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Abstract 

Structural coverage criteria are widely used tools in software engineering, useful for measuring 
aspects of test execution thoroughness. However, in many cases structural coverage may not be 
applicable, either because source code is not available, or because processing is based on neural 
networks or other black-box components. Vulnerability and fault detection in such cases will 
typically rely on large volumes of tests, with the goal of discovering flaws that result in system 
failures or security weaknesses. This publication explains combinatorial coverage difference 
measures that have been applied to problems that include fault identification and autonomous 
systems validation, and documents functions of research tools for computing these measures. The 
metrics and tools described are introduced as research tools; later work will be useful in 
determining which are of value in assurance and testing or simulation. 
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1 Introduction 

This publication explains concepts of combinatorial coverage and coverage di˙erence measures that have 
utility for software verifcation and testing, or for security vulnerability detection, and documents func-
tions of research tools for computing these measures. These measures have been applied to problems that 
include fault identifcation, vulnerability detection, and autonomous systems verifcation and validation. 
The metrics and tools described are introduced as research tools, with examples of their application in 
assurance and testing, simulation, autonomous systems, intrusion detection, and other domains. 

Among these applications, autonomy and artifcial intelligence are of particular interest. As noted in 
the National Security Commission on Artifcial Intelligence (NSCAI), test, evaluation, verifcation, and 
validation of traditional software is not suÿcient for the type of assurance needed for AI and autonomous 
systems [1]. The NSCAI report notes that "agencies lack common metrics to assess trustworthiness that 
AI systems will perform as intended. To minimize performance problems and unanticipated outcomes, 
an entirely new type of Test and Evaluation, Verifcation and Validation (TEVV) will be needed. This 
is a priority task, and a challenging one." 

A fundamental problem is that many or most AI systems rely on black box functions, such as deep 
neural networks, where a single algorithm is used, and the behavior of the system is ’programmed’ 
by the data used in training it. Measures of the adequacy and completeness of the training data are 
therefore essential, to ensure that the resulting model is suÿciently representative of the real world. As 
environments evolve, or the system is applied to new environments, it is also necessary to know how 
many, and what kind of, di˙erences exist with the new environment. This publication provides a number 
of quantitative measures that can be applied in meeting these requirements. 

1.1 Software Verifcation and Testing 
Verifcation of complex software systems is an important, yet challenging task. Testing is the most 
common method for assuring that software meets its specifcation and is defect free. To claim that 
software is defect-free, one has to show that it produces the “correct” output or “behaves” according to 
specifcation under all possible parameter values and confguration. In the software verifcation world, 
this is known as exhaustive testing. For any software of reasonable size and complexity, exhaustive 
testing is completely infeasible. Thus, during the testing process, a small subset of parameter values and 
confgurations is selected to ensure that the software is producing its output or maintaining its behavior 
as “expected” . The selected parameter values are called Test Cases, and the set of all test cases is called 
a Test Suite. The essence of software testing, therefore, lies in e˙ective ways of identifying the test cases 
and building the test suite. Two overarching questions related to this process include 

1) how to select the test cases, and 
2) how to decide when enough test cases have been selected. 

Over the years, researchers have proposed di˙erent Test Adequacy criteria for answering these two 
questions. 
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1.2 Test Adequacy and Coverage Criteria 
Many test adequacy criteria are based on the runtime knowledge of the internal structure of the software, 
which requires access to the source code. These adequacy criteria are referred to as structural coverage 
criteria, and an extensive body of theory has been developed to clarify their e˙ectiveness and the rela-
tionships among di˙erent criteria [2, 3]. For example, it can be shown that branch coverage subsumes 
statement coverage; i.e., if full branch coverage is achieved, then full statement coverage is guaranteed. 
Depending on which lines of code are getting executed by test cases, di˙erent test adequacy criteria such 
as statement coverage or branch coverage may be applied. The motivation here is that if all the test 
cases in a test suite miss executing a statement or a branch in a piece of software, then a fault in the 
unexecuted code will likely be not revealed. Thus, test suites that achieve higher coverage scores are 
desired. Organizations often set goals for test suite selection such as achieving 85% or 90% statement 
coverage or branch coverage. 

For large, complex software, achieving 100% statement coverage may not be feasible due to unreachable 
code. Specifying coverage goals in this way help testers choose the test cases. The goal is to maximize 
the coverage using the smallest number of test cases such that a desired level is reached. This approach, 
in turn, also helps to answer the second testing challenge: deciding how many test cases to select, i.e., 
knowing when to stop. If the goal is to achieve 90% branch coverage, then any test suite that ensures 
execution of 90% of all the branches in the code will meet the goal. 

Note that if there is a fault/error/bug in a statement, simply having that statement executed by a 
test case does not guarantee discovering the fault. Thus high structural coverage may be considered a 
necessary, but not suÿcient, condition for software assurance. Yet, this is the most common approach 
for providing some level of confdence about reasonably tested software. 

The other major approach to test case selection, often called the black-box approach, does not rely on 
the runtime execution information. Instead the input parameter and confguration space is divided into 
groups (e.g., equivalence classes), and test cases are selected such as that the parameter values and 
confguration space is covered by the test suite. Here again, simply designing a test suite that covers 
the equivalence classes does not provide strong assurance about discovering all the faults in a program. 
Gaining any confdence or assurance on the fault-free operation of a software usually remain as an art 
for the test suite designer. One objective of this publication is to provide measures and criteria that can 
be used in quantifying the thoroughness of a test suite. 

