®

Check for
updates

| NIST Internal Report
2 NIST IR 8214C ipd

NIST First Call for Multi-Party Threshold Schemes

w

4 (Initial Public Draft)
5 Luis T. A.N. Brandao
6 René Peralta
7 This publication is available free of charge from:
8 https://doi.org/10.6028/NIST.IR.8214C.ipd

NATIONAL INSTITUTE OF
STANDARDS AND TECHNOLOGY
U.S.DEPARTMENT OF COMMERCE

https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.IR.8214C.ipd
https://doi.org/10.6028/NIST.IR.8214C.ipd

10

16

17
18

19
20

21

22

23
24

25
26

NIST Internal Report
NIST IR 8214C ipd

NIST First Call for Multi-Party Threshold Schemes

(Initial Public Draft)

Luis T. A.N. Brandao*

Strativia

René Peralta

Computer Security Division
Information Technology Laboratory

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8214C.ipd

January 2023

U.S. Department of Commerce
Gina M. Raimondo, Secretary

National Institute of Standards and Technology

Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology

https://doi.org/10.6028/NIST.IR.8214C.ipd

27
28
29
30

31
32
33
34
35
36

37
38
39

40
41
42

43
44

45
46
47
48

49
50
51

52
53

54
55

56
57

58

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or
endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities,
materials, or equipment are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST
in accordance with its assigned statutory responsibilities. The information in this publication, including
concepts and methodologies, may be used by federal agencies even before the completion of such companion
publications. Thus, until each publication is completed, current requirements, guidelines, and procedures,
where they exist, remain operative. For planning and transition purposes, federal agencies may wish to closely
follow the development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide
feedback to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at
https://csrc.nist.gov/publications.

NIST Technical Series Policies
Copyright, Fair Use, and Licensing Statements
NIST Technical Series Publication Identifier Syntax

Publication History
This version is the initial public draft (ipd).

How to cite this NIST Technical Series Publication

Luis T. A. N. Branddo, René Peralta (2023). NIST First Call for Multi-Party Threshold Schemes (Initial Public
Draft). (National Institute of Standards and Technology, Gaithersburg, MD) NIST IR 8214C ipd.
https://doi.org/10.6028/NIST.IR.8214C.ipd

NIST Author ORCID identifiers
Luis T. A. N. Brandao: 0000-0002-4501-089X
René Peralta: 0000-0002-2318-7563

Contact Information
nistir-8214C-comments @nist.gov

Public Comment Period
January 25, 2023 — April 10, 2023

Submit Comments
Only via email: nistir-8214C-comments @nist.gov

All comments are subject to release under the Freedom of Information Act (FOIA).

https://csrc.nist.gov/publications
https://doi.org/10.6028/NIST-TECHPUBS.CROSSMARK-POLICY
https://www.nist.gov/system/files/documents/2022/04/01/PubID_Syntax_NIST_TechPubs.pdf
https://doi.org/10.6028/NIST.IR.8214C.ipd
https://orcid.org/0000-0002-4501-089X
https://orcid.org/0000-0002-2318-7563
mailto:nistir-8214C-comments@nist.gov
mailto:nistir-8214C-comments@nist.gov

59

60
61
62
63
64
65
66
67

68

69
70
71
72
73
74
75
76
71
78
79
80
81
82

83

84
85

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests,
test methods, reference data, proof of concept implementations, and technical analyses to
advance the development and productive use of information technology. ITL’s responsi-
bilities include the development of management, administrative, technical, and physical
standards and guidelines for the cost-effective security and privacy of other than national
security-related information in federal information systems.

Abstract

This document calls for public submissions of multi-party threshold schemes, to support the
National Institute of Standards and Technology (NIST) in developing future recommenda-
tions and guidelines. In a threshold scheme, an underlying key-based cryptographic primitive
is executed while a private/secret key is or becomes secret-shared across various parties.
Submissions in response to this call should include security characterization, technical
description, open-source implementation, and performance evaluation. Submitted threshold
schemes should produce outputs that are “interchangeable” with a key-based cryptographic
primitive of interest. There are two categories of primitives for the submission of threshold
schemes: Catl, for selected NIST-specified primitives; and Cat2, for primitives not specified
by NIST, but which are friendlier (more amenable to) to the threshold paradigm, have
enhanced functional features, or/and are based on different cryptographic assumptions. The
analysis of Catl-submissions will help develop future recommendations and guidelines for
threshold implementations of the corresponding NIST-specified primitives. The analysis of
Cat2-submissions will help assess new interests on primitives not standardized by NIST.

Keywords

Cryptography; distributed systems; provable security; secure multi-party computation;
standards; threshold cryptography; threshold schemes.

86

87

88
89
90
91

92
93
94
95
96
97
98

99

100
101
102
103
104

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

Preface

Please do not yet submit any threshold scheme.

The present draft is published for the purpose of obtaining public feedback. The final version
of the “NIST First Call for Multi-Party Threshold Schemes” will consider received feedback
about this document and will integrate other formal components. Please submit feedback
comments to nistir-8214C-comments @nist.gov by April 10, 2023.

This document is intended for: technicians engaged in the development of recommendations
for threshold schemes; cryptography experts interested in providing constructive technical
feedback, or in collaborating in the development of open reference material; and all those,
including from academia, industry, government and the public in general, interested in future
recommendations about threshold schemes. Relevant preliminary context about this call
can be found in the NIST-IR8214A (2020), the MPTC-Call2021a for feedback on criteria for
threshold schemes (2021), and the NIST-IR8214B-ipd (2022).

Acknowledgments

The first author performed this work as a Foreign Guest Researcher (non-employee) at
NIST, while under a contract with (employed by) Strativia. The authors thank their NIST
colleagues Lily Chen, Michael Davidson, Dustin Moody, Ray Perlner, and Meltem Sonmez
Turan, for their feedback on diverse aspects of this call. The authors also thank Isabel Van
Wyk, from NIST, for various editorial comments.

il

mailto:nistir-8214C-comments@nist.gov

105

106
107
108
109
110
111

112
113

114
115

116
117
118

119
120

121
122

123
124
125
126
127

128
129

130

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

Call for Patent Claims

This public review includes a call for information on essential patent claims (claims whose
use would be required for compliance with the guidance or requirements in this Information
Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may be
directly stated in this ITL Publication or by reference to another publication. This call also in-
cludes disclosure, where known, of the existence of pending U.S. or foreign patent applications
relating to this ITL draft publication and of any relevant unexpired U.S. or foreign patents.

ITL may require from the patent holder, or a party authorized to make assurances on its
behalf, in written or electronic form, either:

a) assurance in the form of a general disclaimer to the effect that such party does not
hold and does not currently intend holding any essential patent claim(s); or

b) assurance that a license to such essential patent claim(s) will be made available
to applicants desiring to utilize the license for the purpose of complying with the
guidance or requirements in this I'TL draft publication either:

1) under reasonable terms and conditions that are demonstrably free of any unfair
discrimination; or

ii) without compensation and under reasonable terms and conditions that are dem-
onstrably free of any unfair discrimination.

Such assurance shall indicate that the patent holder (or third party authorized to make
assurances on its behalf) will include in any documents transferring ownership of patents
subject to the assurance, provisions sufficient to ensure that the commitments in the assurance
are binding on the transferee, and that the transferee will similarly include appropriate
provisions in the event of future transfers with the goal of binding each successor-in-interest.

The assurance shall also indicate that it is intended to be binding on successors-in-interest
regardless of whether such provisions are included in the relevant transfer documents.

Such statements should be addressed to: nistir-8214C-comments @nist.gov

il

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

Table of Contents

5.

Introduction L 1
ACrONYMS o o o e e e e e e e e 3
Call and Scope for Submissions o 6
3.1. Category 1 (Catl) e 6
3.2. Category2(Cat2) e e 7
3.3, Vision ... 8
Components of a Submissiono 10
4.1. Phases Until Full Submission 10
4.2. Main component M1: Written specification 11
421. Frontmatter L 11
422, Mainmatter 12
423. Backmatter 13
4.3. Main component M2: Reference Implementation 14
4.4. Main component M3: Execution Instructions 15
4.5. Main component M4: Experimental evaluation 16
4.5.1. Experimentalsetting 16
452. Measurements 16
453. Analysis 17
4.6. Main component M5:; Additional Statements 17
Technical Requirements (T) for Submission of Threshold Schemes 18
51. T1:Primitives 18
5.2. T2:SystemModel 18
5.21. T21: Participants 19
5.2.2. T2.2: Distributed Systems and Communication 20
5.23. T23:Adversary e 20

v

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES

JANUARY 2023 (INITIAL PUBLIC DRAFT)
157 5.3. T3: Security Idealization 21
158 5.4. T4: Security Versus Adversarieso 22
159 5.4.1. T4.1: Active Security (Against Active Corruptions) 22
160 5.4.2. T4.2: Adaptive Security (Against Adaptive Corruptions) 22
161 5.4.3. T4.3: Proactive Security (Against Mobile Attacks) 23
162 5.5. T5: Threshold Profiles 23
163 5.6. T6: BuildingBlocks 25
164 6. Catl primitives — Specified by NIST, 26
165 6.1. Input/Output (I/O) Interfaces 27
166 6.2. Cryptographic Parameters L. 27
167 6.2.1. Elliptic Curves, for ECC-related Primitives 27
168 6.2.2. RSA Modulus, for RSA-related Primitives 29
160 7. Cat2 Primitives — Not Specified by NIST 30
170 7.1. “Regular’ Primitives (Subcategories C2.1-C2.5) 30
171 7.2. “Other” Primitives/Schemes (Subcategories C2.6-C2.8) 31
172 7.2.1. Cat2 subcategory C2.6: “Advanced” 31
173 7.2.2. Cat2 subcategory C2.7: ZKPoK 31
174 7.2.3. Cat2 subcategory C2.8: Auxiliary Gadgets 32
175 A. Details for Subcategories and Primitives of Interest 33
176 A.1. Subcategory C1.1: Cat1 Signing 33
177 A.1.1. Subcategory C1.1.1: EADSA Signing 33
178 A.1.2. Subcategory C1.1.2: ECDSASigning. 34
179 A.1.3. Subcategory C1.1.3: RSADSA Signing 35
180 A.1.4. Signing in Secret-Shared-Input (SSI) Mode 35
181 A.2. Subcategory C1.2: Cat1 Public-Key Encryption (PKE) 35
182 A.2.1. Subcategory C1.2.1: RSA Encryption (of a Secret-Value) 36
183 A.2.2. Subcategory C1.2.2: RSA Decryption 37
184 A.2.3. Implementation Recommendations and Options 37

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES

JANUARY 2023 (INITIAL PUBLIC DRAFT)
A.3. Subcategory C1.3: Cat1 ECC Primitives for Pair-Wise Key-Agreement (2KA) 39
A.3.1. Subcategory C1.3.1: ECC-CDH Primitive 42

A.3.2. Subcategory C1.3.2: ECC-MQV Primitive 42

A.4. Subcategory C1.4: Cat1 “Symmetric” 43
A.4.1. Subcategory C1.4.1: AES Enciphering/Deciphering 43

A.4.2. Subcategory C1.4.2: KDMandKCfor2KE 44

A.4.2.1. Key Derivation Mechanism (KDM) 45

A4.22. KeyConfirmation(KC) 45

A.5. Subcategory C1.5: key-Generation (keygen) for Cat1 Schemes 45
A.5.1. Subcategory C1.5.1: ECC Keygen (for ECDSA, EdDSA, and ECC-2KA) 47

A.5.2. Subcategory C1.5.2: RSAKeygen 47

A.5.2.1. Criteria for the RSA Modulus and Primes 48

A.5.2.2. Criteria for the Private Exponent 49

A.5.3. Subcategory C1.5.3: BitstringKeygen 49

A.6. Subcategory C2.6: Advancedo 49
A.6.1. Use-Case Example: Non-Threshold FHE-Based AES Oblivious Enciphering 50

A.6.2. Threshold Schemes for FHE-based AES Oblivious Enciphering . . . 51

A.7. Subcategory C2.7: ZKPoKs 52
A.8. Subcategory C2.8: (Auxiliary) Gadgets 55

B. Submission Checklistso 56
B.1. Checklist for Submission Phases (Ph) 56
B.2. Checklist for Package Main Components (M) 56
B.3. Checklist for M1: Written Specification Sections (S) 56
B.4. Checklist for M2: Open source (Src) Reference Implementation 57
B.5. Checklist for M3: Execution Instructions (X) 57
B.6. Checklist for M4: Performance Analysis (Perf) 57
B.7. Checklist for Technical Requirements (T) 57
References L 58

Vi

213

214

215

216

217

218

219

220

221

222

223

224

225

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES

JANUARY 2023 (INITIAL PUBLIC DRAFT)
List of Tables

Table 1. Subcategories of interestinCat1 6
Table 2. Examples of primitives in subcategoriesof Cat2 8
Table 3. Labels for some template threshold profiles 24
Table 4. Primitives of interest in subcategoriesof Cat1 26
Table 5. Recommended implementation parameters for Cat1 primitives 28
Table 6. Notation of EADSA versus ECDSA (in Draft FIPS 186-5) 34
Table 7. RSA-based primitives per party per RSA-2KE scheme 38
Table 8. Seven ECC-2KAschemes 40
Table 9. ECC-2KA primitives of interest for thresholdization 41
Table 10. Examples of keygenpurposes 46
Table 11. Criteria for the random primes of an RSAmodulus 48
Table 12. Example ZKPoKs of interest related to Cat1 primitives 53

vii

226

227
228
229
230
231
232

233
234
235
236
237

238
239
240
241
242
243
244
245

246
247
248
249
250

251
252
253
254
255

256

257

258
259

260
261

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

1. Introduction

Over several decades, the National Institute of Standards and Technology (NIST) has
standardized important key-based cryptographic schemes, in various Federal Information
Processing Standards (FIPS) publications, and in Special Publications in Computer Security
(the SP80O series). For example, they provide specifications for digital signatures [FIPS-
186-5-Draft], public-key encryption [SP800-56B-Rev2], pair-wise key-agreement (including
key-derivation primitives) [SP800-56A-Rev3], and symmetric-key enciphering [FIPS-197].

In a traditional description or implementation of a key-based cryptographic primitive, the
operation is performed by an individual party that has access to the private/secret key, when
said key is created (in key-generation) or/and used as input (e.g., for signing, enciphering,
or decryption) in the underlying basic primitives. In a corresponding conventional imple-
mentation, said party is a single-point of failure for confidentiality, integrity and availability.

Modern cryptography enables a multi-party implementation paradigm, based on devel-
opments in the fields of threshold cryptography, secure multi-party computation (MPC)
and distributed systems. In a (multi-party) threshold scheme, multiple parties perform a
distributed computation, emulating the operation of a key-based cryptographic algorithm,
without combining the private/secret key in any single place, and ensuring security as long
as the number of corrupted parties does not exceed a certain threshold. This enables decen-
tralization of trust regarding the creation, storage and use of the private/secret keys. This
threshold paradigm can be applied to NIST-specified primitives and beyond.

The development of recommendations and guidelines for threshold schemes, tapping into
the domain of advanced cryptography, is an important step in addressing various challenges
in cybersecurity and privacy. As part of such development, it is expected that the present
“Call for Multi-Party Threshold Schemes” will motivate broad community engagement for a
diverse set of submissions, followed by expert public scrutiny by stakeholders.

Recent context leading to the formulation of this call can be found in the Multi-Party
Threshold Cryptography (MPTC) project webpage, the NIST-IR8214A (2020) with con-
siderations toward criteria, the MPTC-Call2021a for feedback on criteria for multi-party
threshold schemes (MPTS), the 2020 MPTS workshop webpage, and the NIST-IR8214B-ipd
on threshold EdADSA/Schnorr signatures (2022). The present call has the following goals:

1. [Reference material] Create a basis of properly motivated, specified, implemented
and analyzed threshold schemes, to support future recommendations and guidelines.

2. [Threshold feasibility] Assess the viability of threshold implementations of various
primitives of interest, including of selected NIST-specified primitives.

3. [Pertinence of other primitives] In the threshold context, facilitate an initial assess-
ment of the merits of other cryptographic primitives that may be mature for adoption.

Table 1. Subcategories of interest in Cat1

Subcategory: Type Families of specifications instelfitsizgll
C1.1: Signing EdDSA sign, ECDSA sign, RSADSA sign Al
C1.2: PKE RSA encryption, RSA decryption A2
C1.3: 2KA ECC-CDH, ECC-MQV A3
C1.4: Symmetric ~ AES encipher/decipher, KDM/KC (to support 2KE) A4
C1.5: Keygen ECC keygen, RSA keygen, bitstring keygen A5

Note: In the second column, each item within a subcategory is itself called a family of specifications, since it
may include diverse primitives or modes/variants, some of which are mentioned in Table 4 (in Section 6).

Table 2. Examples of primitives in subcategories of Cat2

Subcategory: Type Example scheme Example primitive
C2.1: Signing Succinct & verifiably-deterministic signatures ~ Signing
C2.2: PKE TF-QR public-key encryption (PKE) Decryption/encryption
C2.3: KA Low-round multi-party key-agreement (KA) Single-party primitives
C2.4: Symmetric TF-QR blockcipher/PRP Encipher/decipher

\ TF-QR key-derivation / key-confirmation PRF and hash function
C2.5: Keygen Any of the above Keygen
C2.6: Advanced QR fully-homomorphic encryption Decryption; Keygen

\ Identity-based and attribute-based encryption Decryption; Keygens
C2.7: ZKPoK ZKPoK of private key ZKPoK.Generate
C2.8: Gadgets Garbled circuit (GC) GC.generate; GC.evaluate

Legend: PRF = pseudorandom function [family]. PRP = pseudorandom permutation [family]. QR
= quantum resistant. TF = threshold-friendly. ZKPoK = zero knowledge proof of knowledge.

Table 3. Labels for some template threshold profiles

Corruption proportion Number of parties (n)

Two (2): Three (3): Small (S): Medium (M): Large (L): Enormous (E):

Majority type
f/n O IPE 0 n=3 4<n<8 9<n<64 65<n<1024 n>1025
>1/2 Dishonest (D) n2 n3fD nSfD nMfD nLfD nEfD
~1/3 Honest (h) _ n3fh nSsh AMfh nLfh nEfh
<1/3 2/3Honest(H) —— — nSfH nMfH nLfH nEfH

Table 4. Primitives of interest in subcategories of Cat1

Sub)subcategory #: Section
Subcategory: Type (Su) " 'g . y Some [Primitives] and/or {Threshold Modes} !
Family of primitives in this call
C1.1: Signing Cl1.1.1: EdDSA sign [EdDSA, HashEdDSA] {Prob; Q-PR; F-PR (not FE); FE} A.1.1
C1.1.2: ECDSA sign {Prob-FE; Q-PR; F-PR not-FE; PR-FE to Det-ECDSA)} A.1.2
C1.1.3: RSADSA sign [RSASSA-PSS; RSASSA-PKCS-v1.5] A.13
C1.2: PKE C1.2.1: RSA encryption [RSASVE.Generate, RSA-OAEP.Encrypt] {SSI} A2.1

C1.2.2: RSA decryption [RSASVE.Recover, RSA-OAEP.Decrypt] {NSS, SSO} A22

C1.3: ECC-2KA Cl1.3.1: ECC-CDH {NSS; SSO} A3l
C1.3.2: ECC-MQV [Full; One-pass] {NSS; SSO} A32
C1.4: Symmetric C1.4.1: AES (en/de)cipher [encipher, decipher] A4l
C1.4.2: KDM/KC (for 2KE) [Hash, CMAC, HMAC, KMAC] A42
C1.5: Keygen C1.5.1: ECC keygen [For ECC-signing and ECC-2KA] AS.1
C1.5.2: RSA keygen [Just the modulus (mod); mod & keypair] AS5.2

C1.5.3: Bitstring keygen [RBG for AES keygen, RSA-SVE, and nonces] {SSO} AS53

Legend: 2KE = pair-wise key-establishment. Det = deterministic . FE = functionally equivalent. F-PR = fully PR (i.e., deterministic
even if the quorum changes). KD/KC = key derivation and key confirmation mechanisms; NSS = input/output is not secret-shared
(i.e., apart from the key); PKE = public-key encryption. PR = pseudorandom. Prob = probabilistic. RBG = random-bit generation.
Q-PR = PR per quorum. SSI/SSO = secret-shared input/output (see §2.3 of NIST IR8214A). SVE = secret-value encapsulation.

Table 5. Recommended implementation parameters for Cat1 primitives

Parameter type Primitives using said parameters For x ~ 128 For k 2 224
Elliptic curve EdDSA signing and keygen Edwards25519 Edwards448
\ ECDSA signing and keygen P-256 P-521
| ECC CDH/MQVfor 2KA, and keygen {Curve25519, P-256} {Curve448, P-521}
RSA modulus size RSADSA, RSA PKE, and their keygen IN| =3,072 IN| > 11,264 *
RSA enc./ver. key RSA-related 216 < ¢ < 2256 216 < ¢ < 2256
Hash function EdDSA signing SHA-512 SHAKE256 (len 512, 912)

\
KMAC

Cipher
AES key-size

ECDSA/RSADSA; HMAC for KDM/KC

\
for KDM and KC

KC (for RSA or ECC), encipher/decipher
AES encipher/decipher/keygen/CMAC

SHA-256, SHA3-256,
SHA-512/256
SHAKEI128 (len 256)
KMACI128

AES-128

k| =128

SHA-512, SHA3-512

SHAKE256 (len 512)
KMAC256

AES-256

k| = 256

Legend: k = standardized “security strength” (in bits). enc./ver. = encryption/verification. len = length.

* The RSA modulus length |N| must be a multiple of 8; this call further suggests that it be a multiple of 512.
Approved hash functions or XOFs are specified in FIPS 180-4, FIPS 202, and SP 800-185, but only a subset

of them are suggested in this call. A XOF with predetermined length (len) can also be called a hash function.

