authentication Policies

	4.2.2 Configure the SP Connection

	4.3 How to Install and Configure the OIDC Identity Provider
	4.3.1 Configuring Authentication to the OIDC IdP
	4.3.1.1 Configure the FIDO UAF Plugin
	4.3.1.2 Configure an Access Token Management Instance
	4.3.1.3 Configure an IdP Adapter Mapping
	4.3.1.4 Configure an Access Token Mapping
	4.3.1.5 Configure an OIDC Policy

	4.3.2 Configuring the OIDC Client Connection

	5 How to Install and Configure the FIDO UAF Authentication Server
	5.1 Platform and System Requirements
	5.1.1 Hardware Requirements
	5.1.2 Software Requirements

	5.2 How to Install and Configure the FIDO UAF Authentication Server
	5.3 How to Install and Configure the FIDO UAF Gateway Server
	5.4 How to Install and Configure the FIDO UAF Adapter for the OAuth 2 AS

	6 How to Install and Configure the FIDO U2F Authentication Server
	6.1 Platform and System Requirements
	6.1.1 Software Requirements
	6.1.2 Hardware Requirements
	6.1.3 Network Requirements

	6.2 How to Install and Configure the FIDO U2F Authentication Server
	6.3 How to Install and Configure the FIDO U2F Adapter for the IdP
	6.3.1 FIDO U2F Registration in Production

	7 Functional Tests
	7.1 Testing FIDO Authenticators
	7.2 Testing FIDO Servers
	7.3 Testing IdPs
	7.4 Testing the AS
	7.5 Testing the Application

	Word Bookmarks
	y0o10otv8ky0
	a3y5daooj8sp
	biucskmiurvf
	9rtppv8rsmia
	e2hbm24xfl1i
	dzh6nzlpgqbm
	bbvl2ke9zqab
	gz0q1en3hia8
	1buvvhr6zdny
	ctor00pcz98n
	Reference1
	Reference2
	Reference3
	Reference4
	Reference5
	Reference6
	Reference7
	Reference8
	Reference9
	Reference10
	Reference11
	Reference12
	Reference13
	Reference14
	Reference15
	Reference16
	Reference17
	Reference18
	Reference19
	Reference20
	Reference21
	Reference22
	Reference23
	Reference24
	Reference25
	Reference26
	Reference27
	Reference28
	Reference29
	Reference30
	Reference31