There is empirical evidence regarding software faults being caused by specifc interactions of parameter 
values. If one approaches the selection of test cases based on systematically discretizing the parame-
ter/confguration space, judiciously identifying the combinations of values that are of interest, and cov-
ering those interactions of parameter values, a high-level assurance of fault discovery can be provided. 
Combinatorial coverage metrics are designed precisely to achieve this goal. 
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Combinatorial Coverage Measurement 

Combinatorial methods o˙er an approach to coverage measurement that provides a measure directly 
related to fault detection. A series of studies have shown that most software bugs and failures are caused 
by one or two parameters, with progressively fewer by three or more [4, 5, 6, 7, 8, 9]. This fnding 
means that testing parameter combinations can provide more eÿcient fault detection than conventional 
methods. In this section, we review concepts of measuring the combinatorial coverage of an input space 
[10, 11, 12], for use in testing or in other applications where it is important to ensure inclusion of 
combinations of input parameter values. 

Figure 1: Example test array for a system with four binary components 

Combinatorial coverage measurement concepts can be illustrated using the example in Figure 1, which 
shows a test array that does not contain all 2-way combinations. To facilitate discussion, it is helpful to 
establish terminology for two related, but distinct, concepts that will be used in this publication: 

• t-way combination: a set of t parameters or variables. For example, using the parameters in fgure 
1, (b, d) is a 2-way combination, (a, c) is a di˙erent 2-way combination, and (a, b, d) is a 3-way 
combination. 

• t-way value-combination: a combination for which the parameters have specifc values. (Note: 
in the original defnition from [10], this was referred to as a variable-value combination.) For 
example, (b=0, d=0) is one value combination, and (b=1, d=0) is a di˙erent value combination 
for the same parameter combination. 

In discussing covering arrays and combinatorial testing, it is conventional to denote the confguration of 
nkparameters and values in an exponential notation as v1 

n1 v2 
n2 ...vk , where k is the number of di˙erent 

counts of values, v are values, and n are counts of the parameters with each value. For example, a 
confguration of 10 parameters, including fve boolean, two with three values each, one with fve values, 
and two with 6 values, would be shown as 25325162 . 

2.1 Basic Combinatorial Coverage Measures 

We defne two important measures related to basic combinatorial coverage following [4]: 

7 

https://csrc.nist.gov


NIST Cybersecurity White Paper (DRAFT) csrc.nist.gov 

• CIPC(n, t): Combinatorial Input Parameter Coverage, also known as variable-value confguration 
tcoverage [11, 10], is the proportion of the total C(n, t) × v t-way value combinations that are 

covered by at least one test in a test suite. Here n is the number of input parameters or variables, 
t is the number of interactions within those parameters being covered, and v represents the number 
of possible values the parameters can take. 

• PT-completeness or (p, t)-completeness: This measures the proportion of C(n, t) combinations 
that has at least a CIPC(n, t) value of p [10, 13]. 

Example. As shown in Figure 1 above, there are C(4, 2) = 6 possible parameter combinations: [{a, b}, 
{a, c}, {a, d}, {b, c}, {b, d}, {c, d}] and C(4, 2) × 22 = 24 possible value-combinations. For notational 
shorthand, we will refer to these parameter combinations as {ab, ac, ad, bc, bd, and cd}. Of these, 19 
value-combinations are covered. The missing value-combinations are ab = 11, ac = 11, ad = 10, bc = 01, 
bc = 10. Note that only two, bd and cd, are covered with all 4 possible value pairs. So we have 79% 
(19/24) for the value combination coverage metric. For a better understanding of this test set, we can 
compute the confguration coverage for each of the six parameter combinations, as shown in Fig. 2. 
For this test set, one of the combinations bc is covered at the 50% level, three ab, ac, ad are covered 
at the 75% level, and two (bd, cd) are covered at the 100% level. And, as noted above, for the whole 
set of tests, 79% of variable-value confgurations are covered. All 2-way combinations have at least 50% 
confguration coverage, so (.50, 2)-completeness for this set of tests is 100%. Although the example in 
fgure 1 uses parameters with the same number of values, this is not essential for the measurement, and 
the same approach can be used to compute coverage for test sets in which parameters have di˙ering 
numbers of values. (example from [4]). 

Figure 2: A test array covering 2 way combinations of a, b, c, and d to di˙erent levels. 

To make the data in fgure 2 more understandable, it will help to produce a graph whose components 
are easily tied to the data. One way to do this is shown in fgure If the value combinations are listed as 
columns and sorted by the level of coverage for each combination, a graph as seen in fgure 3a results. 

The area under the curve represents value combinations covered, and the area above the curve represents 
combinations that have not been covered in the test set. It is also easy to see that the value combinations 
in fgure 3a cover 19/24 = 79% of the 2-way combinations that are possible. Based on the ideas just 
presented, we defne three measures St, µt, and φt. The measures are illustrated for 2-way covering in 
fgure 3b. 

• St: fraction of possible value combinations covered, i.e, the area under the curve in a completeness 
graph, as shown in fgure 3b. 
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(a) Table Mapped to Graph (b) The concept of µt and φt 

Figure 3: Graphical representation of 2-way input space covering 

• µt: the minimum t-way coverage, i.e., minimum (p, t)-completeness 
• φt: the proportion of full t-way combinations for which (1.0, t)-completeness is achieved. 

Because the graph represents a unit square, it can be seen that St ≥ µt + φt − µtφt. Graphing the 
quantities µ and φ provides an intuitive approach to understanding combinatorial coverage. The value 
of µ is particularly important. If µ is low, then there is at least one combination that is not covered well, 
so there may be insuÿcient evidence that the Software Under Test (SUT) will process inputs containing 
this combination correctly. 

The combinations covered are represented by the area below the curve in Fig. 3 (b). Combinations that 
have not been included in any test are those above the curve. In the case of the example, these are 
ab = 11, ac = 11, ad = 10, and bc = 01, bc = 10. Even if code has been tested and tests demonstrated to 
provide full statement and branch coverage, the combinations in the uncovered region of the input space, 
in the upper right corner, have not been included in any test. Therefore we cannot say with confdence 
what will happen if these combinations are encountered in system operation, raising the possibility of 
vulnerabilities or system failures or errors. Furthermore, the value combinations that are missing would 
be likely triggers of errors that are encountered, as they are inputs that have not been tested. 