Table 6. Notation (in Draft FIPS 186-5): EADSA versus ECDSA

Element’s role In EADSA In ECDSA
Signature (R,S) (r,)
Privatef key s d
Secret nonce r k
[Final]# nonce commitment R r
Challenge X e

1t EADSA also uses d, but for the precursor private-key from which the signing key s and another
nonce-derivation key are obtained. } The use of [final] is to convey that it is the actual value output in the
signature. It is an encoding of other intermediate computed values that are themselves also commitments
to the nonce. In particular, in ECDSA one of the intermediate values is denoted with symbol R.

Table 7. RSA-based primitives per party per RSA-2KE scheme

Type Scheme ?;EBS;Z?;) Party RSA-based primitive nf:;:i?
KA KTS1 §8.2 1st contributor (U) RSASVE.Generate Yes

\ \ \ 2nd contributor (V) RSASVE.Recover \

\ KTS2 §8.3 Any RSASVE.{Generate & Recover} \
KT KTS-OAEP §9.2 Sender (U) RSA-OAEP.Encrypt No

\ \ Receiver (V) RSA-OAEP.Decrypt

Table 8. Seven ECC-KA schemes

Intermediate secret Z g in Sp 800

Primitive (f) e s Scheme
(“agreed” by U and V) -56A-Rev3
ECC CDH 2 2 (Cofactor) Full Unified Model fleu, Ev)||f(su,Sv) §6.1.1.2
\ 2 0 (Cofactor) Ephemeral Unified model f(ey,Ev) §6.1.2.2
\ 1 2 (Cofactor) One-Pass Unified Model f(ey,Ev)||f(ev,Sy) §6.2.1.2
\ 1 1 (Cofactor) One-Pass Diffie-Hellman f(ey,Sy) §6.2.2.2
\ 0 2 (Cofactor) Static Unified Model f(sy,Sv) §6.3.2
ECCMQV 2 2 FullMQV f(su,Sy,ev,Ev,Ey) §6.1.14
| 1 2 One-Pass MQV f(su.Sy,ev, Eu,Sy) §6.2.1.4

Legend: Il = concatenation. § = section in another document. e = number of generated ephemeral key pairs. f =
symbol representing the ECC primitive (CDH or MQV). s = number of generated static key pairs; U and V = the
two parties in the 2KA protocol. Let A represent one of the parties (U or V). Abbreviated notation for keys: ¢4
(=dea)and E4 (= Qca) are the ephemeral private and public keys of party A; s4 (= ds4) and S4 (= Oy 4) are the
static private and public keys of party A. The primitive f makes use of additional parameters not shown here.

Table 9. ECC-2KA primitives of interest for thresholdization

Lo Secret Secret Threshold Section in Section in
Primitive . . .
input? ouptut? friendly? SP800-56A-Rev3 this call
ECC keygen: get key-pair (d,Q) — Yes Yes §5.6.1.2 AS.1
ECC CDH/MQV: Z = f(ds,0p,...) Yes Yes Yes §5.7 A3.172
Key derivation: k = KDM(Z,...) Yes Yes No §5.8 A42
Key confirmation: KC(Z,...) Yes — No §5.9 A42

Legend: d = private key. f = CDH or MQV transformation (primitive). k = final secret established by both parties.
KC = “key confirmation” pseudorandom function, to allow comparison between A and B. KDM = “key derivation

mechanism” function. Q = public key. Z = intermediate secret (before KDM) computed by both parties.

Table 10. Examples of keygen purposes

Keygen purpose (subsequent operation) Private/secret key Other public elements

ECC-signing; ECC-2KA primitives exponent d (integer mod n) Q = d - G (elliptic curve point)
RSA signing and decryption primes (p,q) modulus N = p-¢g

\ exponent d = e ! mod ¢y exponent e
RSA encryption for 2KE random bit-string Z ¢ =RSAEP((n,e),2)

Key-derivation / key-confirmation KC(Z,...)

AES enciphering/deciphering random bit-string k —

Table 11. Criteria for the random primes of an RSA modulus

Type Sub-type Provable prime Probable prime
Simple provable P, q
probable p.q
Complex provable P1,P2491,92 P> q
| hybrid P1s P2, 41, 92, P, q
‘ probable P1, P2, 41,492, P, 4

Per §A.1.1 of FIPS 186-5 (Draft): p1, p2, q1, g2 are called auxiliary primes and must be divisors of
p—1,p+1,qg—1and g+ 1, respectively, i.e., pi1|p— 1, p2|p+ 1, qilg— 1, q2|qg+ 1.

Table 12. Example ZKPoKs of interest related to Cat1 primitives

Related
type

Related (sub)sub-
category: Primitive

Example ZKPoK (including consistency with public
commitments of secret-shares, when applicable)

Keygen

|
|
PKE

Symmetric

C1.5.1: ECC keygen
C1.5.2: RSA keygen
C1.5.3: AES keygen
C1.2.1: RSA encryption
C1.2.2: RSA decryption
C1.4.1: AES enciphering
C1.4.2: Hashing in KDM

of discrete-log (s or d) of pub key Q

of factors (p, g), or group order ¢, or decryption key d

of secret key k (with regard to secret-sharing commitments)
of secret plaintext m (encrypted)

of secret-shared plaintext m (after SSO-threshold decryption)
of secret key k (with regard to plaintext/ciphertext pair)

of secret pre-image Z

		Table 1. Subcategories of interest in Cat1

		Table 2. Examples of primitives in subcategories of Cat2

		Table 3. Labels for some template threshold profiles

		Table 4. Primitives of interest in subcategories of Cat1

		Table 5. Recommended implementation parameters for Cat1 primitives

		Table 6. Notation (in Draft FIPS 186-5): EdDSA versus ECDSA

		Table 7. RSA-based primitives per party per RSA-2KE scheme

		Table 8. Seven ECC-KA schemes

		Table 9. ECC-2KA primitives of interest for thresholdization

		Table 10. Examples of keygen purposes

		Table 11. Criteria for the random primes of an RSA modulus

		Table 12. Example ZKPoKs of interest related to Cat1 primitives

262
263

264
265
266
267

268
269
270

271
272
273
274
275

276
271
278
279
280
281
282
283
284

285
286
287
288
289
290

291
292
293
294
295
296
297
298

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

4. [Quantum resistance and other features] Help explore the space of threshold
readiness in terms of quantum-resistance versus other advanced functional features.

The process of collecting high-quality security formulations, technical descriptions, open
implementations, and performance evaluations is intended to compose a body of reference
material. This will support a phase of analysis to identify sound approaches, best practices,
and reusable building blocks. The results will help shape recommendations and guidelines.

Two categories for submissions. To assess the viability of threshold schemes for cryp-
tographic primitives, the present call is organized into two categories of submissions, with
regard to the primitives in consideration for thresholdization:

» Catl: Selected NIST-specified primitives used in digital signature schemes in FIPS-
186-5-Draft, public-key encryption and respective decryption in SP800-56B-Rev2,
elliptic-curve based pair-wise key-agreement in SP800-56A-Rev3, symmetric encipher-
ing/deciphering in FIPS-197, key-derivation and key-confirmation mechanisms in the
SP 800-56 series (parts A, B, and C); and the corresponding key-generations.

» Cat2: Primitives not specified by NIST, including primitives for “regular” schemes
of type similar to those in Catl (signing, public-key encryption, key-agreement,
enciphering/deciphering, key-derivation and key-confirmation, and their keygen),
primitives for “advanced” functionalities (e.g., fully-homomorphic, identity-based or
attribute-based encryption), zero-knowledge proofs/arguments of knowledge (e.g., of
a secret-shared private key that is consistent with a public key); and other threshold-
auxiliary gadgets. Primitives submitted in Cat2 should aim for threshold-friendliness
and may be based on cryptographic assumptions different from those in Catl. There
is a particular interest in combined threshold-friendliness and quantum resistance.

The analysis in Catl will help assess threshold friendliness and develop future recommenda-
tions and guidelines for threshold schemes of NIST-specified primitives. The analysis in
Cat2 will help assess new interests on primitives not currently standardized by NIST, and
help characterize the possible alignment between (i) threshold-friendliness, (i1) quantum
resistance, and (iii) additional useful features. This may also serve as relevant input to assess
the ability to deploy secure multi-party applications with advanced privacy features.

Organization. Section 2 explains the acronyms used in the document. Section 3 calls for
submissions and explains the partition into two categories. Section 4 enumerates logistic
and formatting requirements for the submission of packages. Section 5 defines technical
requirements for threshold schemes. Section 6 lists primitives and threshold modes of interest
for each subcategory of Catl (NIST-specified primitives), mentioning possible I/O interfaces
and recommending cryptographic parameters. Section 7 describes the subcategories of
interest in Cat2 (primitives not specified by NIST). Appendix A provides further details about
subcategories. Appendix B displays a checklist of the elements of a submission.

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

NIST IR 8214C 1PD
JANUARY 2023

2. Acronyms

NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES

(INITIAL PUBLIC DRAFT)

Acronym Extended form

2KA Pair-wise key-agreement

2KE Pair-wise key-establishment

ABE Attribute-based Encryption

AEAD Authenticated encryption with associated data
AES Advanced Encryption Standard

API Application programming interface

CDH Cofactor Diffie-Hellman

CMAC Cipher-based MAC

CPU Central processing unit

CRS Common reference string

CRT Chinese remainder theorem

DKG Distributed key generation

DOI Digital object identifier

ECC Elliptic curve cryptography

ECDSA Elliptic Curve Digital Signature Algorithm
EdDSA Edwards Curve Digital Signature Algorithm
FFC Finite field cryptography

FHE Fully-homomorphic encryption

FIPS Federal Information Processing Standards
FR Field representation indicator

GB Gigabyte (1,000,000,000 bytes)

GC Garbled circuit

HMAC Hash-based MAC

IBE Identity-based encryption

IETF Internet Engineering Task Force

/0 Input/output

IRTF Internet Research Task Force

ITL Information Technology Laboratory

300

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

NIST IR 8214C 1PD
JANUARY 2023

NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES

(INITIAL PUBLIC DRAFT)

Acronym Extended form

KA Key agreement

KAS1/2 Key agreement scheme 1 or 2

KAT Known-answer test

KC Key confirmation

KDM Key-derivation mechanism

KT Key-transport

KMAC Keccak-based MAC

LCM Least common multiplier

LTS Long term support

LWC Lightweight Cryptography

MAC Message authentication code

MPC (Secure) multiparty computation

MPTC Multi-Party Threshold Cryptography
MPKA Multiparty key agreement

MQV Menezes-Qu-Vanstone

NIST National Institute of Standards and Technology
NIZK Non-interactive zero-knowledge

NISTIR NIST Internal Report

NSS not-secret-shared (input/output)

OAEP Optimal Asymmetric Encryption Padding
PC Personal computer

PDF Portable document format

PF Platform

PEC Privacy-Enhancing Cryptography

PQC Post-Quantum Cryptography

PKC, PKCS Public-Key Cryptography, PKC Standards
PKE Public-key encryption

PRF Pseudorandom function family

PRP Pseudorandom permutation family

300

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

371

378

379

380

381

382

383

384

385

386

NIST IR 8214C 1PD
JANUARY 2023

NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES

(INITIAL PUBLIC DRAFT)

Acronym Extended form

PSS Probabilistic signature scheme

PVSS Publicly verifiable secret sharing

QR Quantum-resistant or quantum resistance
RAM Random access memory

RBG Random-bit generator/generation

RFC Request for Comments

RO Random oracle

RSA Rivest—-Shamir—Adleman

RSADP RSA Decryption Primitive

RSADSA RSA Digital Signature Algorithm
RSAEP RSA Encryption Primitive

RSASSA RSA Signature Scheme with Appendix
RSASVE RSA Secret-Value Encapsulation

S2PC Secure two-party computation

SHA Secure hash algorithm

SHAKE Secure hash algorithm with KECCAK
SNARK Succinct non-interactive argument of knowledge
SP 800 Special Publication in Computer security
SSD Solid state drive

SSI, SSIO0 Secret-shared input, secret-shared input-and-output
SSO Secret-shared output

SVE Secret-value encapsulation

TB Terabyte (1,000,000,000,000 bytes)

TF Threshold-friendly

URL Uniform resource locator

VSS Verifiable secret sharing

XOF Extendable output function

ZKP Zero knowledge proof

ZKPoK Zero knowledge proof of knowledge

387

388
389
390
391
392
393
394
395
396

397

398
399

400

401

402

403
404

405
406

407

408

409

410

411

412

413

414
415

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

3. Call and Scope for Submissions

This document is a call for multi-party threshold schemes. It solicits high-quality specifi-
cations of threshold schemes for primitives across two categories: Catl (selected NIST-
specified primitives) and Cat2 (primitives not specified by NIST). Each submission should
include a security characterization, a technical description, an open-source reference imple-
mentation, and a performance evaluation. Submitted schemes will benefit from exposure
to public analysis, and will be considered in a future report. This is a preliminary phase
for collection of reference material, and assessment of threshold schemes. The results of
this phase will inform future development of recommendations, and may be considered in
possible future efforts for development of guidelines or standards.

3.1. Category 1 (Cat1)

Catl consists of selected, stateless, NIST-specified cryptographic primitives, organized in
Table 1 across five subcategories:

* CI.1, for EADSA, ECDSA and RSADSA signing [FIPS-186-5-Draft];

C1.2, for RSA encryption (for key-encapsulation) and decryption [SP800-56B-Rev2];

C1.3, for ECC-based pair-wise key-agreement (2KA) [SP800-56A-Rev3] via CDH or MQV;

C1.4, for AES-enciphering/deciphering [FIPS-197], and key-derivation (KD) and
key-confirmation (KC) for 2KE [SP800-56C-Rev2; SP800-135-Rev1; SP800-108-Rev1];

Cl1.5, for ECC keygen [FIPS-186-5-Draft; SP800-56A-Rev3; SP800-186-Draft], RSA
keygen [FIPS-186-5-Draft; SP800-56B-Rev2], and bitstring (or integer) keygen.

Table 1. Subcategories of interest in Cat1

Section

Subcategory: Type Families of specifications N
in this call

C1.1: Signing EdDSA sign, ECDSA sign, RSADSA sign A.l
Cl1.2: PKE RSA encryption, RSA decryption A2
C1.3: 2KA ECC-CDH, ECC-MQV A3
C1.4: Symmetric ~ AES encipher/decipher, KDM/KC (to support 2KE) A4
C1.5: Keygen ECC keygen, RSA keygen, bitstring keygen AS

Note: In the second column, each item within a subcategory is itself called a family of specifications, since it
may include diverse primitives or modes/variants, some of which are mentioned in Table 4 (in Section 6).

416
417
418
419
420
421

422

423
424
425
426
427
428
429
430

431
432

433

434

435

436
437

438
439

440

441

442

443

444
445
446

447
448

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

Section 6 presents more details about versions and modes of primitives in Catl, including
options for input/output interfaces (Section 6.1) and cryptographic parameters recommended
for evaluation (Section 6.2). The analysis of Catl submissions will facilitate the devel-
opment of recommendations and guidelines on threshold schemes for the corresponding
NIST-specified primitives, highlighting reference approaches, techniques, building blocks,
and best practices. The results will be reported in a NISTpublication.

3.2. Category 2 (Cat2)

The goal of Cat2 is to enable submissions that make a strong case for certain threshold-
feasible primitives that are not standardized by NIST. While the scope is wide, Cat2-
submissions should be justified on the basis of the primitives being thresholdized having/en-
abling useful differentiating features, such as having/being: (i) threshold-friendly(ier) (TF);

(i1) based on alternative cryptographic assumptions (e.g., pairings), possibly quantum-resistant
(QR) (e.g., lattice-based); (iii) useful probabilistic properties (e.g., determinism versus non-
determinism), (iv) more efficient in a relevant metric, or/and (v) advanced functional features

(e.g., allowing homomorphic computation over encrypted data).

Cat2 has eight subcategories, including five “regular” (somewhat matching the subcategories
of Catl), and three others (“advanced”, “ZKPoK” and “gadgets”), as listed in Table 2:

e “Regular”:

C2.1, for signing (e.g., verifiably-deterministic succinct signatures, and/or TF-QR);

C2.2, for PKE (e.g., TF-QR decryption and key-encryption);

C2.3, for key agreement (e.g., TF primitives that are QR and/or that facilitate
low-round key-agreement for more than two parties);

C2.4, for symmetric-key primitives (e.g., TF enciphering/deciphering), and hash-
ing-related primitives for key derivation and key confirmation;

C2.5, for keygen for primitives in other subcategories.
* “Others”:

— C2.6, for primitives for cryptographic schemes with advanced functional features,
e.g., fully-homomorphic, identity-based, and attribute-based encryption schemes.

— C2.7, for zero-knowledge proofs of knowledge (ZKPoK) that are deemed useful
to support the threshold setting, such as for proving knowledge of private/secret
information consistent with a correct secret-sharing setup.

— (2.8, for other auxiliary “gadgets” deemed useful to support the threshold setting,
namely to support the implementation of other threshold schemes in scope.

449

450

451
452
453
454
455
456
457
458
459
460

461
462

463
464
465

466

467
468
469
470
471

472
473
474
475
476
477
478
479
480

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

Table 2. Examples of primitives in subcategories of Cat2

Subcategory: Type Example scheme Example primitive
C2.1: Signing Succinct & verifiably-deterministic signatures Signing
C2.2: PKE TF-QR public-key encryption (PKE) Decryption/encryption
C2.3: KA Low-round multi-party key-agreement (KA) Single-party primitives
C2.4: Symmetric TF-QR blockcipher/PRP Encipher/decipher

\ TF-QR key-derivation / key-confirmation PRF and hash function
C2.5:Keygen Any of the above Keygen
C2.6: Advanced QR fully-homomorphic encryption Decryption; Keygen

\ Identity-based and attribute-based encryption =~ Decryption; Keygens
C2.7: ZKPoK ZKPoK of private key ZKPoK.Generate
C2.8: Gadgets Garbled circuit (GC) GC.generate; GC.evaluate

Legend: PRF = pseudorandom function [family]. PRP = pseudorandom permutation [family]. QR
= quantum resistant. TF = threshold-friendly. ZKPoK = zero knowledge proof of knowledge.

Section 7 contains more details and examples on Cat2. Some Cat2-submissions may be
evaluated within the scope of the NIST Privacy-Enhancing Cryptography (PEC) project
[Proj-PEC]. It is expected that the results of this exercise will be reported in a NIST publication.

3.3. Vision

Quantum-resistant versus quantum-breakable primitives. There is a strong interest
in receiving submissions of threshold schemes for threshold-friendly quantum-resistant
(TF-QR) primitives. As there is currently a gap between some known useful cryptographic
features and quantum-resistance, there is also interest in submissions that have enhanced
functional features even if they are only secure with respect to non-quantum adversaries.

Interchangeability. This call is scoped on threshold schemes whose output can be used
in subsequent operations (e.g., signature verification) that were specified to use the output
of the corresponding conventional (non-threshold) primitive (e.g., signing). The intended
notion is that of interchangeability, from §2.4 of NIST-IR8214A. EdDSA signing provides
a notable example: the threshold setting favors a consideration not only of pseudorandom
signatures, but also of probabilistic ones that are interchangeable in the sense of being
verifiable by the standardized EADSA verification (see NIST-IR8214B-ipd). In Catl, the
primitives of interest are already fixed. In Cat2-submissions, the primitives of interest need
to be specified along with the corresponding threshold schemes.

481
482
483
484
485
486
487
488

489
490
491
492
493
494
495
496
497
498
499
500
501

502
503
504
505
506
507
508
509

510

511
512

513

514

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

Provable security. The security of submitted threshold schemes is expected to be assessed
based on multi-party protocol analysis, which is supported by a large and mature body of
knowledge in provable security. This is different from the extensive cryptanalysis that would
be required in a call for basic primitives based on new cryptographic assumptions. That
said, the security of threshold schemes is still recognized as multi-dimensional, depending
on security formulation (e.g., which ideal functionalities or security games to choose),
implementation (e.g., susceptibility to side-channels), and deployment suitability (e.g.,
whether security assumptions are appropriate for the deployment environment).

Diversity. The domain space of multi-party threshold schemes is considerably wider than
that of the primitives (e.g., digital signatures) being thresholdized. Acknowledging this,
the present call allows leeway for the submitters to select from a variety of system models,
threshold configurations, security formulations, technical approaches, and benchmarking
focuses. Thus, the usual criteria for “apples-to-apples” comparison (e.g., number of par-
ties, common programming language, application programming interface, etc.) will not
be required in the initial phase. Nonetheless, the submissions are expected to adhere to
certain criteria, with respect to both technical documentation (see Section 4) and technical
characteristics of the proposed threshold schemes (e.g., needs to include a security formu-
lation against active corruptions — see Section 5). After a review of the system models
proposed in the initial set of submissions, a request may be made for submitters to provide
new performance evaluation results (e.g., with a particular number of parties and threshold
values) based on adjusted parameters to facilitate a comparison across submissions.

Initial phase. The initial phase of analysis is expected to take about one year after the
submission deadline, and will consider comments from the public. It will also include a
workshop for presentation of the submitted threshold schemes. A NIST report will follow.
For Catl, the results will help determine how the development of future recommendations
and guidelines may be differentiated per primitive, and whether it will focus on full-fledged
threshold schemes, on identifying building blocks and composition techniques, or a hybrid of
these. For Cat2, the results will include an initial characterization of the space of submissions
to help assess possible interest in a subsequent more-focused analysis.

Reliance on contributions. The success of the process will depend on:

* high-quality submissions by teams with appropriate expertise, including in the areas
of secure multiparty computation and distributed systems;

* expert public scrutiny, including assessments of security;

* comments on pertinence, by stakeholders of applications of threshold schemes.

515

516

517

518

519
520
521
522
523
524
525
526
527
528

529

530
531
532

533

534
535
536
537

538

539

540

541

542

543

544

545

546

547

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

4. Components of a Submission

41,

Phases Until Full Submission

The submission process is organized with a deadline for package submissions, while also

considering a possible early abstract and preliminary submission, as follows:

Phl.

