
 NIST Internal Report

NIST IR 8214C ipd

NIST First Call for Multi-Party Threshold Schemes

(Initial Public Draft)

Luís T. A. N. Brandão

René Peralta

This publication is available free of charge from:

https://doi.org/10.6028/NIST.IR.8214C.ipd

NIST Logo: NIST | NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

U.S. DEPARTMENT OF COMMERCE



https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.IR.8214C.ipd
https://doi.org/10.6028/NIST.IR.8214C.ipd


NIST Internal Report

NIST IR 8214C ipd

NIST First Call for Multi-Party Threshold Schemes

(Initial Public Draft)

Luís T. A. N. Brandão*

Strativia

René Peralta

Computer Security Division

Information Technology Laboratory

This publication is available free of charge from:

https://doi.org/10.6028/NIST.IR.8214C.ipd

January 2023

Logo: DEPARTMENT OF COMMERCE

UNITED STATES OF AMERICA



U.S. Department of Commerce
Gina M. Raimondo, Secretary

National Institute of Standards and Technology
Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology

https://doi.org/10.6028/NIST.IR.8214C.ipd


NIST IR 8214C IPD
 JANUARY 2023

NIST FIRST CALL FOR MULTI-PARTY THRESHOLD SCHEMES

 (INITIAL PUBLIC DRAFT)

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 
endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, 
materials, or equipment are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST 
in accordance with its assigned statutory responsibilities. The information in this publication, including 
concepts and methodologies, may be used by federal agencies even before the completion of such companion 
publications. Thus, until each publication is completed, current requirements, guidelines, and procedures, 
where they exist, remain operative. For planning and transition purposes, federal agencies may wish to closely 
follow the development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide 
feedback to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at 
https://csrc.nist.gov/publications. 

NIST Technical Series Policies

Copyright, Fair Use, and Licensing Statements
NIST Technical Series Publication Identifier Syntax

Publication History

This version is the initial public draft (ipd).

How to cite this NIST Technical Series Publication

Luís T. A. N. Brandão, René Peralta (2023). NIST First Call for Multi-Party Threshold Schemes (Initial Public 
Draft). (National Institute of Standards and Technology, Gaithersburg, MD) NIST IR 8214C ipd.
https://doi.org/10.6028/NIST.IR.8214C.ipd

NIST Author ORCID identifiers

Luís T. A. N. Brandão: 0000-0002-4501-089X
René Peralta: 0000-0002-2318-7563

Contact Information

nistir-8214C-comments@nist.gov

Public Comment Period

January 25, 2023 – April 10, 2023

Submit Comments

Only via email: nistir-8214C-comments@nist.gov

All comments are subject to release under the Freedom of Information Act (FOIA).

https://csrc.nist.gov/publications
https://doi.org/10.6028/NIST-TECHPUBS.CROSSMARK-POLICY
https://www.nist.gov/system/files/documents/2022/04/01/PubID_Syntax_NIST_TechPubs.pdf
https://doi.org/10.6028/NIST.IR.8214C.ipd
https://orcid.org/0000-0002-4501-089X
https://orcid.org/0000-0002-2318-7563
mailto:nistir-8214C-comments@nist.gov
mailto:nistir-8214C-comments@nist.gov









Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and 

Technology (NIST) promotes the U.S. economy and public welfare by providing technical 

leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, 

test methods, reference data, proof of concept implementations, and technical analyses to 

advance the development and productive use of information technology. ITL’s responsi-

bilities include the development of management, administrative, technical, and physical 

standards and guidelines for the cost-effective security and privacy of other than national 

security-related information in federal information systems.

Abstract

This document calls for public submissions of multi-party threshold schemes, to support the 

National Institute of Standards and Technology (NIST) in developing future recommenda-

tions and guidelines. In a threshold scheme, an underlying key-based cryptographic primitive 

is executed while a private/secret key is or becomes secret-shared across various parties. 

Submissions in response to this call should include security characterization, technical 

description, open-source implementation, and performance evaluation. Submitted threshold 

schemes should produce outputs that are “interchangeable” with a key-based cryptographic 

primitive of interest. There are two categories of primitives for the submission of threshold 

schemes: Cat1, for selected NIST-specified primitives; and Cat2, for primitives not specified 

by NIST, but which are friendlier (more amenable to) to the threshold paradigm, have 

enhanced functional features, or/and are based on different cryptographic assumptions. The 

analysis of Cat1-submissions will help develop future recommendations and guidelines for 

threshold implementations of the corresponding NIST-specified primitives. The analysis of 

Cat2-submissions will help assess new interests on primitives not standardized by NIST.