2.2 Completeness and Incompleteness Functions 

The fraction of the input space that has not been tested is of course 1 − St, which is the level of 
incompleteness of the full test set. We can defne functions that give the degree of completeness or 
incompleteness. The completeness function shows the strength of the test suite created from the chosen 
parameter value combinations. Incompleteness, on the other hand, shows the weakness that still remains 
in terms of the combinations of parameter values with which a software has yet not been tested. In other 
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words, the completeness is useful for answering the question, "How thorough is this test set?", while 
incompleteness answers the opposite question, "How much is missing from this test set?" 

(a) Completeness function (b) Incompleteness function 

Figure 4: Completeness and incompleteness functions. 

A combinatorial t-way completeness-function K(x | t) of a test suite is the (p, t)-completeness, or mini-
mum value combination coverage, of the fraction x of highest covered parameter combinations (see Fig. 
4 (a). The graph of K(x | t) is a step function where 0 < x ≤ 1.00, for a given value of t. A point K (x | t) 
on the vertical axis, for point x on the horizontal axis, gives the minimum fraction of value combinations 
covered in all of the fraction x of highest-covered parameter combinations. The area below the graph of 
K (x | t) is St, the overall combinatorial t-way completeness. The area above the step-function graph 
of K (x | t) is overall combinatorial t-way incompleteness or 1 - St. 

A combinatorial t-way incompleteness-function I(x | t) of a test suite is the fraction of t-way parameter-
combinations, which are incomplete (relative to a test suite of strength t) to the degree x or less, The 
graph of I(x | t) is a step-function. Fig. 4 (b) displays a graph of the t-way incompleteness-function 
I(x | t) of the test suite in Fig. 1 for t = 2. For any point x, I(x | t) on the graph, the abscissa 
(horizontal axis) indicates the degree of incompleteness x, where 0 ≤ x < 1, and the ordinate (vertical 
axis) I(x | t) indicates the fraction of t-way parameter-combinations, out of C(k, t), which are incomplete 
to the degree x or less. The area above the step-function graph of I(x | t) is overall combinatorial t-way 
incompleteness. The area below the graph of I(x | t) is overall combinatorial t-way completeness. 

The incompleteness-function I(x | t) for a test suite of strength t is a horizontal line at the ordinate 
value I(x | t) = 1.00, which means that the fraction of parameter-combinations for which no t-tuple of 
values is missing is 1.00. That is, no t-way parameter-combination has missing t-tuple of values. 

Example: K(0.4 | 2) is 0.75, which is the lowest value 2-way combination coverage for the top 40% 
of parameter combinations. It can also be seen in the graph that 83% of the 2-way combinations have 
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coverage of at least 0.75, and all have coverage of 0.50 or greater. 

2.3 Applications of Measurement 

Spacecraft software is subject to extensive testing prior to deployment. The combinatorial coverage tools 
described in this section were initially applied to a large test set developed software for a NASA mission 
[13]. The test set contained nearly 7, 500 tests, so strong t-way coverage was expected to be present, but 
there were no methods for measuring to ensure this coverage. 

We used our Combinatorial Coverage Measurement (CCM) tool which outputs both the CIPC(n,t) as 
well as (p, t)-completeness of a test suite. After applying the CCM test coverage tool, it was found 
that reasonably strong coverage was present in the tests developed entirely by engineering judgement 
(see Figure 5), but even 2-way combinations, shown using the red line, were not fully covered, and 
many additional tests would have been needed for 3-way (blue line) or higher strength (e.g., green line 
representing 4-way coverage. Details of coverage are provided in Fig. 6. 

Figure 5: Combinatorial coverage of spacecraft software 

CCM has been applied in a number of projects to improve existing regression tests, which in some cases 
were based on recording ongoing transactions for replay after modifcations were made to the code. 
Measuring the coverage of these transaction sets allowed for improvements to more thoroughly check 
functions. Security in particular is an area where ultra-rare and unusual combinations of inputs may lead 
to problems, especially since attackers look for these rare inputs to discover vulnerabilities [14][15]. CCM 
has been helpful in evaluating the thoroughness of tests for secure protocols and other security-critical 
applications [16] [17]. Industry examples include the following: 

• Adobe used CCM to measure the e˙ectiveness of a validation framework for an analytics tool 
in its Marketing Cloud product. This was the frst usable approach to quantitatively measur-
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Figure 6: Spacecraft software coverage report 
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ing assurance for this type of analytics product, and results showed the combinatorial coverage 
measurement was e˙ective [18]. 

• Siemens included CCM in its Zero Defect program to measure aspects of test sets to identify where 
improvements could be made, where “the goal was to craft the leanest and most impactful formal 
testing and devise optimal confgurations for the system under test.” [19]. 

• An analysis of tests for Bombardier Transportation discovered that manually created tests by 
engineers did not achieve strong combinatorial coverage, with an average of 78.6% for 2-way 
interactions, 57% for 3-way interactions, 40.2% for 4-way interactions, 20.2% for 5-way interactions 
and 13% for 6-way interactions.. The measures were used to determine improvements to test sets 
for critical code [20]. 