Ph2.

Ph3.

(Optional) Early abstract: No later than about 90 days (exact date to be deter-
mined) after the final version of this call is published, a short document (with no
more than three pages) can be submitted with a title, a list of team members, and
a preliminary abstract of a planned full package to be submitted later (Ph3). The
abstract should identify the primitives to be thresholdized and their corresponding
category and subcategory(ies)/type(s), give an outline of the threshold approach
(including system model, the protocol approach, and main security properties), and
list the most relevant bibliographic references. This phase for optional submission
(not mandatory and non-committing) is intended to facilitate early discussion of the
expected coverage of each category/subcategory, and may help determine useful
merges, differentiations, or alternative submissions.

(Optional) Preliminary package: Submission packages received by NIST at least
45 days before the deadline for full packages will be early reviewed for complete-
ness. The submitters will be notified of identified deficiencies, tentatively within 25
days, to allow amendments before the deadline.

Full package: Full submission packages must be received by NIST no later than
about 150 days (exact date to be determined) after the final version of this call is
published. Despite possible adjustments to be made in this call, submitters are en-
couraged to prepare early for future submissions, using the present draft as a baseline.
A complete and proper package must contain the following main components:

* MI1. Written specification: A technical specification (including security analy-
sis) of the threshold scheme and primitives (see Section 4.2).

* M2. Reference implementation: An open-source implementation (software),
including code, license, comments, and explaining an API (see Section 4.3).

* M3. Execution instructions: Instructions to enable the execution of the thresh-
old scheme and reproduction of experimental results (see Section 4.4).

* M4. Experimental evaluation: A report describing an experimental setting,
measuring performance, and interpreting the results (see Section 4.5).

« MS5. Additional statements: Various statements (see Section 4.6).

10

548
549
550
551

552

553
554
555

556
557

558

559
560
561
562
563

564

565

566
567
568
569

570

571

572

573

574
575
576

577

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

Submissions medium. The submission of any documentation — early abstract (Ph1),
preliminary package (Ph2), full package (Ph3), or any amendment — must be at least
confirmed by sending an email to MPTS-submissions @nist.gov. The final version of this
call may specify a complementary platform to help manage the process of submission and
review. More-specific instructions will be provided in the final version of this call.

Public posting. after the SUBMISSION deadlines, approved submissions of early abstracts
(Ph1) and full packages (Ph3) will be posted online, and hyperlinked from the MPTC project
website [Proj-MPTC], for public review.

Note on LaTeX templates. To facilitate some common document structure across submis-
sions, the final version of the call will provide LaTeX-based templates applicable to some of
the submission documents, for compilation into portable document format (PDF) files.

Note on multiple threshold schemes per package. A submission package may include a
family of distinguished threshold schemes based on common building blocks, and whose
implementations may make use of common portions of open-source code. Even if a
submission package proposes more than one threshold scheme, each of the above-mentioned
five components should appear only once, possibly using subsections (when applicable) to
distinguish which primitives/schemes the comments relate to.

4.2. Main component M1: Written specification

Submitted specifications of threshold schemes must be compiled in a PDF document,
written in English and aided with mathematical notation, containing various (numbered or
unnumbered) sections, as described ahead across a frontmatter (see Section 4.2.1), a main
matter (see Section 4.2.2), and backmatter (see Section 4.2.3).

4.2.1. Frontmatter
S1. Title pages: Two title-pages, as follows:

* A first title-page (cover page) with: a title for the proposed submission, the names
and affiliations of the submitters; and the submission date.

* A second title-page, with all content of the first title-page, and additionally includ-
ing: contact email-addresses for all the submitters; applicable disclaimers related
to affiliations and funding; and, if applicable, other pertinent information about the
team and the submission.

11

mailto:MPTS-submissions@nist.gov
mailto:MPTS-submissions@nist.gov

578
579
580

581

582
583
584
585
586

587
588
589
590

591

592
593
594
595
596
597
598
599
600
601
602
603

604
605
606
607
608
609
610

611

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

S2.

S3.

S4.

4.2.2.

SS.

Sé6.

Abstract: A text with up to 500 words, identifying the primitives being thresholdized,
their corresponding category and subcategory/type in the scope of this call, and the
types of threshold schemes being proposed (i.e., their main features, cryptographic
assumptions and performance highlights).

Executive summary: An abridged explanation (up to four pages) of the content of
the submission, highlighting relevant properties of the proposed threshold schemes,
their applicability, their performance, and some of the challenges (e.g., in proving
security). It should also briefly mention the submitted components beyond the
specification, including the open-source software with reference implementation.

Index: A table of contents (i.e., index of sections, subsections, etc.); and (however
applicable) lists of figures, tables, pseudo-code, and other relevant enumerated com-
ponents. Each referenced element in the index should be hyperlinked to the respective
position in the document, and also indicate the corresponding page number.

Main matter

Clarification of prior work: An enumeration of the building blocks, techniques and
ideas known to have been developed or authored in prior work and that are used in
the specification of the primitives and threshold schemes of the present submission.
With regard to the building blocks, techniques and ideas in the submission (preferably
including hyper-references to the related portions of the submitted specification),
this section should aim to clarify and distinguish between (i) those that may have
been designed by authors that are not part of the submitters’ team, (ii) those that may
have been previously developed/authored by members of the submitters’ team, and
(iii) those that may be original in the present submission. Appropriate bibliographic
references should be given where applicable, preferably including (when possible)
a hyperlink to online-accessible documentation. If applicable, this section can also
include known information pertinent to the “call for patent claims”.

Conventional primitives/scheme: A review of the conventional (non-threshold)
primitives/scheme that constitute the objects of thresholdization and determine the
interchangeability requirements. For example, if a submitted package proposes a
threshold scheme for ECDSA signing, then this section will provide a brief review
of the conventional ECDSA signing algorithm, and the requirements related to
the corresponding keygen and verification algorithms. The notation used in this
description should be consistent with the one later used to describe the threshold
scheme. Cat2-submissions are expected to be more thorough in this description.

12

612
613

614

615

616
617

618

619
620
621
622
623

624

625
626

627

628
629

630
631

632

633

634

635

636

637

638

639
640
641

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

S7.

S8.

S9.

S10.

S11.

S12.

S13.

4.2.3.

S14.

S15.

System model: A thorough description of the system model, including participants,
communication network, and adversary (see T2).

Protocol description: A detailed description of the multi-party threshold scheme,
modularizing the description of primitives/gadgets where appropriate.

Security analysis: A detailed security analysis, including security formulation (e.g.,
ideal functionalities and/or games), proof(s) of security, and discussion of security
properties and ideal components (see T3 and T4).

Analytic complexity: An analytical estimation of (i) memory complexity, (ii) com-
putational complexity, (ii) communication complexity, and (iii) round complexity.
The estimates should: include a breakdown across the various possible phases of the
protocol; clarify the complexity per party versus the aggregate in the entire system;
clarify its dependence on various configurable parameters, such as for example the
security strength, the number of parties and the thresholds.

Choices and comparisons: A rationale for design decisions and the chosen system
model, as well as an explanation of known advantages and limitations compared to
other options and approaches.

Technical criteria: An evaluation of various items of technical criteria (see Section 5
and Section B.7).

Deployment recommendations: A set of deployment requirements and recommen-
dations, including those related to security. This section should also include a list of
known and proposed applications of the submitted threshold scheme(s).

Backmatter
Notation: A section explaining the notation, including:
* alist of the used acronyms, and their extended expressions;
* alist of the used abbreviations, and their complete words;
* a list of the used mathematical symbols, and their brief explanations;
* (optional) a glossary of selected important terms, with succinct explanations.

References: A list of external references cited throughout the document, ideally
including persistent identifiers (e.g., DOI, and ia.cr) and a link to a corresponding
publicly and (when possible) freely accessible version of the referenced document.

13

642
643
644

645

646
647
648
649
650
651

652
653
654

655

656

657

658

659
660
661
662

663

664

665
666

667

668

669

670
671

672

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

S16. Appendices: Auxiliary elements deemed too detailed or cumbersome for a first
read may be deferred to appendices, at the end of the document, as long as properly
referenced and hyperlinked in the corresponding above-mentioned sections.

4.3. Main component M2: Reference Implementation

Required clear implementation. The submissions packages must contain open-source
code (software), including explanatory inline comments, constituting a “clear” reference
implementation of the proposed threshold scheme(s). The code and comments should strive
for clarity and understanding, even if at some detriment to efficiency. Optionally, some
modules may include additional code optimized for some efficiency metric(s), to enable
demonstration of better experimental performance.

The implementation(s) must support all main features of the threshold scheme and be
suitable to run each “party” in a modern personal computer (PC). To facilitate testing, the
implementation should enable “running” the set of all parties in a baseline platform (PF1)
consisting of a single PC (possibly virtualized), equipped with:

1. Processor: Central processing unit (CPU) with up to eight 64-bit processing cores.
2. Fast primary memory: Up to 32 gigabytes (e.g., of random-access memory [RAM])
3. Secondary memory: Up to 4 terabytes (e.g., in a solid state drive [SSD])

The code (and its instructions) should be designed to allow for a compilation and execution
of the submitted implementation on top of a Linux Ubuntu Desktop 22.04.1 long-term
support (LTS) operating system running installed in platform PF1, without requiring software
download from external sources. Each party should be executed as one (or more) process(es),
or within a software virtual container, separate from the other parties.

The submitted open-source software (and documentation) should satisty the following:

Srcl. Is self-contained: The code was tested to compile and execute properly within the
baseline platform (PF1) with a Linux Ubuntu Desktop v22.04.1 operating system.

Src2. Is licensed as open-source: The code is explicitly licensed as open-source (e.g.,
possibly based on a license listed in https://opensource.org/licenses).

Src3. Contains inline comments: The code is explained with auxiliary comments.

Src4. Has a clear API: It explains the application programming interface (API), aimed
at facilitating (i) testing, (i1) use in higher-level applications, and (iii) comparison
of performance with other implementations that may follow the same API.

14

https://opensource.org/licenses

673
674
675
676
677

678

679
680
681
682
683

684

685

686

687

688
689
690
691

692

693
694

695
696

697

698
699

700
701
702

703

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

On programming choices. As explained in Section 3.3, it is intentional that this call
does not specify a concrete programming language, compiler, or API to be used across
submissions. That said, it would be useful that the provided open-source reference im-
plementation comes accompanied with explained rationale for choices made. This may
include recommendations on the API that future implementations should follow to be easily
comparable with the provided reference implementation.

On validation and verification. The validation of implementations and formal verification
are not included as technical requirements for this call. However, it is expected that the
public scrutiny of submitted schemes (namely their specifications and implementations) will
facilitate the production of high-assurance software. The analysis of the submissions may
clarify what software testing may be proposed across various types of threshold schemes.

4.4. Main component M3: Execution Instructions
A submission package must include execution instructions, as follows:
1. User manual: A “user manual” with instructions (and examples) on:
X1. Compilation: How to compile the open-source code.

X2. Parametrization: How to configure execution parameters, such as the number
of parties, the corruption threshold, the type of communication channels, some
adversarial choices, and some client choices (e.g., input to the cryptographic
primitive). Preferably the configuration of each parameter can be done via the
editing of a human-readable text file, and/or command line arguments.

X3. Execution: How to test and execute the various phases of the proposed threshold
schemes and underlying primitives.

X4. KAT set: A set of “known answer-test” (KAT) values, to aid in correctness
verification of the execution of the protocol.

2. Set of scripts:

XS. KAT-script: A script to automatically execute the threshold schemes in a way
that reproduces the set of KAT values (X4) provided in the user manual.

X6. Benchmark-script: A script to automatically benchmark the threshold scheme
in platform PF1, using the “clear” reference implementation, to produce a
table recording various performance measurements (similar to that required
in Section 4.5) for various configurations. If the submitted implementation

15

704
705

706

707
708

709

710
711

712

713

714

715

716

717
718
719
720

721

722
723
724
725
726

727

728

729

730

731

732

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

includes additional code optimized for performance, and whose performance
results are reported in M4, then corresponding scripts shoudl also be provided,
to enable reproducibility of results.

X7. Other scripts (optional): Optionally, other scripts to provide better insights
into the workings of the underlying primitives and threshold scheme.

4.5. Main component M4: Experimental evaluation

The package must include a report on experimental performance, obtained by executing the
provided code in the baseline platform (PF1), evaluating a representative set of configurations
supported by the proposed threshold scheme(s). The report must describe:

1. the experimental setting (see Section 4.5.1);
2. the measured performance (see Section 4.5.2); and

3. an analysis/interpretation of the results (see Section 4.5.3).

4.5.1. Experimental setting

The report must describe the expected performance characteristics of the experimental setting
(namely of the underlying hardware) supporting the baseline implementation platform PF1.
The description must describe at least the relevant expected characteristics of the (possibly
emulated) processor (e.g., instruction set, and clock frequency), communication network
(e.g., bandwidth, and latency), and memory (e.g., read and write speed).

The benchmarking can also include experimentation with different platforms (PF2, ...) of
the submitter’s choice (motivated by real or conceivable applications). The performance
results obtained with these alternative platforms (to also be described) may be better or worst
than with PF1. For example, if there are more than eight parties and all require intensive
computing, then the testing in a platform with more than eight cores may provide better
results than with the baseline PF1.

4.5.2. Measurements

The evaluation of experimental performance should report, at least for platform PF1, at least
the following metrics:

* Perfl. Memory complexity (in # bytes required to be simultaneously stored).

* Perf2. Processing time (in seconds) and/or processing (e.g., # of processing cycles).

16

733

734

735

736
737
738

739

740
741
742
743

744

745

746
747
748
749

750

751

752
753
754
755
756
757

758

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

* Perf3. Communication complexity (in # communicated bytes).
* Perf4. Networking time (in seconds).
* PerfS. Round complexity (in # alternations of the direction of communicated messages).

The mentioned metrics should be evaluated and reported in (i) total per execution, (ii) per
identifiable phase of the protocol, and (iii) per party. The results can be reported across

various configurations, e.g., with distinct numbers of parties, and across two distinct security
strengths (e.g., 128 and 224-256 bits).

The reported measurements should include results obtained with the submitted “clear”
reference implementation (see Section 4.3). If the submission includes additional code
optimized for performance, then the corresponding results can be added to the measurements’
report. As prescribed in X7, all these benchmarking should be reproducible by a simple
execution of the submission-required scripts.

4.5.3. Analysis

The performance analysis should include a written explanation/interpretations of the ex-
perimental results, indicating expected or unexpected observations (e.g., some observed
correlation between some complexity metric and the number of parties). The comparison
of results across different configurations and/or experimental settings may be useful to
understand, test of verify tradeoffs and scalability of the system across different metrics.

4.6. Main component M5: Additional Statements

The packages must include certain statements (on intellectual property, agreements or dis-
closures) to ensure free worldwide availability of the submitted packages for public review
and evaluation purposes, and allowing derivative work and use, in particular for the possi-
ble future elaboration and publication of recommendations, guidelines and standards. The
concrete statements (to be included or referenced in the final version of this call) will be
aligned with the NIST ITL Patent policy, and are likely to be similar to those used by the
NIST Post-Quantum Cryptography (PQC) project [Proj-PQC].

17

759

760
761

762

763

764
765
766
767
768
769
770

771

772
773
774
775
776
777

778

779

780
781
782
783
784
785
786
787

788

789

790

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

5. Technical Requirements (T) for Submission of Threshold Schemes

In addition to the structural requirements for submission packages, the specification of
threshold schemes is subject to certain technical requirements (T1-T6) at a logical level.
The following are based on a previous call for feedback on criteria [MPTC-Call2021a].

5.1. T1: Primitives

A submitted specification must explain in S6 the conventional (non-threshold) primitives
(e.g., decryption) that are the object of thresholdization. Each such primitive must be framed
within the subcategories structure established for Catl (see Sections 3.1 and 6) and Cat2
(see Sections 3.2 and 7). The primitive must also be explained within the scope of an
underlying conventional scheme, composed of various primitives. For example, a decryption
primitive of a public-key encryption (PKE) scheme relates to corresponding encryption and
key-generation primitives. The explanation of the primitive must define the corresponding
scope of interchangeability, to be considered by the proposed threshold scheme.

Notwithstanding the advantage of referenceability to NIST specifications, a submission
in Catl still needs to include a technical description of the primitives being thresholdized.
The description should try to follow the notation and and operations specified in the cor-
responding NIST documentation. Some Cat2-submissions may require a more thorough
description, since their underlying non-threshold primitive is not part of a NIST specification.
The explanation should also include references to authoritative descriptions in publicly free
documentation (e.g., papers and standards).

5.2. T2: System Model

A proposal of threshold schemes must strive for a clear description that facilitates under-
standing various options across possible deployment scenarios. Therefore, the specification
of each submitted threshold scheme must describe (in S7) one system model (and may
identify possible variants), including the set of participants, the communication model and
the adversarial model (goals and capabilities). In addition to the actual “parties” that hold
the secret-shared keys, the system may include coordinators, administrators, clients and
other devices (e.g., routers, clocks, random-bit generators), etc. The model must also explain
how the parties are activated (e.g., via an authorized/authenticated client request, or by an
administrator). See also §2.3 of NIST-IR8214A.

Some of the paragraphs ahead describe baseline assumptions and options for a system
model, with regard to participants (Section 5.2.1), communication (Section 5.2.2), and

18

791
792

793

794

795
796
797
798

799

800
801
802
803
804
805

806

807
808
809
810

811

812
813
814

815

816
817
818
819

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

adversary (Section 5.2.3). These assumptions are intended as a baseline, neither precluding
submissions with sophisticated nuances, nor eliminating the utility of security evaluation
across diverse deployment scenarios.

5.2.1. T2.1: Participants

The parties in a threshold entity. There is a “threshold entity” composed on n “parties”,
responsible for executing a cryptographic primitive. At the onset, all parties “know who” the
n parties are, agreeing on n identifiers (e.g., possibly public keys to support authenticated
channels). The suitability of public keys may need to be verified, locally or interactively,
possibly via zero-knowledge proofs, in the keygen phase or in subsequent proposed phases.

It is conceivable that a threshold scheme is bootstrapped without prior agreement of who the
n parties/identifiers are (or even what is value of n). However, said agreement problem may,
in some system models, be a distributed-systems problem outside the scope of exploring the
essential cryptographic thresholdization of the primitive at stake. Therefore, the assumption
of initial agreement on n identifiers is a possibility, not a requirement. A submission that
considers an additional preparatory phase for agreement of n and who the n parties are
should try to present said phase modularly separated from the remaining threshold scheme.

Beneficiaries. For some operations, such as threshold keygen, the beneficiaries of the
computation are the parties, who end with a new (secret sharing) state (possibly requiring
agreement in the sense of “security with unanimous abort”), and/or an administrator (e.g.,
who receives a new public key). For other operations, such as threshold signing, the
beneficiary can be an external client who requested the computation, to obtain an output.

Client interface. The client may or may not be aware of (and be able to interact distinctively
based on) the n-party threshold composition. This can be affected by the input/output (I/0)
interface (see §2.3 of NIST-IR8214A). For example, a secret-sharing of the 1/0 can affect
whether or not a client can separately send/receive input/output shares to/from each party.

Intermediaries. The possibility of concurrent execution requests must be considered. A
baseline description can assume that there is a possibly malicious proxy that can: interme-
diate the communication between clients and the threshold entity, and authorize requested
operations (e.g., the signing of a message).

19

https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8214A.pdf#subsection.2.3

820

821
822
823
824
825

826
827
828
829
830
831

832

833
834
835

836

837
838
839

840

841

842

843

844

845
846

847
848

849

850

851

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

5.2.2. T2.2: Distributed Systems and Communication

As long as the interface and rules for composition are clear, the specification of a threshold
scheme can (and is recommended to) decouple the description of (i) the building blocks
(e.g., consensus, reliable broadcast) of classical distributed-systems, from (ii) the description
of cryptographic operations needed to support the secure multiparty computation over (or
of) a secret-shared key.

The specification of instantiations of building blocks that make use of weaker resources (e.g.,
enabling broadcast based on point-to-point channels) can be provided by referencing existing
specifications, while evaluating the impact of those replacements. Then, the provided open-
source implementation (see Section 4.3) of the overall threshold scheme can include (with
proper attribution) open-source code from the referenced existing implementation of the
applicable building blocks. The protocol can also be described with various phases (e.g.,
offline, online, secret resharing), which may have differentiated requirements.

A baseline description can make strong assumptions about the communication network,
including synchrony and reliability of transmission. However, the proposal must discuss the
pitfalls of deployment in environments with weaker guarantees (e.g., with asynchronous and
unreliable channels), and possible mitigations.

Different threshold schemes may be better suited to different communication environments,
with dependence on guarantees (or lack thereof) of synchrony, broadcast, and reliability. It
is important to understand how security guarantees break across these environments.

5.2.3. T23: Adversary

The security analysis in S9 must consider a well-specified adversary, namely their goals and
capabilities. In particular, the specification must consider an adversary that:

1. [active] is able to corrupt parties (up to one or various specified corruption thresholds),
them controlling them to arbitrarily deviate from the prescribed multi-party protocol;

2. [adaptive] is able to decide which parties to corrupt after observing some of the
protocol execution; and

3. [mobile] persistently continues (attempting to) corrupt parties across multiple execu-
tions of the main protocol, possibly corrupting parties after they have been recovered
from a previous corruption.

The concrete ways in which the adversary performs corruptions may be related to other
system-model options (e.g., communication network). In practice, some of the adversary’s

20

852
853
854
855
856

857

858

859
860
861
862
863

864

865
866
867
868
869
870

871
872
873

874

875
876
877
878
879
880
881

882

883
884

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

capabilities will be modeled as part of the idealization required in T3. The characterization
of threshold security may vary across various ranges of acceptable corruption thresholds
mentioned in item 1. Furthermore, the case of item 3 is intended to induce characterization
of various levels of insecurity (e.g., which properties break and which ones do not) when
acceptable thresholds are surpassed. The latter characterization may in particular be affected
by the use of proactive recovery mechanisms (see Section T4.3).

5.3. T3: Security Idealization

As mentioned in Section 3.3, provable security is a fundamental component of how modern
cryptography analyzes the security of proposed multi-party threshold schemes. Therefore,
the present call includes a requirement to include a security idealization that supports a proof
of security. Such idealization will encompass the security goals of the threshold scheme.
That said, there are aspects of security analysis that overflow the scope of a proof/idealization
and that should also be discussed.

A proposal of threshold scheme must be supported on a simulation-based and/or a game-
based security formulation. This entails defining an ideal functionality (e.g., in the ideal-real
simulation paradigm, within the universal composability framework) or/and an idealized
adversarial game (or set of games). Since security analysis is a multi-dimensional exercise,
it may include more than one form of idealization, and possibly even diverse proofs across
different nuanced security properties or formulations.

A submission must include, in S9, a “security proof” that the proposed threshold scheme
satisfies the proposed security formulation in a suitable adversarial context (see T4). Such
proof can be given by showing “emulation” of the ideal functionality, or by showing that a
non-negligible adversarial advantage in each security game implies breaking an assumption.

The security analysis must discuss which known useful properties are captured, and which
ones are not, by the idealized security formulation. For example, even though availability is
a desirable property, generically speaking, a security formulation with stronger emphasis
on confidentiality and integrity may purposely specify that an adversary is allowed to
abort protocol executions, so that the formulated security notion is achievable. As another
example (now of an unsuitable formulation), a sole requirement of hiding and binding for a
commitment scheme would not suffice for a use (e.g., committing bids in an auction) that
would also require a non-malleability property.

In both cases (simulation and game-based), the security analysis should also discuss the
security consequences of real implementation of idealized components. In particular, it must:

21

885
886

887

888

889
890
891

892

893

894
895
896
897

898

899
900
901

902

903
904
905
906

907

908
909
910
911
912
913
914

915

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

* identify the required cryptographic assumptions, and any possibly-idealized trusted
components in the setup or operations;

* discuss the (in)security consequences of foreseen real instantiations of the setup and
ideal components.

The “security analysis” (S9) asked in this call relates to the logical specification of the thresh-
old scheme (S6-S8), and not to the submitted reference implementation (M2). Nonetheless,
comments about implementation security are also welcome in the security analysis. Further
details about implementation security can be included in S13.

5.4. T4: Security Versus Adversaries

The security analysis in S9 must consider a well-specified adversary (see T2.3), namely their
goals and capabilities. In consideration of the modeled adversary (see T2.3), a proposed
threshold scheme must aim for certain security goals, particularly with regard to how the
adversary corrupts up to a corruption threshold number f of parties.

5.4.1. T4.1: Active Security (Against Active Corruptions)

Proposed threshold schemes must achieve active security (i.e., against active corruptions,
which enable corrupted parties to “maliciously” deviate from the protocol), as opposed to
passive only.

5.4.2. T4.2: Adaptive Security (Against Adaptive Corruptions)

There is a strong preference for considering threshold schemes that achieve adaptive
security (i.e., security against adaptively chosen corruptions), as opposed to static only,
with respect to critical safety properties (e.g., unforgeability [NIST-IR8214B-ipd, §5.2.3] and
key-secrecy). Therefore, submitted schemes should also aim for security against adaptive
corruptions for the major safety properties of interest.

Adaptive security may pose significant challenges in formal proofs of security, depending
on the security formulation. For example, while deniability of execution may in some
cases be required for indistinguishability between ideal and real executions, the use of
non-committing encryption to achieve it could be excessive without a necessary practical
benefit. On the other extreme, a proposed protocol must not allow the major safety properties
of interest to be trivially broken in case of adaptive corruptions, as in the classical example
of a protocol that delegates all capabilities to a small quorum that is difficult to guess in
advance, but whose overall corruption (by an adaptive adversary) would be disastrous.

22

916
917
918
919
920
921
922
923

924

925
926

927

928

929
930
931
932
933
934

935

936

937
938
939
940
941
942
943

944

945
946

947

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

The set of security formulations across submissions of threshold schemes (some possibly
proving adaptive security based on unrealizable assumptions, such as a programmable
random oracle) is expected to serve as reference material for public discussion. It is
acceptable that certain security assurances (e.g., liveness and termination options) vary
across different adversaries. For example, a security analysis may prove security against
static corruptions with respect to some formulation (e.g., simulation-based), and then in
complement show which fundamental security properties or attributes (e.g., unforgeability)
remain preserved against adaptive corruptions in another formulation (e.g., game-based),
even if some other security properties (e.g., some aspect of composability) are not preserved.

Practical feasibility is also needed. Feedback is welcome on security formulations and
reference approaches that simultaneously enable both practical feasibility and security
against adaptive corruptions, as well as possible acceptable tradeoffs.

5.4.3. T4.3: Proactive Security (Against Mobile Attacks)

The proposed threshold schemes schould be compatible with modular subprotocols / mech-
anisms for proactive (and reactive) recovery, which attempt to recover possibly corrupted
parties back to an uncorrupted state. This is especially important to better handle a persistent
mobile adversary that continuously attempts to corrupt more parties. With respect to re-
freshing secret shares, the solutions can be based on a modularized phase of secret-resharing
(see T6), while also specifying the needed conditions (e.g., requirement of some initial/final
agreement by a qualified quorum) for its integration.

5.5. T5: Threshold Profiles

For each primitive (to be identified in S6, within the scope established in Sections 6 and 7)
considered for thresholdization, it may be useful to consider differentiated solutions across
possible threshold parametrizations. Therefore, it is useful to consider a “threshold profile”
that defines, for certain threshold-related parameters, which parametrization ranges are
suitable for secure operation. The threshold profile should characterize at least the total
number (n) of parties and the various thresholds (f) of corruption and (k) of participation.
Table 3 proposes succinct labels for each default profile obtained from a restriction in the

number of parties and the corruption threshold.

For convenience of discussion, the following nomenclature is defined to easily identify
some default threshold profiles, based on the total number of parties and/or some corruption
threshold (f) assumed clear in the context.

23

948
949
950

951

952

953

954

955

956
957
958

959
960
961
962
963
964

965
966
967
968
969
970

971

972

973

974
975
976
971

978

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

* Number # of parties: (2) “two” for n = 2; (3) “three” for n = 3; (S) “small” for
4 <n <8 M) “medium” for 9 < n < 64; (L) “large” for 65 < n < 1024; and (E)
“enormous” for n > 1024.

 Corruption proportion f/n: (D) “dishonest majority” for f > n/2; (h) “honest
majority” for f < n/2; (H) “two-thirds honest majority” f < n/3.

Table 3. Labels for some template threshold profiles

Corruption proportion Number of parties ()

Two (2): Three (3): Small (S): Medium (M): Large (L): Enormous (E):

Maijority type
fin Majoritytype = "3 4cn<8 9<n<64 65<n<1024 n> 1025

>1/2 Dishonest (D) n2 n3fD nSfD nMfD nLfD nEfD
>1/3 Honest (h) — n3fh nSfh nMfh nLfh nEfh
<1/3 2/3Honest(H) — — — nSfH nMfH nLfH nEfH

Note: the default profiles exclude the cases f = 0 and f = n. Therefore: for the “two”-party
profile (with n = 2) — the usual secure two-party computation (S2PC) setting — only
the “dishonest majority” case matters (with f = 1); for the “three”-party profile, the 2/3
honest majority case does not apply. Other threshold profiles can be considered in concrete
submissions. For example, some threshold schemes may have advantageous properties when
considering an even stricter honest majority, such as more than 3/4 of honest parties.

A submission can focus on a single or on various threshold profiles. In particular, a protocol
may be designed for full threshold, i.e., to ensure (for some range of number n of parties)
some specific useful security notion regardless of the corruption threshold value f (with
f < n) that it is instantiated with. In some of such cases it may be especially relevant to
distinguish between corruption threshold and participation-minus-1 threshold. For each
submitted threshold scheme, the system model (S7) and the security analysis (S9) must:

* characterize its proposed threshold profile(s), including discussing the diversity of
thresholds associated with various security properties; and

* characterize the breakdown that occurs when threshold-profile assumptions are broken.

Note on alternatives access structures. Depending on which secret-sharing schemes
support the distributed computation, it is possible to consider monotone access structures
(i.e., where the superset of a valid quorum is also a quorum) different from a simple threshold.
The use of the traditional term “threshold” in this call is not meant to suppress possible
submissions for other useful and properly-justified access structures.

24

979
980
981

982

983
984
985
986

987

988
989
990
991
992
993

994

995
996
997
998
999

1000
1001
1002

1003

1004
1005
1006
1007
1008
1009
1010

1011

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

Motivating adoption. There is value in identifying motivating applications for the adoption
of threshold schemes in each threshold profile. Therefore, the submission should identify
(in S13) use-cases for which the proposed threshold ranges are adequate.

5.6. T6: Building Blocks

A submission should identify and modularize the description of building blocks (gadgets)
that can be securely replaced by other instantiations with similar interface. These may be
useful across various threshold schemes across various submissions. While some future
guidelines and recommendations documents may focus on gadgets, the decision to do so is
likely to be subordinate to their utility for concrete threshold schemes.

Example building blocks. A notable building block is Shamir secret sharing (and Lagrange
interpolation), either in the clear or homomorphically (e.g., “in the exponent”). Other secret
sharing variants may also be useful, such as verifiable or publicly-verifiable secret-sharing.
Other examples of gadgets include garbled circuits, oblivious transfer, generation of
correlated randomness, commitments, secret resharing (possibly for new values f and n),
multiplicative-to-additive share conversion, additively homomorphic encryption, MPC
or ZKP friendly hashing, some zero-knowledge proofs, consensus and broadcast.

Modularized description. To the extent possible, proposals of threshold schemes should
modularize the description of gadgets. This means that a high-level description of the
threshold scheme uses references to the interface and security properties of the gadgets, but
not necessarily to low-level details. A lower level description can then be made for one (or
more) possible instantiation of each needed gadget.

Modularized code. The submitted open-source code (see Section 4.3) must include code
for at least one instantiation of each used building block. If the proposed system model
depends on special hardware components (e.g., a router) beyond the threshold “parties”, the
submission should also include code for emulating the special component.

The challenges faced in (i) implementing networking between parties can be significantly
different from those in (i1) implementing certain mathematical operations (cryptographic
building blocks) per party. Also, neglecting any of these can lead to serious vulnerabilities.
Therefore, it is strongly encouraged that there is a strong alignment between the proposed
system model (see T2 in Section 5.2) and the provided implementation (see Section 4.3),
notwithstanding possible virtualizations to enable execution in a personal computer. For
example, if a system model relies on broadcast, then the provided implementation should
instantiate it in alignment with the assumptions of the proposed system model.

25

1012

1013
1014
1015
1016
1017
1018
1019

1020

1021

1022

1023
1024
1025

1026
1027

1028
1029

1030
1031

1032
1033
1034

1035
1036
1037
1038

1039
1040
1041
1042
1043

1044

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

6. Cat1 primitives — Specified by NIST

Table 4 lists various Catl primitive-families of interest for thresholdization, organized in
various “types” (subcategories): Signing (Section A.1); PKE (Section A.2); ECC-2KA
(Section A.3); Symmetric (Section A.4); and Keygen (Section A.5). Within each type, each
listed “primitive family” (itself identified with a more detailed subcategory index) may
include several primitive variants (including ones not listed) and/or threshold modes, some
of which are listed (non-exhaustively) in the third column of Table 4. A submission of
threshold schemes fitting within a primitive family is not required to cover all indicated

variants or modes, and may instead focus on a single one.

Table 4. Primitives of interest in subcategories of Cat1

Sub)subcategory #: Section
Subcategory: Type (Sub)subcategory Some [Primitives] and/or {Threshold Modes} cho
Family of primitives in this call
C1.1: Signing C1.1.1: EdDSA sign [EdDSA, HashEdDSA] {Prob; Q-PR; F-PR (not FE); FE} A.1.1
C1.1.2: ECDSA sign {Prob-FE; Q-PR; F-PR not-FE; PR-FE to Det-ECDSA)} A.l1.2
C1.1.3: RSADSA sign [RSASSA-PSS; RSASSA-PKCS-v1.5] A.13
C1.2: PKE C1.2.1: RSA encryption [RSASVE.Generate, RSA-OAEP.Encrypt] {SSI} A2.1

C1.2.2: RSA decryption [RSASVE.Recover, RSA-OAEP.Decrypt] {NSS, SSO} A22

C1.3: ECC-2KA Cl1.3.1: ECC-CDH {NSS; SSO} A3.1
Cl1.3.2: ECC-MQV [Full; One-pass] {NSS; SSO} A32
C1.4: Symmetric C1.4.1: AES (en/de)cipher [encipher, decipher] A4l
C1.4.2: KDM/KC (for 2KE) [Hash, CMAC, HMAC, KMAC] A4.2
C1.5: Keygen C1.5.1: ECC keygen [For ECC-signing and ECC-2KA] AS.1
C1.5.2: RSA keygen [Just the modulus (mod); mod & keypair] AS52

C1.5.3: Bitstring keygen [RBG for AES keygen, RSA-SVE, and nonces] {SSO} AS53

Legend: 2KE = pair-wise key-establishment. Det = deterministic . FE = functionally equivalent. F-PR = fully PR (i.e., deterministic
even if the quorum changes). KD/KC = Kkey derivation and key confirmation mechanisms; NSS = input/output is not secret-shared
(i.e., apart from the key); PKE = public-key encryption. PR = pseudorandom. Prob = probabilistic. RBG = random-bit generation.
Q-PR = PR per quorum. SSI/SSO = secret-shared input/output (see §2.3 of NIST-IR8214A). SVE = secret-value encapsulation.

There are significant differences in threshold-friendliness and usefulness across the Catl-
primitives. For example, some symmetric-key primitives, such as HMAC and KMAC used
for key-confirmation, are much less threshold-friendly than primitives based on public-key
cryptography for signing and encryption/decryption. These differences are expected to affect
the interest of stakeholders in submitting corresponding threshold schemes. Threshold-

friendlier primitives can be considered in Cat2, as already conveyed in Table 2 in Section 3.2.

26

1045

1046
1047
1048
1049
1050
1051
1052
1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065
1066

1067

1086

1087

1088

1089

1090

1091

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

6.1. Input/Output (I/0) Interfaces

As discussed in §2.3 of NIST-IR8214A, threshold schemes can be considered in various
modes with regard to the I/O interface. By default, a threshold keygen scheme produces a
secret-shared output (SSO), i.e., a secret-shared secret/private key, and (when applicable) a
corresponding not-secret-shared (NSS) public-key counterpart. Then, a subsequent threshold
operation (e.g., signing) uses the private/secret key in a secret-shared input (SSI) manner.
The mentioned secret-sharings (SSO and SSI) of the private/secret key are often left implicit.
However, the secret-sharing of other input/output (that may itself be subject to confidentiality
requirements) is relevant in some use cases, to hide said input/output from the threshold
entity. Some of these SSI/SSO modes are explicit in Table 4. For example:

* a threshold decryption scheme can be in SSO mode to hide the decrypted plaintext;

* athreshold public-key encryption (exceptional case where there is no private key) can
be in SSI mode to hide some secret key being encapsulated;

* athreshold CDH or MQV ECC key-agreement primitive may produce a SSO to hide

the agreed key before it is subject to a final key-derivation (KD) transformation;

* a threshold signature scheme can be in SSI mode to hide the message being signed
(not shown in Table 4).

A submitted specification of a threshold scheme must unequivocally identify which I/O

parameters need to be in secret-shared form and which ones need not.

6.2. Cryptographic Parameters

Submitted threshold schemes should be implemented and evaluated with one set of pa-
rameters for security strength k¥ ~ 128, and another one for some security strength K € ~

[224,256]). Table 5 lists recommended options for cryptographic parameters.

6.2.1. Elliptic Curves, for ECC-related Primitives

NIST-approved curves for elliptic-curve cryptography are specified in SP800-186-Draft.
There are various representations and curves over prime fields, including

e Weierstrass: P-256, P-384, P-521, W-25519, W-448
* Montgomery: Curve25519, Curve448

e Twisted Edwards: Edwards25519, Edwards448, E448

27

1068

1069

1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081

1082

1083
1084
1085

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

Table 5. Recommended implementation parameters for Cat1 primitives

Parameter type Primitives using said parameters For x ~ 128 For k > 224
Elliptic curve EdDSA signing and keygen Edwards25519 Edwards448
\ ECDSA signing and keygen P-256 P-521
\ ECC CDH/MQVfor 2KA, and keygen {Curve25519, P-256} {Curved48, P-521}
RSA modulus size RSADSA, RSA PKE, and their keygen |N| =3,072 IN| > 11,264 *
RSA enc./ver. key RSA-related 216 < ¢ < 225 216 < ¢ < 2256
Hash function EdDSA signing SHA-512 SHAKE?256 (len 512, 912)

| ECDSA/RSADSA; HMAC for KDM/KC ~ SHA-256, SHA3-256, SHA-512, SHA3-512
| | SHA-512/256
| \ SHAKEI28 (len 256) SHAKE256 (len 512)

KMAC for KDM and KC KMAC128 KMAC256
Cipher KC (for RSA or ECC), encipher/decipher AES-128 AES-256
AES key-size AES encipher/decipher/keygen/CMAC |k] =128 |k| =256

Legend: k = standardized “security strength” (in bits). enc./ver. = encryption/verification. len = length.

* The RSA modulus length |N| must be a multiple of 8; this call further suggests that it be a multiple of 512.
Approved hash functions or XOFs are specified in FIPS-180-4, FIPS-202, and SP800-185, but only a subset
of them are suggested in this call. A XOF with predetermined length (len) can also be called a hash function.

A submission of threshold scheme for an ECC-based primitive should include an implemen-
tation based on at least one curve for security level for k = 128, and another for x = 224,
from the subsets detailed in Table 5. The curves W-x (for some x) and E448 do not appear
in Table 5, as they are only intended for possible intermediate representations.

Note that SP800-186-Draft also specifies curves over binary fields (in short-Weierstrass form,
namely Koblitz curves (K-163, K-233, K-283, K-409, K-571) and some pseudorandom
curves (B-163, B-233, B-283, B-409, B-571). However, these are for legacy-only appli-
cations, and have been deprecated due to their limited adoption. Therefore, these are not
recommended for submissions of threshold schemes.

Additive notation. In elliptic-curve cryptography, it is customary to use additive group
notation. There, a public key Q can be determined by a repeated sum of the base-point G,
a secret number d of times. The repeated-sum operation is (in additive notation) usually
expressed as a multiplication by an integer. Thus, the private key d is the integer (not an

elliptic curve element) needed to be multiplied with G to obtain Q =d - G.

On the set of suggested curves for 2KA. SP800-56A-Rev3 (from 2018) considers (in
its Table 24 in Appendix D) various curves for ECC key-agreement. Apart from Koblitz

28

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

(K-x) and pseudorandom (B-x) curves that have been deprecated by SP800-186-Draft, the
Weierstrass curves (P-x) remian valid. From the latter, P-256 and P-521 cover the cases
for security levels k ~ 128 and k 2> 224. The recent SP800-186-Draft also specifies new
Montgomery curves Curve25519 and Curve448, and references the IRTF RFC7748 where
those curves are suggested for use in 2KA. Despite their current potential for adoption, the
older SP800-56A-Rev3 does not include the new Montgomery curves (from the more recent
SP800-186-Draft) in the list of approved curves for 2KA. Therefore, for Catl-submissions
of threshold schemes for ECC-2KA (subcategory C1.3): (i) the reference implementation
should use at least the approved Weierstrass curves (P-256, P-521); (ii) a complementary
suggestion is that Montgomery curves (Curve25519, Curve448) also be implemented to

allow for a comparison across the uses of the two types of curves.

6.2.2. RSA Modulus, for RSA-related Primitives

A submission of threshold schemes for RSA-related primitives (for signing, key-encapsu-
lation or decryption): should provide implementations with moduli of size |N| = 3072
for x ~ 128, and |[N| > 11,264 (or greater) for k =~ 224 (or greater, respectively). Note:
SP800-56B-Rev2 uses the symbol s, instead of k, to denote the “security strength” (in bits).

The recommended RSA-modulus length |N| for security parameter k 2 224 was obtained,
from exponential interpolation between the cases (specified in SP800-57-P1-R5) using |N; | =
7680 for k1 = 192, and N,=15,360 for k, = 256, and rounding up to the nearest multiple
of 512. The used formula is [N| = 512- [|Ny |- (k/x1)?/512], where a = logy, /) (N2/N1).
This is also the value that would be obtained by rounding up the result provided by the FIPS
140-2 implementation guidance [IG-FIPS-140-2, §7.5, page 125].

NIST-specified requirements for the prime factors of an RSA modulus, and their primality
testing, are described in Appendices A.1 and C of FIPS-186-5-Draft, for single-party genera-
tion. For threshold schemes that warrant different methods (e.g., direct biprimality testing),
a rationale must be presented to convey why the used test (including the number of rounds)
is appropriate. In particular, it is acceptable that the RSA modulus be biased toward being a

Blum integer, i.e., with both primes being 3 mod 4.

29

1136

1137
1138
1139
1140
1141
1142
1143
1144
1145

1146

1147

1148
1149

1150

1151
1152
1153
1154
1155
1156
1157

1158

1159
1160
1161
1162

1163

1164

1165

1166

1167

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

7. Cat2 Primitives — Not Specified by NIST

Cat2 allows for submissions of threshold schemes for primitives that are not specified by
NIST. This category is aimed to allow for the consideration of primitives that are threshold-
friendlier than those in Catl, and/or that have distinctive features, such as being based on
distinct cryptographic assumptions (possibly being quantum-resistant), or having advanced
functional features. Section 3.2 already enumerated the subcategories and listed some
examples (see Table 2). A submission in Cat2 must provide a thorough description of the
corresponding conventional (non-threshold) scheme that the primitive (being thresholdized)
is part of. For example: a submission of threshold scheme for a signing primitive not
specified by NIST must include a description of not only the conventional signing primitive

but also its corresponding verification and keygen primitives.