3 Combinatorial Coverage Di˙erence Measures 

Combinatorial Coverage Di˙erence Measure or CCDM has so far been applied to several problem do-
mains. Initially this approach was used in fault identifcation, specifcally to determine the particular 
combination(s) of parameter values that would trigger a fault. Another example problem where there 
is a need to distinguish one class of elements from another is anomaly-based intrusion detection, which 
seeks to determine if a particular exchange of packets represents an attempted network intrusion. Thus 
it is useful to generalize the approach to fnd combinations that are present in one class or set and 
absent or rare in another, and in order to distinguish one set from another. Note that this is simply a 
generalized version of the fault location problem, where the class whose distinguishing features are to be 
identifed is the set of failing tests. In this publication, we will refer to sets being distinguished as either 
Class or Non-class fles or sets. A Class fle or a Class set is the one where certain value combinations 
of parameters, inputs, or confguration are present while in a Non-class fle or Non-class set, these value 
combinations are absent or rare. 

3.1 Related Defnitions 

The measures defned in this section have been implemented in research tools that can be applied to a 
broad range of problems. These tools take as input the two fles of Class and Non-class instances, and 
produce measures of their similarity or di˙erence. The frst defne the t-way combination sets in the two 
input sets. 

• Ct = set of t-way value combinations in Class fle 
• Nt = set of t-way value combinations in Non-class fle 

The terms Class and Non-class are used as generic terms for sets of objects that can be distinguished 
on the basis of some property or properties. For example, in earlier applications, set di˙erences of value 
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combinations have been used to identify the causes of failures [12][21]. In a machine learning context, 
however, these sets may refer to concepts that are to be learned, such as distinguishing one animal species 
from others. In both cases, the process is the same: set di˙erencing is used to identify combinations that 
occur in the class set that do not occur, or are rare, in the non-class set. If this di˙erence is computed 
on value-combinations in failed tests vs. passed tests, then the di˙erence contains value combinations 
that have triggered the failure (in a deterministic system). In machine learning, the di˙erence represents 
properties or attributes that occur in the class (e.g., a particular animal species) that do not occur, or 
are rare, in the non-class examples (other species). 

3.1.1 Distinguishing Combinations 

We defne a t-way combination ct as a distinguishing combination for the class C if it is present in class 
instances C, and absent in non-class instances N , or if it is more common in C than N as determined 
by a threshold value. 

A threshold T determines if a particular t-way value combination ct is common in set Ct and rare in set 
Nt, and thus distinguishes one set from the other. 

Defnition: A combination xt for a class C is distinguishing i˙ occurrences(xt, Ct) > T ×occurrences(ct, Nt), 
where occurrences(x, Y ) = frequency of value combination x in set of value combinations Y . 

If occurrences(xt, Nt) = 0, then the combination xt is unique to the class fle, and if occurrences(xt, Nt) = 
0 for all distinguishing combinations, then the set of distinguishing combinations is equal to the set dif-
ference Ct\Nt. (We will abbreviate Ct and Nt as C and N , where interaction level t is clear or is not 
needed for discussion.) If T is some multiple, then the combination is rare in N and common in C, 
therefore it is more strongly associated with C. The higher the value of T , the more strongly distin-
guishing combinations are associated with C. This threshold value is chosen based on the application, 
but in general a threshold value of T = 0 can be used for deterministic software, the most common 
case, and T > 0 for non-deterministic problems, such as may be encountered in anomaly-based intrusion 
detection. The earliest uses of the methods described here assumed deterministic functions, where a 
particular combination would always trigger a fault if it was present. In some applications, it may be 
more important to base decisions on the proportion of combinations in class versus non-class instances. 
For example, a particular combination of packet feld values may be much more common in server inter-
actions that are part of an intrusion attempt, but the combination’s presence or absence is not uniquely 
determinative of the type of transaction or class of interaction. We will refer to the set of distinguishing 
t-way combinations for class set C as UCt, and for N as UNt. 

• UCt - The t-way combination that is present in the Class and rare or absent in the Non-class set. 
• UNt – The t-way combination that is present in the Non-class and rare or absent int Class set. 

For some applications, a distinguishing combination will guarantee recognition of a class member within 
a particular database. For non-deterministic processes, distinguishing combinations may be evidence 
for membership in a class but not guarantee this. For example, in disease diagnosis, combinations of 
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various conditions may be strongly indicative of a particular disease, but tests looking at other attributes 
(outside of the existing data set) may be needed. 

A second problem with determining if a combination indicates class membership is the large number of 
combinations that are possible, often too large for the number of observations in a data set. For example, 
if the number of t-way combinations in class set C and Non-class set N is smaller than the number of 
possible t-way combinations, then some combinations may be associated with class membership only by 
chance. Future versions of the tool described here will include data on the number of combinations in the 
input fles compared with the number needed for assurance that a combination is reasonably associated 
with a class. 

3.1.2 Minimal Distinguishing Combinations � � 
tAny t-way combination contains t di˙erent (t − 1)-way combinations of parameters, since = t; for t−1 

example abc contains ab, ac, bc. The number of distinguishing combinations will increase with increasing 
t, since any t-way combination that is distinguishing will be included when a (t + 1)-way combination is 
produced by joining an additional attribute to the t-way combination. So if ct is distinguishing, then cu is 
distinguishing for any higher strength value u. We can defne a minimal distinguishing t-way combination 
by the lowest value of t for which ct is distinguishing. 

Example: 

a b c d 
Class File (C) = 0 1 1 0 

1 0 0 1 

a b c d 

0 0 1 0
Non-class File (N) = 

0 0 0 0 
1 0 0 1 

Then abc = 011 is distinguishing, ab = 01 is a minimal distinguishing combination, and ac = 01 is not 
distinguishing because it occurs in both C and N. When computing sets of combinations for various 
measures, it will be important to separate minimal distinguishing combinations from those that are 
not minimal. For example, if ab = 01 is a minimal distinguishing combination, then any 3-way (or 
higher strength) combinations that include ab = 01 will also be counted as distinguishing. In many 
applications, as discussed later in this paper, it is not appropriate to include these higher strength 
combinations for some measures. We defne a fltered set of t-way distinguishing combinations as one in 
which combinations containing lower strength distinguishing combinations have been fltered out. For 
example, if ab = 01 is distinguishing, and set X contains 3-way combinations abd = 010, abe = 011, and 
bce = 000 then abd = 010 and abe = 011 will not be included in the fltered set X. 
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3.2 Applications of Di˙erencing 

The notion of distinguishing combinations has a natural application whenever it is useful to distinguish 
elements of two or more sets, based on di˙erences in their attributes or values. Initially applied to 
fault location for combinatorial testing, the method can also be used in explaining decisions of artifcial 
intelligence or machine learning algorithms, and in the important problem of transfer learning in AI. 