7.1. “Regular” Primitives (Subcategories C2.1-C2.5)

As already enumerated in Section 3.2 (including listed in Table 2), Cat2 covers five regular
types of primitives across subcategories C2.1 (for signing), C2.2 (for PKE), C2.3 (for
key-agreement), C2.4 (for symmetric-key and hashing primitives) and C2.5 (for keygen).

Since selected candidates from the NIST PQC and Lightweight Cryptography (LWC) pro-
jects [Proj-PQC; Proj-LWC] are not yet standardized, possible threshold schemes for their
primitives can be presented in the scope of Cat2, specifically in their matching subcategories:
C2.1 (signatures) and C2.2 (public-key encryption) for PQC; C2.4 (symmetric-key and
hashing primitives) for LWC. However, the present call is also intended to elicit submissions
for threshold schemes for primitives that are threshold-friendlier. Submissions of threshold
schemes for quantum-resistant primitives should include a comparison with the security
levels (1-5) defined by the NIST PQC project [Proj-PQC].

Subcategory C2.3, for single-party primitives for use in multi-party key-agreement, also
expects possible submissions of TF-QR type. Such submissions should demonstrate the
use of the thresholdized primitives in the scope of an actual key-agreement application.
Compared to NIST-standardized KA protocols, submissions in this sub-category may enable

improved KA schemes, justified based on different assumptions.

Note on PKE versus KA. Primitives within subcategory C2.2 for PKE can be used
for multi-party key-establishment protocols, by allowing the confidential transmission
of a contribution to a key. The subcategory C2.3 for KA (within Cat2) is intended for
complementary primitives, such as those that may enable key-exchange protocols a la

30

1168
1169

1170

1171

1172
1173
1174
1175
1176
1177

1178

1179

1180
1181
1182
1183
1184
1185
1186
1187
1188

1189

1190

1191
1192
1193

1194

1195

1196

1197

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

Diffie-Hellman, though possibly based on different assumptions (e.g., to be QR) or for more
than two parties. Therefore, the subcategory C2.3 for KA excludes the key-transport-only

mechanisms (whose main cryptographic primitive is already scoped by PKE).

7.2. “Other” Primitives/Schemes (Subcategories C2.6—C2.8)

Beyond the “regular” type of primitives (covered by Catl and Cat2), there are “other” types
of primitives covered by Cat2, namely “advanced” primitives (C2.6; see Sections 7.2.1
and A.6), “ZKPoKs” (C2.7; see Sections 7.2.2 and A.7) and “auxiliary gadgets” (C2.8;
see Sections 7.2.3 and A.8). The subcategories for ZKPoK (C2.7) and gadgets (C2.8) are
meant to allow for the submission of primitives that can support the threshold setting. Such
a submission requires the specification of a conventional (non-threshold) primitive (see S6),

but (in contrast with other subcategories) the specification of a threshold scheme is optional.

7.2.1. Cat2 subcategory C2.6: “Advanced”

Subcategory C2.6 (see more details in Section A.6) is suited for primitives with advanced
functional features that are not covered by current NIST standards. For example, an
encryption scheme may allow (i) homomorphically performing operations over encrypted
data (possible with fully-homomorphic encryption), or (ii) selectively restricting the ability
for decryption to designated sets of recipients (possible with identity-based and attribute-
based encryption). A submission in subcategory C2.6 should present a strong rationale for
the utility of the enhanced features, compared to what is possible with primitives in the
other subcategories. Since quantum resistance is a strongly desirable feature, a submission
without such a property is encouraged to specifically present rationale about the lack of
good TF-QR alternatives.

7.2.2. Cat2 subcategory C2.7: ZKPoK

Subcategory C2.7 (see more details in Section A.7) allows for the submission of zero-knowl-
edge proofs of knowledge (ZKPoKs) that can support the threshold environment. For
example, they may be useful to prove knowledge of a secret/private key or input that is

consistent with:
* apublic-key and/or with the public commitments of secret-shares;

* the output of a cryptographic operation (e.g., public-key encryption, AES enciphering,

or KDM hashing), when the input was secret-shared and committed.

31

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

The generation of a ZKPoK can be considered both in conventional (non-threshold) and in

threshold forms. For example:

* [Conventional generation] A dealer (single-party) of a secret-sharing (SS) can
produce a ZKPoK that enables the various parties of a threshold entity (recipients of

secret-shares) to non-interactively verify that the SS is adequate;

* [Threshold generation] The set of parties that interacted in a DKG to obtain a secret-
sharing of a secret/private-key, and when applicable also obtain a corresponding
public-key, can interact in an MPC to distributively generate a ZKPoK string that
proves access to (i.e., knowledge of, albeit in a threshold manner and despite the secret-
sharing aspect possibly remaining hidden from the proof) an adequate secret/private
key consistent with a corresponding public commitment (possibly the public key) of

the given threshold scheme.

(Note that the latter example is dissociated from a conceivable proof of distributed
generation of a key, which can be considered if tied to public keys of the intervening

parties, believed to not reveal their private keys.)

The above two examples have similarities with, respectively, (i) verifiable secret sharing
(VSS), which can also be extended to publicly verifiable secret-sharing (PVSS), and (ii)
publicly verifiable MPC. Said verifiable features are welcome in submitted threshold schemes,
and may (preferably) be included as part of a submission more focused on one of the other
subcategories, while identifying the applicability of the ZKPoK to the present subcategory.
A submission that simply focuses in subcategory C2.7 must specify at least a conventional

ZKPoK, and may (optionally) specify a corresponding threshold version thereof.

7.2.3. Cat2 subcategory C2.8: Auxiliary Gadgets

Subcategory C2.8 (see more details in Section A.8) allows for the submission of specifi-
cations of other auxiliary primitives, here called gadgets. They may be auxiliary in their
conventional (non-threshold) form and/or in a threshold form. Gadgets can be modularized
in the submission of a higher-level threshold scheme associated with another subcategory
within Catl or C2.1-C2.7. Such modularization is already recommended by criterion T6
(in Section 5.6) for various gadgets (e.g., those enumerated in §4.5.2 of NIST-IR8214B-ipd
and §5.3.1 of NIST-IR8214A) whose underlying primitives (e.g., garbled-circuit generation,

garbled circuit evaluation, commit, decommit) are not themselves thresholdized.

32

1229

1230

1231
1232
1233
1234

1235

1236

1237
1238
1239
1240
1241
1242

1243

1244
1245
1246
1247
1248
1249

1250

1251
1252
1253

1254

1255
1256
1257
1258
1259

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

A. Details for Subcategories and Primitives of Interest

A.1. Subcategory C1.1: Cat1 Signing

The three Catl-signing primitives of interest are from EdDSA, ECDSA, and RSADSA.
Submissions in this subcategory should take in consideration the aspects of unforgeability
and threshold security mentioned in NIST-IR8214B-ipd (while some aspects are specific to
EdDSA, others are applicable to generic signature schemes). For example, it is useful to
differentiate between regular unforgeability and strong unforgeability.

A.1.1. Subcategory C1.1.1: EdDSA Signing

EdDSA is specified in §7 of FIPS-186-5-Draft. The default signing mode is pseudorandom,
determining the secret nonce r as a hash output whose pre-image includes a nonce-derivation
key v. Ignoring some encoding details, the algorithm for EADSA signing Sign,[s, v](M)
of a message M outputs a signature 6 = (R,S), where R = r- G, G is the conventioned
base-point of the elliptic curve, r = H(v, M), H represents a cryptographic hash function,
S=r+yx-s,x =H(R,Q,M) is the “challenge”, and s is the private signing key (integer)
needed to be multiplied with G to obtain the public-key Q.

A submission of threshold scheme for EADSA signing: can choose to implement just one
of or both HashEdDSA and EdDSA types (defining whether or not the message is “pre-
hashed”); should provide implementations with curves Edwards25519 (for k ~ 128) and
Edwards448 (for k ~ 224), which are specified in SP800-186-Draft; and must include only
schemes that are interchangeable with regard to EADSA verification (see related notes in
NIST-IR8214B-ipd). With respect to nonce generation, submissions are expected to include
one or more of the following modes:

1. Probabilistic (via a random or hybrid contribution per party)

2. Pseudo-random per quorum (via a ZKP of pseudorandom contribution per party)
3. Pseudo-random (based on a threshold-friendly PRF)

4. Functionally equivalent to HashEdDSA (via MPC hashing)

Note. An SSI mode for threshold signing is costly because it requires a distributed com-
putation of a threshold-non-friendly hash of the message. However, if the regular NSS
mode already requires such type of difficult computation (which is the case in functionally-
equivalent EADSA threshold signing), then the SSI mode may be achieved with a simple
extension, using the gadgets already required for the NSS mode.

33

1260

1261

1262

1263

1264

1265

1266
1267
1268
1269
1270

1271
1272
1273
1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

A.1.2. Subcategory C1.1.2: ECDSA Signing

ECDSA is specified in §6 of FIPS-186-5-Draft. The default signing mode is probabilistic
(8§6.3.1), but there is also a deterministic ECDSA mode (§6.3.2). Table 6 shows how the
meanings of some symbols change significantly between EDDSA and ECDSA.

Table 6. Notation of EADSA versus ECDSA (in Draft FIPS 186-5)

Element’s role In EADSA In ECDSA
Signature (R,S) (r,s)
Privatet key s d
Secret nonce r k
[Final]{ nonce commitment R r
Challenge X e

T EdDSA also uses d, but for the precursor private-key from which the signing key s and another
nonce-derivation key are obtained. i The use of [final] is to convey that it is the actual value output in the
signature. It is an encoding of other intermediate computed values that are themselves also commitments
to the nonce. In particular, in ECDSA one of the intermediate values is denoted with symbol R.

Ignoring some encoding details, the algorithm for ECDSA signing Sign,[d](M) of a mes-
sage M outputs a signature o = (r,s), where d is the private signing key (the integer

b

needed to be multiplied with the base-point G to obtain the public-key Q); the “challenge’

¢ = Encodel)’ (Hash(M)) is an encoding (mod n) of the hash of the message being signed;

k<% [1,...,n— 1] is (in the probabilistic version) a uniformly selected nonce that needs to
(2)

remain secret; R = k+G is the “nonce commitment” and r = Encode;,’ (R) is a corresponding
encoding (mod n); and s = k~!- (¢ +r-d) (mod n).

A submitted threshold scheme for ECDSA signing should provide an implementation
with at least one parametrization for k ~ 128 and another for k¥ = 224, with parameters
recommended in Table 5. With respect to nonce generation, submissions are expected to
include at least one of the following modes:

1. Probabilistic (via random or hybrid contributions per party)

2. Pseudo-random per quorum (via a ZKP of pseudorandom contribution per party)

3. Pseudo-random (based on a threshold-friendly PRF)

4. Pseudo-random functionally equivalent to Deterministic ECDSA (via MPC hashing)

Note on SSI-signing: In the case of SSI-signing for Deterministic ECDSA, the client
can directly provide a secret-shared challenge (the hash ¢ of the message), whereas in
(Deterministic) EADSA the pseudorandom challenge yx requires knowledge of a nonce

34

1293

1294

1295

1296
1297

1298

1299

1300

1301

1302
1303
1304

1305

1306
1307

1308

1309
1310
1311
1312
1313
1314
1315

1316

1317

1318
1319
1320
1321
1322

1323

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

commitment that depends on a private element not known by the client. Note that signature
verification still requires the ability to hash the message.

A.1.3. Subcategory C1.1.3: RSADSA Signing

RSA signature modes are specified in §5.4 of FIPS-186-5-Draft, by reference to IETF RFC8017.
A submission for the RSADSA signing family is expected to implement a threshold signature
scheme that is interchangeable with at least one of the following modes:

1. RSASSA-PSS (probabilistic signature scheme), using an approved hash function or XOF
2. RSASSA-PKCS-v1.5 (deterministic), using an approved hash function

A.1.4. Signing in Secret-Shared-Input (SSI) Mode

In an SSI-signing mode, no single-party (nor any collusion up to a certain number of parties)
of the threshold entity will learn the hash of the message. This is akin, though not the same
as, what is achieved with blind signatures. The difference is that in the threshold setting it is
possible that a large enough collusion of parties is able to reconstruct the input message.

The SSI mode may be of use, for example, for private-preserving time-stamping, producing
a certificate interchangeable with those produced by the conventional protocol where the
authority learns the hash of the document being timestamped.

The threshold-generation of signatures in SSI mode may pose challenges with regard to
unforgeability. For example, a protocol must prevent that a malicious party that maliciously
changes their secret-share would affect the overall message being signed, i.e., must prevent
the signing of a message whose signature has bot been requested. Such challenges may
be resolved based on various techniques, including zero-knowledge proofs, or based on
verifiability or error correction properties of the secret-sharing. For example, each party can
prove that their interaction in the distributed computation is consistent with a secret-share
that has been certified by the client, with regard to the ongoing signing session.

A.2. Subcategory C1.2: Cat1 Public-Key Encryption (PKE)

The PKE cryptosystem of interest is RSA. The main use case considered for RSA encryp-
tion/decryption is pair-wise key-establishment (2KE), as specified in SP800-56B-Rev2. 2KE
can take the form of a key-agreement (KA) type of protocol (with contributions from both
parties) or be more simply based on key-transport (KT) type of protocol (with contribution
from a single party). For RSA-based instantiations, both types of protocol rely on secret-
value encapsulation (SVE), where RSA encryption is used to encapsulate a secret value

35

1324
1325

1326

1327
1328

1329

1330
1331

1332

1333

1334

1335

1336

1337

1338
1339
1340
1341
1342
1343

1344

1345
1346
1347
1348
1349
1350

1351

1352

1353

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

k (also denoted as a plaintext /) into a ciphertext ¢, which is then sent to another party
for decryption. Ignoring some encoding details, the low-level RSA-based cryptographic
primitives of interest are:

* RSA encryption primitive (RSAEP): Encryption ¢ = m°mod N (transforming a
plaintext m into a ciphertext c). A threshold version of it uses a secret-shared input m
(SSI) and a not-secret-shared public encryption key.

 RSA decryption primitive (RSADP): Decryption 1 = ¢?mod N . A threshold version
of it uses a secret-shared private-key d (which is never reconstructed); the threshold
operation produces an output that is either secret-shared (SSO) or not (NSS).

Additional relevant primitives include:
* Generation of an RSA modulus and/or key-pair (see Section A.5.2).
* Generation of a random bit-string (see Section A.5.3).

The values generated in SSO mode are for subsequent consumption in SSI mode.

A.2.1. Subcategory C1.2.1: RSA Encryption (of a Secret-Value)

Threshold schemes in this call are intended to operate over secret-shared material. Therefore,
in the case of public-key encryption the secret-sharing does not usually apply to the public
key. However, the application of key-encapsulation for key-transport/agreement uses the
plaintext itself (being encrypted) as a value whose confidentiality requirement may warrant
threshold protection. By default, a threshold scheme for such encryption will be in “secret-
shared input” (SSI) mode (see [NIST-IR8214A]) with regard to the value being encrypted,
but will not secret-share the public key (to be known by every party).

The basic RSA encryption primitive (RSAEP) computes a ciphertext ¢ = m® (mod N),
where m is a secret plaintext, e is the public encryption key, and N is the public modulus.
The goal is to compute ¢ from a secret sharing [] of m. For interchangeability with regard to
a subsequent decryption, an actual full-fledged threshold scheme for RSA key encapsulation
should consider all of the appropriate encoding and padding details. In SP800-56B-Rev2, the
primitive RSAEP (§7.1.1) is specified for use within two higher-level primitives:

1. RSASVE.Generate (§7.2.1.2): RSA for Secret-Value Encapsulation (which also
includes the generation of the random key to encapsulate)
2. RSA-OAEP.Encrypt (§7.2.2.3): RSA with Optimal Asymmetric Encryption Padding

36

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

A.2.2. Subcategory C1.2.2: RSA Decryption

SP800-56B-Rev2 specifies the use of RSA decryption in two higher-level primitives:

1. RSASVE.Recover (§7.2.1.3): Secret-Value Encapsulation recovery
2. RSA-OAEP.Decrypt (§7.2.2.4): Optimal Asymmetric Encryption Padding decryption

The RSA decryption primitive, RSADP(privKey, c), used to decrypt a ciphertext c, accepts
the private decryption key privKey [SP800-56B-Rev2, §6.2.2] in three possible formats:

1. Basic format: (n,d)

2. Prime-factor format: (p,q,d)

3. Chinese-remainder theorem (CRT) format: (n,e,d, p,q,dP,dQ,qlnv)

The notation [SP800-56B-Rev2, §3.2] is as follows: 7 is the public modulus; (p,g) is the pair
of secret prime factors of n; d is the private decryption key; e is the public encryption key;
dPisdmod (p—1);dQisdmod (¢—1);and glnv is the inverse of gmod p.

A.2.3. Implementation Recommendations and Options

A submitted threshold scheme for RSA encryption or decryption primitives should include
an implementation in the scope of an RSA-based 2KE protocol, as follows:

* With an instantiation for k¥ &~ 128 and another for x = 224 (see Table 5).

* Showcasing at least one of the key-establishment protocols listed in Table 7, with at
least one of the parties (U, or V) being threshold-decentralized;

e If implementing threshold RSADP:

— secret-sharing the decryption key, for at least one of the three approved formats
(Section A.2.2); the public elements (7 and ¢) do not need to be secret shared;

— outputting the plaintext (the key that was encapsulated) in one of two forms:
secret-shared, or not secret-shared.

¢ If implementing threshold RSAEP: using an SSI mode for the plaintext.

The various RSA-2KE schemes. SP800-56B-Rev2 specifies various RSA-2KE schemes.
Two are of the key agreement (KA) type (obtaining contributions from both parties), whereas
another one is based on key transport (KT) using a contribution from a single party. Table 7
lists, across these three schemes, the corresponding RSA-based operations (excluding
needed RSA key-pair generation). Each of the listed schemes allows for a basic version,

37

1383

1384

1385

1386

1387
1388
1389
1390

1391

1392
1393
1394
1395
1396
1397
1398
1399
1400
1401

1402

1403
1404

1405

1406

1407

1408
1409

1410

1411

1412

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

and a version with key confirmation (unilateral or bilateral, not based on RSA). The KDM
operation specified for KA schemes is not RSA based.

Table 7. RSA-based primitives per party per RSA-2KE scheme

Type Scheme %;:Bs_l;jj; Party RSA-based primitive niﬁz?
KA KTS1 §8.2 1st contributor () RSASVE.Generate Yes

\ \ \ 2nd contributor (V) RSASVE.Recover \

| KTS2 §8.3 Any RSASVE.{Generate & Recover} |
KT KTS-OAEP §9.2 Sender (U) RSA-OAEP.Encrypt No

\ \ \ Receiver (V) RSA-OAEP.Decrypt \

In KTS1, one party (U) uses RSASVE.Generate to generate and encrypt a secret value Z,
and the other party (V) uses RSASVE.Recover to decrypt Z. The latter party then contributes
a non-encrypted nonce Ny. (Per §5.4 of SP800-56B-Rev2, the nonce used in KTS1 should
be random.) Both the secret value and the nonce are then used as input to a KDM, which
produces a final agreed key k (not to be confused with the nonce k£ of ECDSA). In KTS2,
the clear-text nonce from party V is replaced with an encapsulated key, therefore requiring
both parties to implement both RSASVE.Generate and RSASVE.Recover. Both KTS1 and
KTS2 include a subsequent KDM, either in a one-step version or a two-step version, which
transforms the pair of contributions (Z and Ny) into a final derived key k. A threshold keygen
can consider the generation of Z and/or Ny in SSO mode Section A.5.3, if they are to then
be consumed in SSI mode by the subsequent KDM.

The KTS-OAEP scheme does not use a KDM. Instead, the output key is decided by one of
the parties, who then sends it encrypted to the other party. The threshold modes of interest
for KTS-OAEP depend on the primitive, as follows:

* RSA-OAEP.Encrypt with the plaintext (a key to be encapsulated) in SSI mode.
* RSA-OAEP.Decrypt with the plaintext (the key that was encapsulated) in SSO mode.

Each 2KE scheme can be implemented in either a basic form (without key confirmation), or
with KC in either a unilateral or bilateral manner. Both KDM and KC primitives rely on
hash-functions of symmetric-key cryptography (see Section A.4.2).

SP800-56B-Rev2 also specifies that any of the mentioned RSA-2KE schemes (KTS1, KTS2,
and KTS-OAEP) can be followed by a key transport where the established key is wrapped

38

1413

1414

1415
1416
1417
1418
1419
1420
1421

1422

1423

1424
1425
1426
1427
1428
1429

1430

1431
1432

1433

1434

1435
1436
1437
1438
1439
1440

1441

1442
1443
1444

1445

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

with an approved (symmetric-key based) key-wrapping algorithm [SP800-38F]. However,
threshold-wise said key-wrapping algorithms are more-unfriendly than KTS-OAEP.

On the ability to bias the key in a 2KE protocol. The various mentioned NIST-specified
protocols allow one of the parties to significantly bias the result. Specifically, the second
contributor party in the KTS1 and KTS2 protocols can brute-force its contribution to bias
several bits (e.g., 40 bits, at a parallelizable computational cost of approximately 24 KDM
operations). In KTS-OAEP the sender fully determines the key being transported. This is is
contrast with Blum-style coin-flipping protocols, where the contribution from each party is
only revealed once the contribution from the other party is committed to, thus implying that
an honest party can guarantee that the output is not biased (up to abort by the other party).

A.3. Subcategory C1.3: Cat1 ECC Primitives for Pair-Wise Key-Agreement (2KA)

Pair-wise key-agreement (2KA). SP800-56A-Rev3 specifies various pair-wise (i.e., two-
party) key-establishment (2KE) schemes of the KA-type (where the final key depends on
contributions from the two parties), based on discrete logarithm cryptography. In a 2KA
scheme, each party uses their own private key(s) and the public key(s) from the other party, to
first obtain an intermediate common secret Z, and then applies a transformation to obtain a
final key (called DerivedKeyingMaterial) k that is equal to the one obtained by the other party
(not to be confused with the nonce k& of ECDSA).

In some NIST publications the intermediate secret Z is referred to as a “shared” secret,
meaning it is known by both parties of the 2KA. This should not be confused with the case of
a “secret-shared” Z when “thresholdizing” (i.e., decentralizing) one of the original parties.

Each 2K A protocol specified in SP800-56A-Rev3 can be described with up to three phases:

1. A public-key cryptography (PKC) phase, where the parties interact to determine an
intermediate common secret Z.

2. An asymmetric-key cryptography phase, where each individual party uses a key-
derivation mechanism (KDM) to derive a final key k.

3. An optional key confirmation (KC) phase, based on comparison of message authen-
tication code (MAC) tags, which allows at least one of the parties to confirm that their
obtained key is equal to the key of the other party.

The subcategory C1.3 (2KA) of Catl in this call is only focused on the PKC primitives used
in the initial phase, namely the Cofactor Diffie-Hellman (CDH) or Menezes-Qu-Vanstone
(MQYV) primitives. However, a submission of a threshold scheme for such a primitive should
be demonstrated in an implementation of a full-fledged 2K A protocol. Therefore, this section

39

1446

1447

1448
1449
1450
1451
1452

1453

1454

1455

1456

1457

1458

1459
1460
1461
1462

1463

1464
1465
1466
1467
1468

1469
1470

1471
1472
1473
1474
1475

1476

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

also provides some context about the KDM and (the optional) KC operations, whose possible
thresholdization is considered in Section A.4.2.

ECC scope. From the schemes in SP800-56A-Rev3, Catl only includes those based on
ECC, which are implementable with elliptic curves specified in SP800-186-Draft. Table 5
in Section 6.2 lists the curves of interest. 2K A based on finite field cryptography (FFC) is
left out of scope, following the trend of deprecating FFC in favor of more succinct ECC,
as done in FIPS-186-5-Draft (which deprecated DSA in favor of ECDSA). The seven 2KA
schemes in scope are listed in Table 8 and can be classified based on three factors:

* the underlying ECC primitive: CDH or MQV.
* the number of ephemeral (e) keys (2, 1 or 0),

* the number of static (s) keys (2, 1 or 0); and

Table 8. Seven ECC-2KA schemes

Intermediate secret Z g in SP 800

Primitive (f) e s Scheme
(“agreed” by U and V) -56A-Rev3

ECC CDH 2 2 (Cofactor) Full Unified Model fleu,Ev)||f(su,Sy) §6.1.1.2

\ 2 0 (Cofactor) Ephemeral Unified model f(ey,Ev) §6.1.2.2

\ 1 2 (Cofactor) One-Pass Unified Model f(ey,Ev)||f(ev,Sy) §6.2.1.2

\ 1 1 (Cofactor) One-Pass Diffie-Hellman f(ey,Sy) §6.2.2.2

\ 0 2 (Cofactor) Static Unified Model f(su,Sy) §6.3.2
ECC MQV 2 2 Full MQV fGsu,Sv,ev,Ey,Ey) §6.1.1.4

\ 1 2 One-Pass MQV f(su,Sv,eu,Evu,Sy) §6.2.1.4

Legend: |l = concatenation. § = section in another document. e¢ = number of generated ephemeral key pairs. f =

symbol representing the ECC primitive (CDH or MQV). s = number of generated static key pairs; U and V = the
two parties in the 2KA protocol. Let A represent one of the parties (U or V). Abbreviated notation for keys: ¢4
(=dea) and E4 (= Qca) are the ephemeral private and public keys of party A; 54 (= ds.4) and Sy (= Oy 4) are the
static private and public keys of party A. The primitive f makes use of additional parameters not shown here.

Interchangeability scope. Regardless of the decentralization of any party, a 2KA scheme
is already a protocol between two parties that intend to obtain a commonly agreed secret.
Therefore, when considering a threshold scheme for a Catl-primitive of a 2KA protocol, the
interchangeability requirement is narrowed to “functional equivalence”. This ensures that
the output secret (albeit possibly in secret-shared format) on one decentralized side will be
equal to the one obtained by the other (possibly legacy) party in the 2K A interaction. Cat2

40

1477

1478

1479
1480
1481

1482

1483

1484

1485
1486
1487
1488

1489
1490
1491

1492
1493
1494
1495

1496

1497
1498
1499

1500

1501

1502

1503

1504
1505
1506

1507

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

(see Section 7) allows for interchangeability in a broader sense, assuming that both parties
interacting in the 2KA can agree on the new subsequent (KD/KC) mechanisms.

Single-party primitives. The objects of thresholdization are the primitives (see Table 9)
computed by each individual party in the 2KA protocol. Each of these primitives has
private/secret key-material in the input or/and output. The threshold protection provided to
the keys handled by one side of the ECC-2KA depends on which primitives are thresholdized.

Table 9. ECC-2KA primitives of interest for thresholdization

Lo Secret Secret Threshold Section in Section in
Primitive) . .
input? ouptut? friendly? SP800-56A-Rev3 this call
ECC keygen: get key-pair (d, Q) — Yes Yes §5.6.1.2 A1
ECC CDH/MQV: Z = f(da,0p,...) Yes Yes Yes §5.7 A3.172
Key derivation: k = KDM(Z, ...) Yes Yes No §5.8 A42
Key confirmation: KC(Z,...) Yes — No §5.9 A42

Legend: d = private key. f = CDH or MQV transformation (primitive). k = final secret established by both parties.
KC = “key confirmation” pseudorandom function, to allow comparison between A and B. KDM = “key derivation
mechanism” function. Q = public key. Z = intermediate secret (before KDM) computed by both parties.

A threshold scheme for an ECC CDH/MQV primitive allows for confidentiality of the
private key d. This can be useful even if the intermediate secret Z is reconstructed due
to a subsequent non-thresholdized KDM. Conversely, in a full-fledged thresholdization of
the sequence of 2KA primitives, the output Z of the ECC CDH/MQYV primitive would be
secret-shared (i.e., SSO mode), to serve as input to the subsequent threshold KDM phase.

The ECC-2KA*“type” includes only the ECC primitives that produce the intermediate
secret Z, from secret-shared ECC private keys (static or ephemeral). There are two such
primitives: ECC-CDH (Section A.3.1) and ECC-MQV (Section A.3.2). The ECC key-gen
and KDM/KC primitives are respectively considered in Sections A.5.1 and A.4.2.

Submissions. A submitted threshold scheme for an ECC CDH or MQV primitive should:

* Evaluate it for at least one curve for k ~ 128, and another for k € ~[224,256] — see
Table 5 in Section 6.2.

e Showcase the execution of at least one of the seven 2KA ECC-based schemes (see
Table 8), with at least one decentralized party (A, B, or both) using secret-shared
private keys in the threshold ECC CDH/MQV computation. The implementation
should also include the KDM (and optionally the) KC procedures, either threshold (see

41

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES

JANUARY 2023 (INITIAL PUBLIC DRAFT)
1508 Section A.4.2, if the threshold ECC CDH/MQYV is in SSO mode) or non-threshold. In
1509 other words, the ECC CDH/MQYV output may or not be secret-shared, depending on
1510 whether or not the subsequent KDM/KC primitive is thresholdized.

151 A.3.1. Subcategory C1.3.1: ECC-CDH Primitive

1512 With a decentralized party A (which can be U or V), the ECC-CDH primitive is as follows:

1513 * Secret-shared input:

1514 — [d4] (secret sharing of private key of party A)

1515 * Public input: (known to every party of the decentralized entity representing A)

1516 — Qp (the public key of party B);

1517 * Secret-shared output: Secret sharing [Z] of a secret Z = Encode(P), where:

1518 — P=(h-dy)-Qp (where h is the cofactor)

1519 — Encode is an encoding that does a field-element-to-byte string conversion of the
1520 x-coordinate of the input.

1521 The output is distributively computed in a way that Z remains threshold confidential.

1522 A.3.2. Subcategory C1.3.2: ECC-MQV Primitive

1523 With a decentralized party A (which can be U or V), the ECC-MQV primitive is as follows:

1524 * Secret-shared input:

1525 — [dsals [dea] (secret sharings of the static and ephemeral private keys of party A)
1526 * Public input: (known to every party of the decentralized entity representing A)

1527 — Q¢4 (the ephemeral public key of party A);

1528 - Qs p and Q. p (the static and ephemeral public keys of party B)

1529 * Secret-shared output: Secret sharing [Z] of a secret Z = Encode(P), where:

1530 — P=h-impsiga - (avf(Qep) Osp);

1531 = impsiga = (dea+avf(Qea)-dsa) mod n;

1532 - avf(Q) is an integer associated to a public key Q, computed via an “Associate
1533 Value Function” ([SP800-56A-Rev3, §5.7.2.2]);

42

1534

1535

1536
1537
1538
1539
1540
1541
1542

1543

1544

1545
1546
1547
1548

1549

1550
1551
1552
1553
1554
1555
1556
1557

1558

1559

1560
1561
1562
1563
1564

1565

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

— Encode is the same encoding as defined for ECC CDH.

There are two possible implementation forms for the ECC MQV primitive:

1. The full form ([SP800-56A-Rev3, §5.7.2.3.1]), implemented as described above, where
both static and ephemeral keys exist and are distinct.

2. The one-pass form ([SP800-56A-Rev3, §5.7.2.3.2]), where exactly one other party (A
or B) does not have an ephemeral key, and so the above algorithm uses instead the
corresponding static key:

e If party A does not have an ephemeral key, then d, 4 and Q, 4 are respectively
instantiated by d; 4 and Qg .
e If party B does not have an ephemeral key, then Q. p is instantiated by Q; p.

A.4. Subcategory C1.4: Cat1 “Symmetric”

The “symmetric” subcategory includes primitives for the NIST-approved symmetric-key
enciphering scheme (the advanced encryption standard [AES]), as well as for other NIST-
approved primitives used for KDM/KC. Some primitives in scope (e.g., hashing) are techni-
cally defined as keyless, but in practice they can be considered in settings (e.g., for KDM/KC)
where their “plaintext” input is a key (symmetrically) known by two parties.

While “symmetric” primitives are often used in standardized “modes of operation” for large
inputs, the thresholdization focus of this call is on the basic primitives, where the complexity
of specifying a threshold scheme lies. For example, once a threshold scheme for AES
enciphering/deciphering is defined, then it is straightforward to apply it to some mode of
operation based on AES, including for the purpose of computing a cipher-based message
authentication code (CMAC), or a ciphertext based on a mode for authentication encryption
with associated data (AEAD). Similarly, a threshold scheme for an approved hash function
could then also be applied to calculate an HMAC. Some threshold schemes may nonetheless
allow a cost amortization when repeatedly executed.

A.4.1. Subcategory C1.4.1: AES Enciphering/Deciphering

With respect to threshold enciphering/deciphering in Catl, there is only one symmetric-key
block-cipher of interest: AES, specified in FIPS-197. A submission of threshold scheme
for AES enciphering/deciphering must assume a secret-sharing of the secret key, and
should provide implementations for at least the key-sizes 128 and 256. A submission
can choose to implement any (or various) types of input/output interface from {NSS, SSI,
SSO and SSIO}. In applications where the high-sensitivity of the plaintext warrants a

43

1566
1567
1568
1569
1570
1571
1572

1573

1574
1575
1576
1577
1578
1579
1580
1581
1582

1583

1584

1585
1586
1587
1588

1589

1590
1591
1592

1593

1594
1595
1596
1597

1598

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

distribution of trust over its knowledge, then it can make sense to consider: an SSI mode for
enciphering, and/or an SSO mode for deciphering, so that the plaintext is not reconstructed
within the decentralized AES-evaluator. For benchmarking purposes, a submission should
evaluate performance at least in the single evaluation case, i.e., for a single AES enciphering
and/or deciphering. However, to help clarify possible amortization gains and/or clarify the
feasibility of the threshold approach for AES modes of operation (in the SP800-38-series),
the benchmarking can also measure performance for the threshold execution of 2° and/or
210 AES encipherings/decipherings in some specific mode of operation.

Threshold AES enciphering versus oblivious AES evaluation. Oblivious AES evaluation
is a common secure 2-party computation (S2PC) benchmark in the literature. There, a single
party holding the plaintext does not share it with a single party holding the key, and yet
receives the corresponding ciphertext. The application of threshold AES in scope in this call
is different, in that the threshold entity is responsible for computing the output, when the
key has been secret-shared. The plaintext is either (i) directly shared with the threshold-de-
centralized entity responsible for the enciphering or deciphering, or (ii) is secret-shared in
the input/output. A secret-shared-1/O threshold AES enciphering may also be useful for the
computation of a CMAC, which can in turn be useful for 2KE KDM/KC. That said, techniques
developed for threshold AES are likely to also be useful for oblivious AES evaluation.

A.4.2. Subcategory C1.4.2: KDM and KC for 2KE

The protocols for pair-wise key-establishment (2KE), in both the ECC-based [SP800-56A-
Rev3] and RSA-based [SP800-56B-Rev2] cases, are finalized with the use of a key-deriva-
tion mechanism (KDM) [SP800-56C-Rev2; SP800-108-Rev1] and optional key-confirmation
(KC). These operations follow after the generation of a precursor intermediate secret M,
obtained/produced via a key-agreement of key-transport type of 2KE protocol.

Threshold unfriendliness. The current NIST-specified KDM and KC primitives are
possible to thresholdize based on complex MPC protocols, but are based on threshold-
unfriendly hash-or-XOF functions ([FIPS-180-4; FIPS-202]) or MAC/PRFs (of the type
CMAC [SP800-38B], HMAC [FIPS-198-1] or KMAC [SP800-185]).

Considering the “pair-wise” nature of key-establishment protocols (i.e., involving two sides),
some use cases (namely when party A has to be thresholdized, but party B has to use a legacy
implementation) may require the use of a KDM and/or KC that is functionally-equivalent
to a currently NIST-specified one. However, the costs and benefits of implementing a
potentially costly MPC in such a case should be carefully considered.

44

1599
1600
1601
1602

1603

1604
1605
1606

1607

1608
1609
1610
1611
1612

1613

1614
1615
1616
1617

1618

1619

1620
1621
1622
1623
1624

1625

1626

1627

1628

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

Threshold schemes for AES enciphering/deciphering may be easy to adapt to threshold sch-
emes for CMAC primitives. Techniques used to enable threshold schemes for the hashing that
is useful for KDM or KC may also be reusable for (pseudorandom) EdDSA and Deterministic
ECDSA, which require a secret-nonce computed as a hash whose pre-image contains a private
nonce-derivation key.

Cat2 of this call enables proposals of threshold-friendlier KDM and KC primitives that would
still retain the desired properties of the final generated key, namely indistinguishability from
uniform selection, and one-wayness with respect to the intermediate key Z used as input.

A.4.2.1. Key Derivation Mechanism (KDM)

A threshold KDM scheme makes sense if the corresponding party (in the pair-wise key-
-establishment) is supposed to not learn the final secret k. The threshold KDM scheme
produces a secret-shared output (SSO) (similar to a threshold keygen scheme), so that the
final secret k£ (to be consumed by another primitive) is secret-shared. There are one-step
(extraction) and two-step (extract-then-expand) KDMs (see SP800-108-Rev1 for the second
step). Additionally, there are variants (see SP800-135-Rev1) approved for specific applications.

Since the final key k can be easily derived from the intermediate key M, it follows that it only
makes sense to thresholdize a KDM if the input (intermediate) key M is also secret-shared.
Conversely, if a KDM is not thresholdized but Z has itself been produced in a threshold
manner, (i.e., based on a secret-shared private key d), then the reconstruction of Z does not
break the confidentiality of the private key d.

A.4.2.2. Key Confirmation (KC)

A threshold key-confirmation primitive computes a PRF image of the intermediate secret Z,
without Z ever being reconstructed. This can make sense if the KDM is also thresholdized
in SSI mode, to directly use a secret-shared Z as input, withouth needing to reconstruct it.
Key-confirmation is defined, in various possible modes (unilateral or bilateral), for ECC-
based key-agreement in SP800-56A-Rev3 (§5.9, Table 5) and RSA-based key-establishment
in SP800-56B-Rev2 (§5.6, Table 1).

A.5. Subcategory C1.5: key-Generation (keygen) for Cat1 Schemes

A key-generation (keygen) primitive determines a private/secret “key” that is needed by
subsequent primitives. The threshold scheme may also compute other public parameters. For

45

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

example, the keygen primitive of a digital signature scheme produces a private/public keypair,
whose private element is then required to produce signatures, and whose public element is
used to verify the correctness of signatures. Typical requirements for private keys include
unbiasing and confidentiality. These requirements can also apply to the generation of other
secret material, such as a random secret nonce. Secrets generated via a keygen primitive may
be persistent (e.g., for multiple-times use, without planned erasure), or ephemeral (e.g., for
single-time use, followed by erasuse). Table 10 provides a non-exhaustive list of parameters
that may be generated via a keygen operation (some variations are possible).

Table 10. Examples of keygen purposes

Keygen purpose (subsequent operation) ~ Private/secret key Other public elements

ECC-signing; ECC-2KA primitives ~ exponent d (integer mod n) Q = d - G (elliptic curve point)

RSA signing and decryption primes (p,q) modulus N =p-q
\ exponent d = ¢ 'mod ¢y exponent e
RSA encryption for 2KE random bit-string Z ¢ =RSAEP((n,e),2)
Key-derivation / key-confirmation \ KC(Z,...)
AES enciphering/deciphering random bit-string k —

Terminology and scope for threshold schemes for keygen. Threshold schemes for keygen
are often called distributed key generation (DKG) protocols. In this call, the focus on DKG is
only on the generation of the private/secret keys and (when applicable) the public parameters
that depend on them (e.g., an RSA modulus obtained from the product of two secret primes,
or the elliptic curve public point obtained from integer-multiplying a base point by the secret
key). Other “domain parameters”, such as the security strength x, the parameters of an
elliptic curve, or an RSA encryption key, which may be determined before the computation of
the private key (but which in conventional specifications may sometimes be included within
the keygen primitive) can be assumed to be fixed or pre-agreed upon.

Interchangeability of random values. In a DKG protocol, the random private/secret
key to be output in secret-shared form, and possibly other intermediate random elements,
is obtained by combining random contributions from several parties. This call does not
pose specific requirements on these random values, i.e., beyond the requirement of inter-
changeability with regard to some subsequent operation of interest, However, a submitted
DKG protocol should be accompanied by an explanation of why the proposed randomness
generation mechanism provides appropriate security assurances, namely compared to the

46

1661
1662
1663
1664

1665

1666

1667
1668
1669
1670
1671
1672
1673

1674

1675
1676
1677
1678
1679

1680

1681
1682
1683

1684

1685

1686

1687

1688

1689
1690

1691

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

assurances provided by the conventional random-bit generation (RBG) [SP800-90A-R1;
SP800-90B; SP800-90C-3PD] that may be required in the corresponding conventional (non-
threshold) keygen specification. Some original RBG-related requirements associated with
random values in the conventional specification may still be considered for the individual
contributions of each party in a corresponding DKG.

A.5.1. Subcategory C1.5.1: ECC Keygen (for ECDSA, EdDSA, and ECC-2KA)

The ECC keygen of a private/public key-pair is similar across various schemes, including
for ECDSA and EdDSA signature schemes [FIPS-186-5-Draft], and for ECC-2KA primitives,
such as CDH and MQV [SP800-56A-Rev3]. In a threshold ECC keygen (i.e., DKG for an
ECC scheme), the usual goal is to produce a secret-sharing [d] of a private key d (usually a
positive integer mod #n, the order of the subgroup of interest), along with a corresponding
(not-secret-shared) public key Q = d - G. In a threshold 2KA scheme, each party may
need this decentralization (secret-sharing) for their static private key d, (or ds 4) and/or an
ephemeral private key (d, 4).

Some schemes, such as EADSA, may include additional private/secret elements (e.g., a
nonce-derivation key for pseudorandom generation of nonces) that do not require a sub-
sequent verifiable relation with the public key. The generation of said components in the
threshold setting may be considered differently (or may even not be necessary), provided
that an appropriate interchangeability property is satisfied with regard to the subsequent
operations that use the ECC private/public keypair.

Submissions of threshold schemes for ECC signing and ECC-2KA primitives are expected
(though not required) to include a corresponding proposal of a compatible ECC-DKG
protocol. Implementation recommendations for a submitted DKG (e.g., which elliptic curves
and security parameters) should apply to at least one subsequent threshold scheme of interest.

A.5.2. Subcategory C1.5.2: RSA Keygen

RSA keygen is needed for the RSADSA scheme (Section A.1.1) and the RSA PKE scheme
used for 2KE (Section A.2). In its basic format, RSA keygen consists of:

* generating a pair of random secret primes (p,), and outputting their product N; and

* computing and outputting as private key d the inverse (mod LCM(p — 1,4 — 1)) of a
public exponent e, where e is selected (randomly or as an input parameter) before the
selection of the primes.

47

1692
1693
1694
1695

1696

1697
1698
1699

1700

1701

1702

1703
1704

1705

1706

1707

1708

1709

1710

1711

1712

1713
1714

1715
1716

1717

1718
1719
1720

1721

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

DKG schemes for RSA can be submitted separately from subsequent threshold operations,
such as threshold RSA signing, threshold RSA decryption, or threshold RSA SSI-encryption.
Still, a submission of RSA DKG should be compatible with said subsequent schemes,
and should include evaluation for at least two security parameters consistent with the
recommendations from Table 5.