3.2.1 Fault Location 

If a large test set is run, and a few tests fail, then it becomes necessary to locate the cause of the 
failure. In particular, it will be useful to identify what specifc combinations triggered the failure. A 
variety of methods have been developed to accomplish this task, but the general objective is to identify 
combinations that occur in failing tests that do not occur in passing tests [21] [22] [23] [24] [25] [26] [12]. 
The reasoning is that if a combination is in a failing test, then it is clearly a possible proximate cause of 
the failure. However, if the same combination occurred in a passing test, then it does not always lead to 
a failure, and in deterministic systems it can be ruled out as a suÿcient failure-triggering combination. 
Hence there is a need to identify combinations that occur in failing tests, but not in passing tests. These 
are distinguishing combinations as defned above, because their presence in a test identifes that test as 
one in the failure set. 

This process is illustrated in Fig. 7, where the large blue set represents combinations in passing tests, 
and the small yellow set represents combinations in failing tests. If Pt is the set of t-way combinations 
in passing tests, and Ft is the set of t-way combinations in failing tests, then Ft\Pt = {combinations 
in failing tests not also in passing tests}. Note that this set can be large, since each test includes 
C(n, t) t-way combinations, so computing this di˙erence does not immediately locate failure-triggering 
combinations. In general, the di˙erence Ft\Pt is a starting point for determining a set of suspect 
combination(s) that may have resulted in a failure or error. A variety of methods are available for 
determining which combinations in the suspect set will trigger a failure, often including generation of 
new tests to separate out results produced by inclusion of the suspect combinations, until individual 
combinations can be identifed that trigger the failure or error. 

16 

https://csrc.nist.gov


NIST Cybersecurity White Paper (DRAFT) csrc.nist.gov 

Figure 7: Passing and failing tests, with distinguishing combinations. 

3.2.2 Explainable Artifcial Intelligence 

The fault location process described above maps directly to the problem of explaining a decision in 
classifcation problems [27]. This extension is in fact a generalization of the process, identifying a 
particular class of object by its features versus non-class objects that have di˙erent combinations of 
features. In fault location, the class is associated with failures and non-class instances with passing or 
non-failures. Instead of narrowing down a set of suspect combinations, however, a generalized use of 
combination di˙erencing produces a set of t-way combinations each of which are always associated with 
the class and never, or rarely, associated with the non-class instances. For example, a certain 3-way 
combination of temperature, humidity, and CO2 air content may be associated with occupied rooms, 
but never occur in unoccupied rooms, a problem that may occur in building access control. The levels 
of these factors in the 3-way combination may occur individually or in pairs in unoccupied rooms, but 
not the unique 3-way combination. As such, the identifcation of the 3-way combination serves as an 
explanation or justifcation of the conclusion. 

3.2.3 Transfer Learning 

Transfer learning in the feld of AI deals with predicting the performance and accuracy of a model that 
has been trained on one data set when applied to di˙erent data. Lanus et al. [28] defnes a set of di˙erence 
metrics that can be used in evaluating whether a training data set (source) is suÿciently representative 
of a second set (target) for a model trained on the frst one to apply successfully. The intuition is that 
the smaller the di˙erence between source and target, as measured by combination di˙erences, the greater 
accuracy that can be expected using the model trained on the source. 

The di˙erencing method is also shown to be useful in training set design. Conventionally, machine 
learning applications use a training data set and a test data set, selected randomly. Random selection 
helps to ensure that the training set contains a representative sample of the feld of application, and the 
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training set is generally larger than the test set (e.g., 2:1 or 3:1 ratio). Combinatorial coverage can be 
used to determine the degree to which combinations in the training set cover combinations in the test 
set. This approach may not only improve machine learning training processes, but also provide practical 
measures of data set characteristics, for use in AI/ML experiments and algorithm development. 

3.3 Extending the Combination Di˙erencing Method 

In some applications, it will be desirable to compute not only the C\N (Class \Nonclass) set di˙erence, 
but N\C (Nonclass \Class) as well. The tool described in this section computes various measures related 
to these di˙erences in a single run, generating results that can then be used in verifcation and testing, 
explainable AI, fault location, or other problems where combinatorial coverage measurement may be 
relevant. 

3.3.1 Available Measures 

NIST’s combinatorial di˙erencing tool produces a variety of measures that can be applied to a broad 
range of problems. Two matrices, represented as comma-separated value fles, are processed by a com-
mand line tool, which outputs a detailed set of measures of the input fles and their combination set 
di˙erences. The number of parameters, or parameters/factors, must be the same in both. It is assumed 
that any possible individual value of each parameter occurs in either C, or N , or both. 