FIPS-186-5-Draft (§A.1) and SP800-56B-Rev2 (§6.2—8§6.3) specify various requirements for
the RSA keygen, respectively for signing and PKE. Possible variations of the format
of the output key include the prime-factor format and the CRT format, as explained in
Section A.2.2. The following paragraph list some of the requirements.

A.5.2.1. Criteria for the RSA Modulus and Primes

* p and ¢ must be of the same bit length (i.e., half the length of the RSA modulus N).

* p and g must be randomly generated (but the two most significant bits of each may be
arbitrarily set), as “probable” or “provable” primes, satisfying at least one of the five
options from Table 11.

Table 11. Criteria for the random primes of an RSA modulus

Type Sub-type Provable prime Probable prime
Simple provable P> q

\ probable P, q
Complex provable P>, P2491-92 P> q

| hybrid P, P2, 41, 92, P-4

| probable P1,> P2, 91,92, P> 4

Per §A.1.1 of FIPS-186-5-Draft: py, p2, q1, g2 are called auxiliary primes and must be divisors of
p—1,p+1,qg—1and g+ 1, respectively, i.e., pi|p— 1, p2|p+ 1, qilg— 1, ¢2|g + 1.

To satisfy the “complex” type of key-generation, the auxiliary primes must exist with certain
minimum lengths. If p and ¢ are required to be provable primes, then their minimal required
bit-length is roughly half of the minimal required length of probable primes.

In a submitted RSA DKG, the threshold computation of the primes and modulus may be
modularized from the subsequent calculation of the private decryption/signing exponent
d. Interestingly, there are conceivable applications (beyond signatures, encryption, and
decryption) where RSA moduli are useful and a private exponent is not necessary.

48

1722

1723
1724

1725

1726

1727
1728
1729

1730

1731
1732
1733
1734
1735

1736

1737

1738
1739
1740
1741
1742
1743
1744
1745
1746
1747

1748

1749
1750
1751
1752

1753

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

A.5.2.2. Criteria for the Private Exponent

The private exponent d = e~ ! (mod L), where L = LCM(p — 1,4 — 1), must be larger than
2nlen/2 and smaller than L, where the public exponent ¢ is an integer between 2!6 and 22°¢
selected before the generation of p and g.

A.5.3. Subcategory C1.5.3: Bitstring Keygen

Various primitives require the random generation of a secret bit-string (or integer within a
defined interval), without the need for a corresponding public component. For example, this
is the case with generating: an AES key; a secret-key for encapsulation under an RSA PKE;
a nonce for use in other schemes; a salt for a KDM or KC in the scope of a 2KA.

A DKG based on verifiable secret-sharing may require public commitments of the shares of
each party, even if the original primitive did not require any public key. A submission should
explain how/whether the cryptographic assumptions sustaining the security of the threshold
scheme change in comparison with those required for the security of the original primitive.
For example, AES-256 is considered to be post-quantum secure, whereas ECC-based
commitments used in typical MPC protocols might not be.

A.6. Subcategory C2.6: Advanced

As mentioned in Section 7.2.1, subcategory C2.6 allows for the submission of threshold
schemes for primitives that support cryptographic schemes with advanced functional features
that are different from those in current NIST standards. For example, in the case of a
fully-homomorphic encryption (FHE) scheme, the supported operations go beyond the usual
keygen, encryption and decryption from a regular encryption scheme. There is also a set of
homomorphic operations (e.g., addition and multiplication) over ciphertexts (see, e.g., [HES,
§1.1.1]). As another example, an identity-based encryption (IBE) scheme has not just one
key-generation primitive, but rather two: one for generating a public key and a master private
key, and another one (requiring the master key as input) for generating a decryption key for
each possible “identity” (e.g., email addresses). A generalization of IBE is attribute-based
encryption (ABE), where the private key of each user is created based on a set of attributes.

In this subcategory, the selection of the use-cases used to benchmark performance is left to
the discretion of the submitters. For example, different FHE schemes may require different
benchmarking operations to highlight their best features. One FHE scheme may be better
suited to homomorphic Boolean operations (operations over bits), while another one may be
better suited for homomorphic modular operations over large integers.

49

1754 A.6.1.

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

Oa.

Ob.

Oc.

4a.

4b.

Use-Case Example: Non-Threshold FHE-Based AES Oblivious Enciphering

Setup FHE (keygen): An FHE scheme is initialized with encryption key e (for encryp-
tion operation FHE.Enc,), and decryption key d (for decryption operation FHE.Enc,),
and allows homomorphic-evaluation (over FHE-ciphertexts) of any function f (within
a certain range of functions) using operation FHE.Hom|f].

Setup AES (keygen): An AES cipher is initialized with secret key k, with AES.Ency,
denoting the corresponding enciphering operation.

Setup parties (private inputs): (i) Client A knows a secret plaintext m, and the FHE
encryption key e; (i1) Server S knows the AES secret-key k; (ii1) and client B (possibly
the same as client A) knows the FHE decryption key d.

. FHE-Encrypt. The client A FHE-encrypts the secret plaintext m, obtains the FHE-

ciphertext C = FHE.Enc,(m), and sends it to the server S.

. FHE-Homomorphic-Evaluate. The server S homomorphically evaluates the AES-

enciphering, obtains H = FHE.Hom[AES.Enc;](C) (which is a valid FHE-encryption
of the AES-enciphering of secret plaintext m), and sends the result to client B.

. FHE-Decrypt. The client B FHE-decrypts the received ciphertext H, and thus obtains

the AES-enciphering of the secret plaintext: AES.Ency(m) = FHE.Dec,(H).

(Optional) Prove correctness. The server S may also send a ZKPoK string 7 =
ZKPoK.Provelk; (H,C) : FHE.Hom[AES.Enc;](C) = H] to client B, thus ZK-proving
knowledge of a secret AES key (k) that is consistent with the homomorphic operation
that transformed the initial FHE-ciphertext C into the final FHE-ciphertext H. A more
sophisticated ZKPoK can also be used to prove consistency with some additional
public commitment of the AES-key k.

Verify the proof. Anyone with the FHE-ciphertexts (C, H) can verify the correctness
of the ZKPoK 7, by checking true =’ ZKPoK.Verify (7, (H,C), AES.Enc).

External engagement. Proposals of FHE schemes (and their threshold schemes) are

welcome to be submitted and/or analyzed in connection with other related ongoing public

efforts, such as HomomorphicEncryption.org and FHE.org, as a way of promoting: (i)

fulfillment of community-based technical recommendations; (ii) alignment with existing

reference material/specifications; and (ii1) further public scrutiny of proposed schemes. Such

engagements may also help clarify reference use-cases for useful benchmarking.

50

1785

1786
1787
1788
1789

1790

1791
1792
1793

1794

1795
1796

1797

1798
1799
1800
1801
1802

1803

1804
1805
1806
1807

1808

1809

1810
1811
1812
1813
1814
1815
1816

1817

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

A.6.2. Threshold Schemes for FHE-based AES Oblivious Enciphering

Once a conventional (non-threshold) scheme is specified (S6) in scope of the “advanced”
subcategory C2.6, there may be multiple types of decentralization to consider. For the above-
described example of FHE application (Section A.6.1), the following is a non-exhaustive list
of possible decentralizations of one of the original participants (client A, server S, or client
B) into a threshold entity composed of multiple parties.

1. Threshold FHE.Keygen. In a setup phase with a thresholdized client B, a DKG can
distributively compute a secret-sharing of an FHE decryption key d. Whether or not
the encryption key e is secret-shared can depend on whether the FHE scheme is of,
respectively, symmetric-key or asymmetric-key (i.e., public/private key pair) type.

2. SSI threshold FHE-Encryption. If client A is thresholdized, and set up with a secret-
shared plaintext m, a threshold scheme can compute C = FHE.Enc,(m) without
anyone learning m.

3. Threshold Homomorphoic evaluation (of function with secret parameter). If the
server S is thresholdized, and setup with a secret-sharing of the AES key k, then the
parties can distributively compute the homomorphic-evaluation operation, to obtain
H = FHE.Hom[AES .Enc](C)), without anyone learning k.

* In an NSS mode, all server-parties learn H.
¢ In an SSO mode, each server learns a secret-share of H.

4. Threshold FHE decryption. If client B is thresholdized, and setup with a secret-
sharing of the FHE-decryption key d, then a threshold scheme can decrypt the received
value H to obtain C = AES;(m), without anyone learning d.

* In a NSS mode, all clientB-parties learn C.
* In a SSO mode, each clientB-party learns only a secret-share of C.

5. Threshold ZKPoK. (See subcategory C2.7 in Section A.7)

On the use case of oblivious AES enciphering. The use case is called oblivious AES-
enciphering because the client B obtained an AES-enciphering of the secret plaintext m
even though the AES-key holder (the server §) remained oblivious to the secret plaintext.
Interestingly, oblivious AES-enciphering is also a typical benchmark case for secure 2-party
computation (S2PC; consider the case where clients A and B are the same), usually using
different techniques, such as garbled circuits and/or oblivious transfer. Compared with an
FHE-based solution, usual S2PC protocols (expectably) lead to much faster execution, but
also much larger communication complexity.

51

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

A.7. Subcategory C2.7: ZKPoKs

Besides (secure) multi-party computation (MPC), a broad type of primitive of great interest
in the threshold context is the zero-knowledge proof of knowledge (ZKPoK), which is
covered by subcategory C2.7. As mentioned in Section 7.2.2, a submission of ZKPoK in
this subcategory must specify a conventional ZKPoK, and possibly also specify a threshold
version (when the prover is distributed and there is a secret-sharing of the secret input).

In usual ZKP terminology [ZkpComRef], a ZKPoK is used to prove a statement of knowledge,
such as knowledge of a secret witness (w) that satisfies a given relation (R) with a public
instance (x), such that R(x,w) is true. For example, in a ZKPoK of a private RSA key, the
instance can be the RSA modulus N, the secret witness can be the corresponding pair (p,q)
of prime factors, and the relation can be the predicate that returns true if and only if the
input witness is indeed a pair of primes and their product is the public modulus.

Type of “proofs” of interest:

* Proofs and arguments: The use of “proof” in this call is meant to also include the
case of arguments with computational soundness. Any submission of ZKPoK should
clarify its soundness type (to allow for differentiation between “proof” and argument).

* ZKP of knowledge (versus of correctness): The proofs in scope are ZKPoKs, but can
also serve the purpose of ZK-proving correctness of the secret data (whose knowledge
is being proven) as well as of the corresponding public data. In the literature, a ZKP
of correctness is also known as a ZKP of “language membership”.

* Transferable and non-interactive. Traditionally, ZKPs and ZKPoKs are defined as
two-party protocols with a requirement of deniability (also known as non-transferabil-
ity), implying that a verifier convinced by a proof cannot later transfer said confidence
to a third party. This property often stems from interactivity between prover and
verifier, and/or relies on local setup assumptions, such as a local common reference
string (CRS) or local random oracle (RO). Conversely, the present call is by default
interested on transferable non-interactive zero-knowledge (NIZK) proofs that can be
publicly verified non-interactively. A submission of ZKPoK can deviate from this
default (non-interactiveness and transferability) as long as justified on the basis of
utility to the threshold setting.

The instantiation of some of the above-listed attributes (e.g., transferability, and compu-
tational soundness) may affect some aspects of composability. These effects should be
discussed in any submission that proposes a ZKPoK.

52

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862
1863
1864
1865
1866
1867
1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

Distributed prover (not verifier). In this call, the default setting of interest for thresholdiza-
tion of a ZKPoK is the secret-sharing, across multiple parties, of the secret key (traditionally
held by a single prover) whose knowledge is being proven. While a ZKPoK variant can
also be conceived for the case of distributed verification (with the ZK property requiring
that a threshold number of verifier parties do not collude), such setting is not the default. A
deviation from the mentioned default in a submission of ZKPoK is possible but its auxiliary
utility for the threshold setting then needs to be thoroughly argued for.

Examples. Table 12 lists various examples of ZKPoK of anticipated interest with regard to
Catl primitives. Other examples can be conceived for primitives in Cat2.

Table 12. Example ZKPoKs of interest related to Cat1 primitives

Related Related (sub)sub- Example ZKPoK (including consistency with public
type category: Primitive commitments of secret-shares, when applicable)

Keygen C1.5.1: ECC keygen of discrete-log (s or d) of pub key O

| C1.5.2: RSA keygen of factors (p, g), or group order ¢, or decryption key d

\ C1.5.3: AES keygen of secret key k (with regard to secret-sharing commitments)
PKE C1.2.1: RSA encryption of secret plaintext m (encrypted)

\ C1.2.2: RSA decryption of secret-shared plaintext m (after SSO-threshold decryption)
Symmetric C1.4.1: AES enciphering of secret key k (with regard to plaintext/ciphertext pair)

\ C1.4.2: Hashing in KDM of secret pre-image Z

Some observations:

* A ZKPoK of a secret AES key that transforms a given plaintext into a given ciphertext
corresponds to a signature primitive submitted to the PQC process.

* No ZKPoK example was provided in association with the signing operation, since
their public verification operation already inherently verifies the signature correctness.
In fact, a digital signature often constitutes a transferable NIZKPoK of the private
signing key corresponding to the public key, with said proof being additionally bound
to a message (the element being signed). For example, an EADSA/Schnorr signature
(Section A.1.1) is itself a NIZKPoK of discrete-log.

* The cases of ZKPoK related to a private signing key, but possibly without producing
a signature, are associated with keygen (subcategories C1.5 and C2.5).

If a submission of threshold scheme uses a ZKP/ZKPoK that may be of interest to support
other threshold schemes, then it should modularize the specification of said ZKP/ZKPoKand
indicate it as useful also for consideration in subcategory C2.7.

53

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

1883 Submission of a ZKPoK as auxiliary to other threshold scheme(s):

1884 * Specification of a non-threshold version. A submission in the ZKPoK subcategory
1885 must specify a conventional (non-threshold) ZKPoK. This may be submitted without
1886 a corresponding distributed/threshold version, as long as the documentation clarifies
1887 how the conventional ZKPoK can be useful for the threshold setting (perhaps some
1888 other concrete threshold scheme). For example, a conventional ZKPoK can be justified
1889 for use by a dealer to prove correctness of an established secret-sharing setup. There
1890 may nonetheless be an additional value in also specifying a threshold version of the
1891 ZKPoK (i.e., when the secret input is distributed).

1892 * Standalone versus embedded proposal of a ZKPoK. A package that proposes
1893 an auxiliary ZKPoK (and possibly a distributed version thereof) can be submitted
1894 within the standalone ZKPoK subcategory, or within a submission of a threshold
1895 scheme(s) for other primitives in Catl or Cat2. In the standalone case, the proposal
1896 must clarify how the secret and public knowledge matches the setting of (e.g., a
1897 particular secret-sharing useful for) a threshold scheme for some primitive of interest.
1898 * External engagement. Proposals of ZKPoK schemes (and their threshold schemes)
1899 are welcome to be submitted and/or analyzed in connection with other related on-
1900 going public efforts, such as ZKProof.org, as a way of promoting: (1) fulfillment of
1901 community-based technical recommendations; (ii) alignment with existing reference
1902 material/specifications; and (ii1) further public scrutiny of proposed schemes. Such
1903 engagements may also help clarify reference use-cases for useful benchmarking.

1904 Notes on features.

1905 * Succinctness: For practicality, succinctness is a useful feature of a ZKPoK. When
1906 focusing on succinct and non-interactive ZKPoKs, it is also common to refer to them
1907 as SNARKSs (succinct non-interactive arguments of knowledge).

1908 * Transferability: As mentioned above, non-interactive public verifiability / transfer-
1909 ability are default desired features

1910 * Security assumptions: While the assessment of security of a ZKPoK may be based on
1911 assumptions different from those inherent to the underlying cryptographic primitive,
1912 or to a related proposed threshold scheme, said implications should be distinguished
1913 across various security properties. In particular, it is relevant to characterize the
1914 properties of ZK, soundness and non-malleability, and how they may vary upon
1915 various types of protocol composition (e.g., concurrent executions).

54

1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928

1929

1930

1931
1932
1933
1934
1935
1936
1937
1938
1939
1940

1941

1942
1943
1944
1945

1946

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

Specialized versus generic ZKPoKs. Some ZKPoKs (e.g., of a discrete-log, or of an RSA
private key) may be based on specialized techniques somewhat similar to the operations
(e.g., exponentiations) used to commit the secret pre-image. Conversely, other ZKPoKs (e.g.,
when proving knowledge of a pre-image of AES-enciphering, or of SHA-based hashing)
may stem more easily from a generic ZKP system that simply requires “arithmetizing” the
statement of knowledge, the instance and the witness in some suitable representation (e.g.,
specifying a Boolean or arithmetic circuit, and instantiating its input variables). In the latter
case, a submitted ZKPoK can be explained generically, and then a simple explanation be
given on how to apply it to a circuit (or other applicable representation). For example,
the NIST Circuit Complexity project [Proj-CC] collects Boolean circuit representations of
various NIST-approved primitives, such as from AES and SHA. The final version of this call
may reference a specific representation for Boolean circuits, to facilitate an interchangeable
specification of circuits of certain NIST-specified primitives (e.g., of certain block-ciphers
and hash-functions) whose proof of knowledge of pre-image may be useful.

A.8. Subcategory C2.8: (Auxiliary) Gadgets

As mentioned in Section 7.2.3, subcategory C2.8 allows for the consideration of gadgets,
such as garbled circuits, oblivious transfer, generation of correlated randomness, commit-
ments, secret resharing (possibly for a new threshold value and a new total number of
parties), multiplicative-to-additive share conversion, additively homomorphic encryption
(AHE), MPC or ZKP friendly hashing, consensus, and broadcast. The specification of
some gadgets may also fit other subcategories. For example, an AHE scheme allows for an
advanced feature (homomorphic addition over ciphertexts), and thus can fit in “advanced”
subcategory C2.6 (if accompanied by a corresponding threshold scheme), and at the same
time can also be useful to support multiple other threshold schemes, and thus fit in subcate-
gory C2.8. In such type of cases, a submission should identify (e.g., including in S2 and S3)
the fit in various subcategories.

Gadgets can be proposed in a standalone manner in a submission, or as a module in a more
encompassing submission in the scope of other subcategories. A standalone submission
of an auxiliary gadget (and possible threshold version thereof) should make a strong case
for its utility in supporting the threshold environment, and/or in directly supporting various

concrete threshold schemes in scope of other subcategories in this call.

55

1947

1948
1949

1950

1951

1952
1953
1954

1955

1956

1957
1958
1959
1960
1961

1962

1963

1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

B. Submission Checklists

The following are draft templates of checklists to help keep track of the fulfillment of the
various requirements for a complete submission:

B.1. Checklist for Submission Phases (Ph) (see Section 4)

Check # Item Comments

[J Phl (Optional) Early abstract
(1 Ph2 (Optional) Preliminary package
[J Ph3 Full package (M1-M5)

B.2. Checklist for Package Main Components (M) (see Section 4)

Check # Item Comments
U] M1 Written specification (S1-S16)
] M2 Reference implementation (Src1-Src4)
O M3 Execution instructions (X1-X7)
[1 M4 Experimental evaluation (Perf1—Perf5)
[1 M5 Additional statements

B.3. Checklist for M1: Written Specification Sections (S) (see Section 4.2)

Check # Item Comments
[0 S1 Title pages
[l S2 Abstract
[0 S3 Executive summary
[0 S4 Index
[0 S5 Clarification of prior work
[1 S6 Conventional primitives/scheme
L0 S7 System model
[J S8 Protocol description
0 S9 Security analysis
[0 S10 Analytic complexity
[0 S11 Choices and comparisons
[1 S12 Technical criteria
[0 S13 Deployment recommendations
[l S14 Notation
[J S15 References
[1 S16 Appendices (optional)

56

1980

1981

1982
1983
1984
1985

1986

1987

1988
1989
1990
1991
1992
1993
1994

1995

1996

1997
1998
1999
2000
2001

2002

2003

2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

B.4. Checklist for M2: Open source (Src) Reference Implementation (see Section 4.3)

Check # Item Comments
OJ Srcl Is self-contained
[1 Src2 Islicensed as open-source
O Src3 Contains inline comments
O Src4 Has a clear API

B.5. Checklist for M3: Execution Instructions (X) (see Section 4.4)

Check # Item Comments
[0 X1 User manual: compilation
[J X2 User manual: parametrization
[J X3 User manual: execution
[J X4 User manual: KAT set
[0 X5 Script: KAT
[J X6 Script: benchmark
[0 X7 Script: others (optional)

B.6. Checklist for M4: Performance Analysis (Perf) (see Section 4.5)

Check # Item Comments
[0 Perfl Memory complexity
[1 Perf2 Processing time
[0 Perf4 Networking time
[0 Perf3 Communication complexity
[1 PerfS Round complexity

B.7. Checklist for Technical Requirements (T) (see Section 5)

Check # Item Comments
O Ti Primitives
0 T2 System model
[0 T2.1 Participants
[1 T2.2 Distributed systems and communication
[0 T2.3 Adversary
0 T3 Security idealization
0 T4 Security versus adversaries
[T4.1 Active
1 T4.2 Adaptive
[J T4.3 Pro-active
TS5 Threshold profiles
[l T6 Building blocks

57

2016

2017
2018
2019

2020
2021
2022

2023
2024
2025

2026
2027
2028

2029
2030

2031
2032
2033
2034
2035

2036
2037
2038
2039
2040

2041
2042
2043

2044
2045
2046

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

References

[FIPS-180-4] National Institute of Standards and Technology (NIST). Secure Hash Standard (SHS).
(U.S. Department of Commerce) Draft Federal Information Processing Standards Publication
(FIPS PUBS) 180-4. August 2015. DOI: 10.6028/NIST.FIPS.180-4.

[FIPS-186-5-Draft] National Institute of Standards and Technology (NIST). Digital Signature Stan-
dard (DSS). (U.S. Department of Commerce) Draft Federal Information Processing Standards
Publication (FIPS PUBS) 186-5. October 2019. DOTI: 10.6028/NIST.FIPS.186-5-Draft.

[FIPS-197] National Institute of Standards and Technology (NIST). Advanced Encryption Standard
(AES). Federal Information Processing Standards Publication 197. November 2001. DOT:
10.6028/NIST.FIPS.197.

[FIPS-198-1] National Institute of Standards and Technology (NIST). The Keyed-Hash Message
Authentication Code (HMAC). Federal Information Processing Standards Publication 198-1.
July 2008. por: 10.6028/NIST.FIPS.198-1.

[FIPS-202] National Institute of Standards and Technology (NIST). SHA-3 Standard: Permutation-
Based Hash and Extendable-Output Functions. August 2015. DOI: 10.6028/NIST.FIPS.202.

[HES] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey Gorbunov,
Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam, Daniele Micciancio,
Dustin Moody, Travis Morrison, Amit Sahai, and Vinod Vaikuntanathan. Homomorphic
Encryption Standard. Published by HomomorphicEncryption.org. November 2018. Updated

versions at https://homomorphicencryption.org/standard/.

[IG-FIPS-140-2] National Institute of Standards and Technology (NIST) and Canadian Centre
for Cyber Security (CCCS). Implementation Guidance for FIPS PUB 140-2 and the Crypto-
graphic Module Validation Program. Version updated by the Cryptographic Module Validation
Program on 2022-October-07. https://csrc.nist.gov/csrc/media/projects/cryptographic-module-
validation-program/documents/fips140-2/FIPS14021G.pdf. October 2022.

[ITL-Patent-Policy] National Institute of Standards and Technology (NIST). Information Technology
Laboratory (ITL) Patent Policy. https://www.nist.gov/itl/publications-0/itl-patent-policy-inclu
sion-patents-itl-publications. January 2019.

[MPTC-Call2021a] Luis Branddo. (National Institute of Standards and Technology (NIST) Multi-
Party Threshold-Cryptography (MPTC)) Call 2021a for Feedback on Criteria for Threshold
Schemes. July 2021. URL: https://csrc.nist.gov/csrc/media/projects/threshold-cryptography/do

58

https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.186-5-Draft
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.6028/NIST.FIPS.198-1
https://doi.org/10.6028/NIST.FIPS.202
https://homomorphicencryption.org/standard/
https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/fips140-2/FIPS1402IG.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/fips140-2/FIPS1402IG.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/fips140-2/FIPS1402IG.pdf
https://www.nist.gov/itl/publications-0/itl-patent-policy-inclusion-patents-itl-publications
https://www.nist.gov/itl/publications-0/itl-patent-policy-inclusion-patents-itl-publications
https://www.nist.gov/itl/publications-0/itl-patent-policy-inclusion-patents-itl-publications
https://csrc.nist.gov/csrc/media/projects/threshold-cryptography/documents/MPTC-call2021a-feedback.pdf
https://csrc.nist.gov/csrc/media/projects/threshold-cryptography/documents/MPTC-call2021a-feedback.pdf

2047
2048
2049

2050
2051
2052

2053
2054
2055
2056

2057
2058
2059

2060
2061
2062
2063

2064
2065
2066

2067
2068
2069

2070
2071

2072
2073
2074

2075
2076
2077

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

cuments/MPTC-call2021a-feedback.pdf. Public comments: https://csrc.nist.gov/csrc/media
/projects/threshold-cryptography/documents/MPTC-Call2021a-Feedback-compilation.pdf.
Accessed via the NIST Computer Security Resource Center (CSRC) in January 2023.

[MPTS] National Institute of Standards and Technology. NIST Workshop on Multi-Party Threshold
Schemes 2020. Virtual conference. November 2020. URL: https://csrc.nist.gov/events/2020/m
pts2020.

[NIST-IR8214A] Luis T. A. N. Brandao, Michael Davidson, and Apostol Vassilev. NIST Roadmap
Toward Criteria for Threshold Schemes for Cryptographic Primitives. (National Institute of
Standards and Technology (NIST) Internal Report) NISTIR 8214A. July 2020. DOI: 10.6028
/NIST.IR.8214A. Public comments: https://csrc.nist.gov/publications/detail/nistir/8214a/final.

[NIST-IR8214B-ipd] Luis T. A. N. Brandao and Michael Davidson. Notes on Threshold EADSA/-
Schnorr Signatures. (National Institute of Standards and Technology (NIST) Internal Report)
NISTIR 8214B ipd (initial public draft). August 2022. DOI1: 10.6028/NIST.IR.8214B.ipd.

[Proj-CC] National Institute of Standards and Technology. NIST Project on Circuit Complexity (CC).
https://csrc.nist.gov/projects/circuit-complexity. See list of circuits at https://csrc.nist.gov/proj
ects/circuit-complexity/list-of-circuits, and repository of circuits at GitHub:usnistgov/Circuits.
Accessed in January 2023.

[Proj-LWC] National Institute of Standards and Technology. NIST Project on Lightweight Cryptog-

raphy (LWC). https://csrc.nist.gov/projects/lightweight-cryptography. Accessed in January
2023.

[Proj-MPTC] National Institute of Standards and Technology. NIST Project on Multi-Party Thresh-
old Cryptography (MPTC). https://csrc.nist.gov/projects/threshold-cryptography. Accessed in
January 2023.

[Proj-PEC] National Institute of Standards and Technology. NIST Project on Privacy-Enhancing
Cryptography (PQC). https://csrc.nist.gov/projects/pec. Accessed in January 2023.

[Proj-PQC] National Institute of Standards and Technology. NIST Project on Post-quantum Cryptog-
raphy (PQC). https://csrc.nist.gov/projects/post-quantum-cryptography. Accessed in January
2023.

[RFC7748] Adam Langley and Mike Hamburg and Sean Turner. Elliptic Curves for Security.
Internet Research Task Force (IRTF) Request for Comments: RFC 7748. January 2016. DOTI:
10.17487/RFC7748.

59

https://csrc.nist.gov/csrc/media/projects/threshold-cryptography/documents/MPTC-call2021a-feedback.pdf
https://csrc.nist.gov/csrc/media/projects/threshold-cryptography/documents/MPTC-call2021a-feedback.pdf
https://csrc.nist.gov/csrc/media/projects/threshold-cryptography/documents/MPTC-call2021a-feedback.pdf
https://csrc.nist.gov/csrc/media/projects/threshold-cryptography/documents/MPTC-Call2021a-Feedback-compilation.pdf
https://csrc.nist.gov/csrc/media/projects/threshold-cryptography/documents/MPTC-Call2021a-Feedback-compilation.pdf
https://csrc.nist.gov/csrc/media/projects/threshold-cryptography/documents/MPTC-Call2021a-Feedback-compilation.pdf
https://csrc.nist.gov/events/2020/mpts2020
https://csrc.nist.gov/events/2020/mpts2020
https://csrc.nist.gov/events/2020/mpts2020
https://doi.org/10.6028/NIST.IR.8214A
https://doi.org/10.6028/NIST.IR.8214A
https://doi.org/10.6028/NIST.IR.8214A
https://csrc.nist.gov/publications/detail/nistir/8214a/final
https://doi.org/10.6028/NIST.IR.8214B.ipd
https://csrc.nist.gov/projects/circuit-complexity
https://csrc.nist.gov/projects/circuit-complexity/list-of-circuits
https://csrc.nist.gov/projects/circuit-complexity/list-of-circuits
https://csrc.nist.gov/projects/circuit-complexity/list-of-circuits
https://github.com/usnistgov/Circuits/tree/master/data/slp
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/threshold-cryptography
https://csrc.nist.gov/projects/pec
https://csrc.nist.gov/projects/post-quantum-cryptography
https://doi.org/10.17487/RFC7748

2078
2079
2080

2081
2082
2083
2084
2085
2086
2087

2088
2089
2090

2091
2092
2093

2094
2095
2096
2097

2098
2099
2100
2101

2102
2103
2104
2105

2106
2107
2108

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

[RFC8017] Kathleen Moriarty and Burt Kaliski and Jakob Jonsson and Andreas Rusch. PKCS
#1: RSA Cryptography Specifications Version 2.2. Internet Engineering Task Force (IETF)
Request for Comments: RFC 8017. November 2016. DOI: 10.17487/RFC8017.

[SP800-38-series] Morris Dworkin. Recommendation for Block Cipher Modes of Operation — Parts
A through G. (National Institute of Standards and Technology) NIST Special Publications (SP):
800-38A (Methods and Techniques, 2021); 800-38B (the CMAC Mode for Authentication
2016); 800-38C (the CCM Mode for Authentication and Confidentiality, 2007); 800-38D
(Galois/Counter Mode (GCM) and GMAC, 2007); 800-38E (the XTS-AES Mode for Confi-
dentiality on Storage Devices, 2010); 800-38F (Methods for Key Wrapping, 2012); 800-38G
(Methods for Format-Preserving Encryption, 2016). October 2016.

[SP800-38B] Morris Dworkin. Recommendation for Block Cipher Modes of Operation: The CMAC
Mode for Authentication. (National Institute of Standards and Technology) NIST Special
Publication (SP) 800-38B. May 2005. po1: 10.6028/NIST.SP.800-38B.

[SP800-38F] Morris Dworkin. Recommendation for Block Cipher Modes of Operation: Methods
for Key Wrapping. (National Institute of Standards and Technology) NIST Special Publication
(SP) 800-38F. December 2012. DOI: 10.6028/NIST.SP.800-38F.

[SP800-56A-Rev3] Elaine Barker, Lily Chen, Allen Roginsky, Apostol Vassilev, and Richard Davis.
Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm Cryp-
tography. (National Institute of Standards and Technology) NIST Special Publication (SP)
800-56A Rev. 3. April 2018. DOTI: 10.6028/NIST.SP.800-56Ar3.

[SP800-56B-Rev2] Elaine Barker, Lily Chen, Allen Roginsky, Apostol Vassilev, Richard Davis, and
Scott Simon. Recommendation for Pair-Wise Key-Establishment Using Integer Factorization
Cryptography. (National Institute of Standards and Technology) NIST Special Publication
(SP) 800-56B Rev. 2. March 2019. po1: 10.6028/NIST.SP.800-56Br2.

[SP800-56C-Rev2] Elaine Barker, Lily Chen, and Richard Davis. Recommendation for Key-Deriva-
tion Methods in Key-Establishment Schemes. (National Institute of Standards and Technology)
NIST Special Publication (SP) 800-56C Rev. 2. August 2020. DOI: 10.6028/NIST.SP.800-56
Cr2.

[SP800-57-P1-R5] Elaine Barker. Recommendation for Key Management: Part I — General. (Na-
tional Institute of Standards and Technology) NIST Special Publication (SP) 800-57 Part 1
Rev. 5. May 2020. poI: 10.6028/NIST.SP.800-57pt1r5.

60

https://doi.org/10.17487/RFC8017
https://csrc.nist.gov/publications/detail/sp/800-38A/final
https://csrc.nist.gov/publications/detail/sp/800-38B/final
https://csrc.nist.gov/publications/detail/sp/800-38C/final
https://csrc.nist.gov/publications/detail/sp/800-38D/final
https://csrc.nist.gov/publications/detail/sp/800-38E/final
https://csrc.nist.gov/publications/detail/sp/800-38F/final
https://csrc.nist.gov/publications/detail/sp/800-38G/final
https://doi.org/10.6028/NIST.SP.800-38B
https://doi.org/10.6028/NIST.SP.800-38F
https://doi.org/10.6028/NIST.SP.800-56Ar3
https://doi.org/10.6028/NIST.SP.800-56Br2
https://doi.org/10.6028/NIST.SP.800-56Cr2
https://doi.org/10.6028/NIST.SP.800-56Cr2
https://doi.org/10.6028/NIST.SP.800-56Cr2
https://doi.org/10.6028/NIST.SP.800-57pt1r5

2109
2110
2111

2112
2113
2114

2115

2116
2117
2118
2119

2120
2121
2122

2123
2124
2125

2126
2127
2128

2129
2130
2131
2132

2133
2134
2135
2136
2137
2138
2139
2140
2141

NIST IR 8214C 1PD NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES
JANUARY 2023 (INITIAL PUBLIC DRAFT)

[SP800-90A-R1] Elaine Barker and John Kelsey. Recommendation for Random Number Generation
Using Deterministic Random Bit Generators. (National Institute of Standards and Technology)
NIST Special Publication (SP) 800-90A Rev. 1. June 2015. DOI1: 10.6028/NIST.SP.800-90Ar1.

[SP800-90B] Meltem S6nmez Turan, Elaine Barker, John Kelsey, Kerry McKay, Mary Baish, and
Michael Boyle. Recommendation for the Entropy Sources Used for Random Bit Generation.
(National Institute of Standards and Technology) NIST Special Publication (SP) 800-90B.
January 2018. DOT: 10.6028/NIST.SP.800-90B.

[SP800-90C-3PD] Elaine Barker, John Kelsey, Kerry McKay, Allen Roginsky, and Meltem Sonmez
Turan. Recommendation for Random Bit Generator (RBG) Constructions. Third Public Draft.
(National Institute of Standards and Technology) NIST Special Publication (SP) 800-90C 3PD.
September 2022. DOTI: 10.6028/NIST.SP.800-90C.3pd.

[SP800-108-Revl] Lily Chen. Recommendation for Key Derivation Using Pseudorandom Func-
tions. (National Institute of Standards and Technology) NIST Special Publication (SP) 800-
108 Rev. 1. August 2022. DOI: 10.6028/NIST.SP.800-108r1.

[SP800-135-Revl] Quynh Dang. Recommendation for Existing Application-Specific Key Derivation
Functions. (National Institute of Standards and Technology) NIST Special Publication (SP)
800-135 Rev. 1. December 2011. DOTI: https://doi.org/10.6028/NIST.SP.800-135r1.

[SP800-185] John Kelsey, Shu-jen Chang, and Ray Perlner. SHA-3 Derived Functions: cSHAKE,
KMAC, TupleHash and ParallelHash. (National Institute of Standards and Technology) NIST
Special Publication (SP) 800-185 (Draft). December 2016. DOI: 10.6028/NIST.SP.800-185.

[SP800-186-Draft] Lily Chen, Dustin Moody, Andrew Regenscheid, and Karen Randall. Recommen-
dations for Discrete Logarithm-Based Cryptography: Elliptic Curve Domain Parameters. (Na-
tional Institute of Standards and Technology) NIST Special Publication (SP) 800-186 (Draft).
October 2019. DOT: 10.6028/NIST.SP.800-186-draft.

[ZkpComRef] ZKProof. ZKProof Community Reference. Version 0.3. Published by ZKProof.org.
Editors: D Benarroch, L Branddao, M Maller, and E Tromer. Contributors since version 0: S Agrawal, T Arcieri, D
Benarroch, V Bharathan, N Bitansky, S Bowe, L Branddo, B Biinz, R Canetti, A Caro, K Chalkias, J Cincinnati, H
Corrigan-Gibbs, J Daniel, M Dixon, M Dubovitskaya, B Falk, D Genkin, N George, S Goldwasser, A Gupta, J
Grigg, J Groth, K Gurkan, Y Hang, D Hopwood, Y Ishai, C Jutla, Y Kalai, H Krawczyk, J Law, A Lysyanskaya,
M Maller, E Morais, Z Manian, A Miller, E Morais, N Narula, R Ostrovsky, G Pacini, O Paneth, R Peralta, A
Poelstra, T Rabin, M Raykova, A Robinson, R Rothblum, J Rouach, A Scafuro, a shelat, K Solipuram, J Thaler, E
Tromer, M Varia, M Venkitasubramaniam, M Virza, I Visconti, R Wahby, D Wikstrom, P Wuille, Y Zohar, and A
Zhang. July 2022. Updated versions at https://docs.zkproof.org/reference.

61

https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90B
https://doi.org/10.6028/NIST.SP.800-90C.3pd
https://doi.org/10.6028/NIST.SP.800-108r1
https://doi.org/https://doi.org/10.6028/NIST.SP.800-135r1
https://doi.org/10.6028/NIST.SP.800-185
https://doi.org/10.6028/NIST.SP.800-186-draft
https://docs.zkproof.org/reference

	Frontmatter
	NIST IR 8214C ipd (Cover)
	NIST IR 8214C ipd (Title Page)
	Disclaimer and contacts
	NIST Technical Series Policies
	Publication History
	How to cite this NIST Technical Series Publication
	NIST Author ORCID identifiers
	Contact Information
	Public Comment Period
	Submit Comments

	Abstract page
	Reports on Computer Systems Technology
	Abstract
	Keywords

	Preface
	Acknowledgments
	Call for Patent Claims

	Contents
	Table of Contents
	List of Tables
	Table 1: Subcategories of interest in Cat1
	Table 2: Examples of primitives in subcategories of Cat2
	Table 3: Labels for some template threshold profiles
	Table 4: Primitives of interest in subcategories of Cat1
	Table 5: Recommended implementation parameters for Cat1 primitives
	Table 6: Notation of EdDSA versus ECDSA (in Draft FIPS 186-5)
	Table 7: RSA-based primitives per party per RSA-2KE scheme
	Table 8: Seven ECC-2KA schemes
	Table 9: ECC-2KA primitives of interest for thresholdization
	Table 10: Examples of keygen purposes
	Table 11: Criteria for the random primes of an RSA modulus
	Table 12: Example ZKPoKs of interest related to Cat1 primitives

	1 Introduction
	2 Acronyms
	3 Call and Scope for Submissions
	3.1 Category 1 (Cat1)
	3.2 Category 2 (Cat2)
	3.3 Vision

	4 Components of a Submission
	4.1 Phases Until Full Submission
	4.2 Main component M1: Written specification
	4.2.1 Frontmatter
	4.2.2 Main matter
	4.2.3 Backmatter

	4.3 Main component M2: Reference Implementation
	4.4 Main component M3: Execution Instructions
	4.5 Main component M4: Experimental evaluation
	4.5.1 Experimental setting
	4.5.2 Measurements
	4.5.3 Analysis

	4.6 Main component M5: Additional Statements

	5 Technical Requirements (T) for Submission of Threshold Schemes
	5.1 T1: Primitives
	5.2 T2: System Model
	5.2.1 T2.1: Participants
	5.2.2 T2.2: Distributed Systems and Communication
	5.2.3 T2.3: Adversary

	5.3 T3: Security Idealization
	5.4 T4: Security Versus Adversaries
	5.4.1 T4.1: Active Security (Against Active Corruptions)
	5.4.2 T4.2: Adaptive Security (Against Adaptive Corruptions)
	5.4.3 T4.3: Proactive Security (Against Mobile Attacks)

	5.5 T5: Threshold Profiles
	5.6 T6: Building Blocks

	6 Cat1 primitives — Specified by NIST
	6.1 Input/Output (I/O) Interfaces
	6.2 Cryptographic Parameters
	6.2.1 Elliptic Curves, for ECC-related Primitives
	6.2.2 RSA Modulus, for RSA-related Primitives

	7 Cat2 Primitives — Not Specified by NIST
	7.1 ``Regular'' Primitives (Subcategories C2.1–C2.5)
	7.2 ``Other'' Primitives/Schemes (Subcategories C2.6–C2.8)
	7.2.1 Cat2 subcategory C2.6: ``Advanced''
	7.2.2 Cat2 subcategory C2.7: ZKPoK
	7.2.3 Cat2 subcategory C2.8: Auxiliary Gadgets

	A Details for Subcategories and Primitives of Interest
	A.1 Subcategory C1.1: Cat1 Signing
	A.1.1 Subcategory C1.1.1: EdDSA Signing
	A.1.2 Subcategory C1.1.2: ECDSA Signing
	A.1.3 Subcategory C1.1.3: RSADSA Signing
	A.1.4 Signing in Secret-Shared-Input (SSI) Mode

	A.2 Subcategory C1.2: Cat1 Public-Key Encryption (PKE)
	A.2.1 Subcategory C1.2.1: RSA Encryption (of a Secret-Value)
	A.2.2 Subcategory C1.2.2: RSA Decryption
	A.2.3 Implementation Recommendations and Options

	A.3 Subcategory C1.3: Cat1 ECC Primitives for Pair-Wise Key-Agreement (2KA)
	A.3.1 Subcategory C1.3.1: ECC-CDH Primitive
	A.3.2 Subcategory C1.3.2: ECC-MQV Primitive

	A.4 Subcategory C1.4: Cat1 ``Symmetric''
	A.4.1 Subcategory C1.4.1: AES Enciphering/Deciphering
	A.4.2 Subcategory C1.4.2: KDM and KC for 2KE
	A.4.2.1 Key Derivation Mechanism (KDM)
	A.4.2.2 Key Confirmation (KC)

	A.5 Subcategory C1.5: key-Generation (keygen) for Cat1 Schemes
	A.5.1 Subcategory C1.5.1: ECC Keygen (for ECDSA, EdDSA, and ECC-2KA)
	A.5.2 Subcategory C1.5.2: RSA Keygen
	A.5.2.1 Criteria for the RSA Modulus and Primes
	A.5.2.2 Criteria for the Private Exponent

	A.5.3 Subcategory C1.5.3: Bitstring Keygen

	A.6 Subcategory C2.6: Advanced
	A.6.1 Use-Case Example: Non-Threshold FHE-Based AES Oblivious Enciphering
	A.6.2 Threshold Schemes for FHE-based AES Oblivious Enciphering

	A.7 Subcategory C2.7: ZKPoKs
	A.8 Subcategory C2.8: (Auxiliary) Gadgets

	B Submission Checklists
	B.1 Checklist for Submission Phases (Ph)
	B.2 Checklist for Package Main Components (M)
	B.3 Checklist for M1: Written Specification Sections (S)
	B.4 Checklist for M2: Open source (Src) Reference Implementation
	B.5 Checklist for M3: Execution Instructions (X)
	B.6 Checklist for M4: Performance Analysis (Perf)
	B.7 Checklist for Technical Requirements (T)

	References