Two assumptions are possible regarding combinations of the values of input parameters. In some appli-
cations, it is reasonable to assume that the universe of relevant combinations is represented by C ∪ N . 
This assumption may be suitable when there are many physical or other constraints on possible com-
binations, and the data set is very large such that every relevant combination occurs somewhere in 
C or N . (Note that as t is increased, it is always possible to fnd some t-way combination of values 
that does not occur in either C or N , unless the union of these sets is exhaustive. Relevant indicates 
a level of t that is estimated to represent the maximum number of factors that a˙ect system function, 
such as 5-way or 6-way.) Alternatively, it may be more realistic to assume that some combinations of 
values may eventually be encountered in actual use cases, but they are not present in either C or N , 
because of insuÿcient simulation or run time. For example, a small autonomous vehicle simulation may 
include observations where the vehicle is operated in snow and cloudy skies, and in dry weather and 
sunny skies, but may not include the condition where the vehicle is in snow with sunny skies. The choice 
of assumption regarding the universe of possible parameter combinations a˙ects computation of some 
measures, as discussed below. A number of measures and ratios of measures can be computed based on 
sets of combinations, as illustrated in Fig. 8. . 
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Figure 8: Class and non-class fle combinations 

The basic values and ratios described below are computed and reported in order to compare sets of 
combinations in fles C and N. These quantities are given for combinations of values in C and N. In 
most cases they refect sets of value combinations. That is, if a given combination such as ab = 01 
appears more than once in fle C, it will be included only once in the set C2 of 2-way combinations in 
fle C. However, multisets including counts of t-way combinations are also maintained and may be used 
in computing some ratios, as detailed in the defnitions below. 

Symbols: 
• n = number of parameters or factors/parameters 
• rC = number of instances/rows in Class array/fle 
• rN = number of instances/rows in Non-class array/fle� � 

n• Ct = number of t-way combinations in C = t� � 
n• Nt = number of t-way combinations in N = t � � 

t n• MCt = number of t-way value-combinations in C = v t� � 
t n• MNt = number of t-way value combinations in N = v t 

• Mt = number of possible value combinations in C ∪ N 
• Vt = number of value combinations covered in C ∪ N (if assumed that observations cover all value 

combinations, then Mt = Vt) 
• Jt = number of combinations covered jointly, in C ∩ N 
• UCt = number of distinguishing combinations for C (combinations present in C but absent in N) 
• UNt = number of distinguishing combinations for N (combinations present in N but absent in C) 
• FCt = number of fltered distinguishing combinations for C 
• FNt = number of fltered distinguishing combinations for N 
• Counts of quantities above for numbers of combinations are also available 

3.3.2 Basic ratios 

• Similarity Ratio (SR): Jt/Vt represents intersection over union, or “Jaccard similarity”, which 
is a common measure of the similarity of two sets. For class, C, and non-class, N , sets of combi-
nations, this ratio gives the proportion of combinations that are jointly found in C and N . If the 
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similarity is low, then it is relatively easy to distinguish C from N , because they are very di˙erent 
(e.g., turtles vs. wolves). Conversely, if C and N are similar, then there are fewer distinguishing 
combinations to identify instances as members of the class C (e.g., dogs vs. wolves). 

• Total Coverage Ratio (CR): Vt/Mt = Proportion of total possible t-way combinations covered. 
If it is assumed that all combinations of interest occur in either C or N , then this ratio will be 1.0. If 
it is not assumed that all combinations of interest occur in either C or N , then this ratio provides 
a measure of the degree to which observations cover combinations that may be encountered in 
practice. If it is high, then there is greater confdence that the test or simulation has included 
situations that may occur in operation. Conversely, if low, then more test or simulation may be 
required. 

• Distinguishing Combination Density (DCD): UCt/Mt : Proportion of distinguishing combi-
nations for C out of possible combinations. This value suggests how “easy” it may be to identify 
members of a class; a higher value means more attributes or traits associated with a class. 

• Filtered Distinguishing Combination Density (FDCD): FCt/Mt: Proportion of fltered 
distinguishing combinations for C out of possible combinations. This value suggests how “easy” it 
may be to identify members of a class, and also indicates the degree to which distinguishing t-way 
combinations are of smaller size, i.e., lower values of t. 

• Distinguishing Combinations Per Combination: UCt/Ct: Another measure of how common 
distinguishing combinations are among combinations in class and non-class members. 

• Distinguishing Combinations per Instance: UCt/rC : How common are di˙erences among 
members of the class? 

• Filtered Distinguishing Combinations per Combination: FCt/Ct: Another measure of how 
common distinguishing combinations are among combinations in class members. 

• Filtered Distinguishing Combinations per Instance: FCt/rC : How common are di˙erences 
among members of the class? 

3.3.3 Additional metrics 

• Ratios of distinguishing combinations: UCt/UNt, FCt/FNt give potentially useful information 
on whether class or non-class objects have more distinguishing combinations, which may indicate 
the degree to which a class di˙ers from non-class objects. This di˙ers from the basic similarity 
ratio, which compares class objects with all objects; instead it compares class with non-class 
objects, potentially a sharper distinction. 

• Counts of quantities for numbers of combinations: In some cases it is useful to know how 
frequently particular combinations occur among class and non-class instances. This is particularly 
true with non-deterministic applications, where certain combinations may be strongly indicative 
of a particular conclusion, but do not guarantee the conclusion in all cases. 
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3.3.4 Example 

To illustrate these measures and their potential use, we can consider a small example. Suppose we have 
a database of animals as shown below (a 243141 confguration), and the task is to determine levels of 
similarity and di˙erences. Consider di˙erences between birds and non-birds in the database. What 
t-way combinations are associated with these two classes? 

1) fur: y, n 
2) eggs: y, n 
3) legs: 2, 4 
4) wings: y, n 
5) size: s, m, l 
6) color: b(lack), w(hite), g(ray), r(ed) 

fur eggs legs wings size color 
dog1 y n 4 n m b 
dog2 y n 4 n s w 
bat1 y n 2 y s g 
bat2 y n 2 y s b 
bird1 n y 2 y s r 
bird2 n y 2 y m w 
bear1 y n 4 n l b 
bear2 y n 4 n l w 

Table 1: Example animal identifcation task 

Measuring 1-way through 4-way combinations in Table 1 produces the result shown in Fig. 9. Among 
the measures reported, the distinguishing combination density (raw and fltered) and similarity measures 
are important in evaluating similarity and di˙erence. As can be seen in the table, there are fve single 
values that are common between the bird and non-bird classes, or 33.3% of the total number of single 
values. At t = 4, there are no 4-way combinations shared by the two classes, so 4-way distinguishing 
combinations for the bird class could be used to identify this class. To make this easier to visualize, Fig. 
10 shows Venn diagrams of the combinations of features in the two classes. 

3.4 Visualizing Coverage of Value combinations 

Recall from Section 1 that we refer to the parameters in a t-way tuple as a combination, and the 
particular values for the t-way tuple as a value combination. For example, if parameters are a, b, . . . , 
g, then {a, b, e} is a 3-way combination containing the parameters a, b, and e. If the three parameters 
are binary, then there are eight possible value combinations: {0, 0, 0} , {0, 0, 1} etc. Fig. 3b illustrated 
how to graph overall combinatorial coverage of a data set, but it is important to be able to evaluate 
combinatorial coverage more closely. The minimum coverage, µt, (for which (p, t)-completeness = 1.0) 
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Figure 9: Distinguishing combinations for Class and Non-class 

gives the smallest proportion of value combinations covered for all t-way combinations in a data set, but 
there can be great variability among a large number of combinations. 

Suppose we have a set of training data for a machine learning application, and there is a need to determine 
the degree to which the training set refects combinations of values in real-world environments. This is 
essentially the same as the problem of determining if a set of tests is adequately refective of inputs that 
will be encountered in daily use for the SUT. If possible values and constraints are known in advance, a 
covering array can be constructed to the desired strength, to ensure that suitable coverage is achieved. 
However, it is not always practical to use this approach. 

In many cases, it is not clear what inputs will be encountered in use. In a testing application, this 
problem may arise when a system is deployed in a new environment. This situation also occurs in 
machine learning, where it is referred to as the transfer learning problem, where an algorithm has been 
trained for one environment and it is to be applied to another. If the distribution of inputs is nearly the 
same in the two environments, then the application may function well, otherwise there may be a risk of 
errors (in machine learning) or failures (in conventional applications). 

Note that it is possible that di˙erences between two environments may include constraints on combina-
tions of values that may be possible, not only on the values themselves. In many cases it may not be 
possible to analytically determine the constraints that exist. It may be possible to infer some from data 
collected during use, but in many cases this is not practical. Any constraints among attribute values 
are inherent in data collected, so an alternative to specifying constraints is to determine if combinations 
are similar between two data sets. That is, are there some combinations in the test or training set that 
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Figure 10: Raw and fltered set distinguishing combinations for classes C and N 

are not present in the data from actual use, or vice versa? Thus it is essential to measure the degree to 
which two data sets are similar. 

3.4.1 Basic Measures 

A variety of measures can be applied to understand similarity between data sets using combinatorial 
coverage, as introduced previously. Suppose we wish to evaluate the degree to which a set of inputs is 
representative of a full set. In this case, we will assume that the full set has unknown constraints, so the 
problem is not as simple as generating a covering array of t-way combinations of values observed in the 
full data set. Instead, we want to consider the degree to which the small subset refects the values of a 
much larger set, as a test set (in a testing context) or for training (in a machine learning context). 

Fig.11 (a) shows a test (or training) set and Fig. 11 (b) shows the larger set which includes all obser-
vations, including those in (a). Even with this small array, it is hard to say at a glance how well test 
array (a) covers the combinations in (b). Analyzing the array coverage, we can produce useful measures 
shown in Fig. 12, where fle F1 is the two row array in (a) and F2 is the four row array in (b). Because 
we are assuming in this case that the larger array is representative of the real-world environment, the 
combinations covered in the full set represent 100% of possible combinations (by assumption). Also 
provided are the following, for each level of t-way interaction: 

• coms = number of combinations of the six attributes, for the given level of t 
• value combinations = number of value combinations total, for given level of t (N value combinations 

= N covered because of the assumption above). 
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Figure 11: Six parameter test set 

• F 1\F 2 = number of combinations in F 1 that are not in F 2, always zero in this case because a ⊂ b 
• joint = number of value combinations for the given level of t that appear in both F 1 and F 2 
• jointpct = percent of value combinations for the given level of t that appear in both F 1 and F 2 

Note that the report shows 9 single values covered for the full set of four tests. For six binary parameters 
there would be of course 12 possible single-value value combinations, but constraints among values may 
limit possible values, so there are three parameters that show only one value. Of these nine values, 
the two tests in (a) include seven, so the joint coverage is 7/9 = 78% . Coverage is also shown for 
combinations up to t = 4-way. For example, the joint coverage for t = 2, i.e., 2-way combinations that 
occur in both array (a) and (b) is 69% , with 20 of 29 combinations covered. For this analysis, the set 
di˙erence of F 1\F 2 = 0, because there are no combinations in F 1 that are not in F 2. For other types 
of problems, there may be sets that overlap but do not have a subset relationship. 
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Figure 12: Summary coverage report 

3.4.2 Per-combination Coverage 
The values shown in the coverage report are useful for determining the degree to which a test (or 
training) set is representative of real-world observations, but these values only indicate overall coverage. 
To really understand the utility of the tests in (a), we need to look at coverage on a per-combination 
basis. Fig. 13 shows views of 2-way and 3-way coverage for the example above. As shown in the 
report, the overall coverage for 2-way and 3-way is indicated as S2 = 0.69 and S3 = 0.65 respectively. 
Minimum coverage, µ2 and µ3 is also indicated (as M2 and M3), both at 0.50. Each block in a coverage 
chart shows the level of coverage for a combination. Thus there are 15 blocks in the 2-way coverage 
chart, because there are 15 2-way combinations, and similarly 20 blocks for the 3-way combinations. 
For readability, combination coverage fgures are computed as a list comprehension, but presented as a 
square chart. Thus blocks for 2-way coverage show (reading from left to right, top to bottom) coverage 
for (a, b), (a, c), (a, d), (a, e), (a, f), (b, c), . . . , (e, f). Referring back to Fig. 13, it can be seen that (a) 
contains all 2-way value combinations for (a, b), (a, d), (a, f), (b, d), etc. This is indicated below with black 
squares for complete coverage. Similarly, lower levels of coverage for other combinations can be seen in 
other blocks. 

25 

https://csrc.nist.gov


NIST Cybersecurity White Paper (DRAFT) csrc.nist.gov 

Figure 13: Per-combination coverage 

Vulnerability and fault detection often depend on specifc sequences of inputs that establish states which 
eventually lead to a failure. That is, most software processes are not pure functions where input produces 
the same output whenever the process is invoked. The response of the process to a particular set of input 
values may depend on its current state, which is established by a sequence of inputs. Determining initial 
state for a particular test, and generating inputs to produce that state, or set of conditions, is a diÿcult 
problem in practical software testing. 

A larger challenge in testing is ensuring that tests have been suÿciently broad and diverse, refecting 
potential use conditions, to ensure high confdence in system correctness, safety, and security. However, 
beyond basic structural coverage metrics, it is often diÿcult to determine if suÿcient diversity of inputs 
has been achieved. Measures are needed to ensure that relevant combinations of input values and input 
sequences have been tested and verifed for correct operation. Combinatorial coverage measures provide 
an e˙ective method of quantifying the thoroughness of test input values. A number of measures have 
been defned for the coverage of (static) input value combinations. These measures quantify the degree 
to which input values cover the potential space of parameter value combinations, without regard to the 
sequence in which these inputs occur in a test set, or in normal operation. Because system state is 
a˙ected or determined by the sequence of inputs, even thorough coverage of the input space may not 
detect some failure conditions. Thus it is desirable to supplement measures of input space coverage 
with measures of the sequences of input value combinations. This publication documents input sequence 
coverage measures and a research tool that can be applied in practical applications. 

3.4.3 Within-combination Coverage and Variability 
It is also useful to consider the coverage associated with individual combinations, as shown in Fig. 14 
below. These charts show the percentage of values covered for each 2-way combination which contains 
one of the six attribute parameters. Thus the frst chart shows coverage for attribute a within 2-way 
combinations: (a,b), (a,c), (a,d), (a,e), (a,f ). Note that for attribute d, coverage is very good, with either 
0.75 (green) or 100% (black) coverage for every pair of attributes containing d. The overall coverage for 
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these fve 2-way combinations containing d is 0.83. Conversely, coverage is not good for e, as shown 
in the next chart, where overall coverage for these fve is S2 = 0.55. The same type of charts can be 
produced for 3-way and 4-way combinations, subject to practical limits on the number of combinations 
that can be displayed. 

Figure 14: Within-combination coverage 

3.4.4 Example 

For a real-world example of this visualization approach, see Fig. 15, which shows graphs of 2-way and 
3-way combinations in a 22-attribute mushroom identifcation machine learning problem. The objective 
of this task is to identify combinations that are strongly or weakly associated with edible or poisonous 
mushrooms. The left chart shows summary coverage for 231 2-way combinations, and the right chart 
shows 1,540 3-way combinations. 
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Figure 15: Summary coverage, 2-way and 3-way combinations of 22 attributes 

The utility of this type of graph can be seen in Fig. 16, which shows the within-combination coverage of 
3-way combinations for each of the 22 attributes in the mushroom identifcation problem. In this case, 
attribute 4 has much lower coverage than other attributes. That is, there is much less variability among 
3-way combinations containing attribute 4 than for the other attributes. For these combinations, the 
total coverage, S3, is only 0.51, so roughly half of the value combinations of combinations containing 
attribute 4 are not associated with this mushroom class. The relevance of this observation depends on 
the goal of our analysis: 

- In a class identifcation problem, this would suggest that combinations containing this attribute are 
useful in identifying the mushroom class, since many value combinations do not occur in the edible class 
(as shown by the low value of S). 

- In a testing situation, a low value for S would indicate that this attribute is not well covered in tests, 
so the test set should be inspected and improved. 

If all attributes are covered to about the same level, then the matrices in Fig. 15 will have a fairly 
uniform color, with coverage level indicated by the heatmap color bar on the right side. For testing, 
coverage would ideally be at or close to 1.0 for all combinations. That is, all value combinations would 
be included in tests. In a machine learning context, the attribute coverage heatmaps could be used in 
comparing model training and test sets, to check that distribution of combination coverage is nearly the 
same for both sets. Note that in machine learning it is expected that combination coverage varies with 
attributes, and they will normally not have the same level of value coverage. But if training and test 
sets are nearly the same, then the heatmaps should be very similar. This approach thus gives us a quick 
and visual way to identify weak spots in a test set, or confrm similarity between data sets for AI/ML 
or other applications. 
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Figure 16: 3-way combination coverage of combinations containing each of 22 attributes 

Figure 17: Magnifed view of frst eight heatmaps 
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Summary 
This publication documents a number of measures and ratios that are computed by research tools for use 
with combinatorial testing. Using t-way combinations of parameter or attribute values provides a new 
approach for measuring similarity and di˙erence between data sets. Additionally, it is shown that t-way 
combinations may be used to distinguish between data sets that may appear very similar based only 
on single-attribute values. These measures have been shown to be useful in test design and evaluation, 
fault location, explainable artifcial intelligence, and transfer learning. The tools described have been 
introduced as research tools, and additional work may identify other practical application. 
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