Keywords

Cryptography; distributed systems; provable security; secure multi-party computation; 

standards; threshold cryptography; threshold schemes.












Preface

Please do not yet submit any threshold scheme.

The present draft is published for the purpose of obtaining public feedback. The final version 

of the “NIST First Call for Multi-Party Threshold Schemes” will consider received feedback 

about this document and will integrate other formal components. Please submit feedback 

comments to nistir-8214C-comments@nist.gov by April 10, 2023.

This document is intended for: technicians engaged in the development of recommendations 

for threshold schemes; cryptography experts interested in providing constructive technical 

feedback, or in collaborating in the development of open reference material; and all those, 

including from academia, industry, government and the public in general, interested in future 

recommendations about threshold schemes. Relevant preliminary context about this call 

can be found in the NIST-IR8214A (2020), the MPTC-Call2021a for feedback on criteria for 

threshold schemes (2021), and the NIST-IR8214B-ipd (2022). 
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Call for Patent Claims

This public review includes a call for information on essential patent claims (claims whose 

use would be required for compliance with the guidance or requirements in this Information 

Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may be 

directly stated in this ITL Publication or by reference to another publication. This call also in-

cludes disclosure, where known, of the existence of pending U.S. or foreign patent applications 

relating to this ITL draft publication and of any relevant unexpired U.S. or foreign patents.

ITL may require from the patent holder, or a party authorized to make assurances on its 

behalf, in written or electronic form, either:

a) assurance in the form of a general disclaimer to the effect that such party does not 

hold and does not currently intend holding any essential patent claim(s); or

b) assurance that a license to such essential patent claim(s) will be made available 

to applicants desiring to utilize the license for the purpose of complying with the 

guidance or requirements in this ITL draft publication either:

i) under reasonable terms and conditions that are demonstrably free of any unfair 

discrimination; or

ii) without compensation and under reasonable terms and conditions that are dem-

onstrably free of any unfair discrimination.

Such assurance shall indicate that the patent holder (or third party authorized to make 

assurances on its behalf) will include in any documents transferring ownership of patents 

subject to the assurance, provisions sufficient to ensure that the commitments in the assurance 

are binding on the transferee, and that the transferee will similarly include appropriate 

provisions in the event of future transfers with the goal of binding each successor-in-interest.

The assurance shall also indicate that it is intended to be binding on successors-in-interest 

regardless of whether such provisions are included in the relevant transfer documents.

Such statements should be addressed to: nistir-8214C-comments@nist.gov
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1. Introduction

Over several decades, the National Institute of Standards and Technology (NIST) has 

standardized important key-based cryptographic schemes, in various Federal Information

Processing Standards (FIPS) publications, and in Special Publications in Computer Security 

(the SP800 series). For example, they provide specifications for digital signatures [FIPS-

186-5-Draft], public-key encryption [SP800-56B-Rev2], pair-wise key-agreement (including 

key-derivation primitives) [SP800-56A-Rev3], and symmetric-key enciphering [FIPS-197].

In a traditional description or implementation of a key-based cryptographic primitive, the 

operation is performed by an individual party that has access to the private/secret key, when 

said key is created (in key-generation) or/and used as input (e.g., for signing, enciphering, 

or decryption) in the underlying basic primitives. In a corresponding conventional imple-

mentation, said party is a single-point of failure for confidentiality, integrity and availability.

Modern cryptography enables a multi-party implementation paradigm, based on devel-

opments in the fields of threshold cryptography, secure multi-party computation (MPC) 

and distributed systems. In a (multi-party) threshold scheme, multiple parties perform a 

distributed computation, emulating the operation of a key-based cryptographic algorithm, 

without combining the private/secret key in any single place, and ensuring security as long 

as the number of corrupted parties does not exceed a certain threshold. This enables decen-

tralization of trust regarding the creation, storage and use of the private/secret keys. This 

threshold paradigm can be applied to NIST-specified primitives and beyond.

The development of recommendations and guidelines for threshold schemes, tapping into 

the domain of advanced cryptography, is an important step in addressing various challenges 

in cybersecurity and privacy. As part of such development, it is expected that the present 

“Call for Multi-Party Threshold Schemes” will motivate broad community engagement for a 

diverse set of submissions, followed by expert public scrutiny by stakeholders.

Recent context leading to the formulation of this call can be found in the Multi-Party 

Threshold Cryptography (MPTC) project webpage, the NIST-IR8214A (2020) with con-

siderations toward criteria, the MPTC-Call2021a for feedback on criteria for multi-party 

threshold schemes (MPTS), the 2020 MPTS workshop webpage, and the NIST-IR8214B-ipd 

on threshold EdDSA/Schnorr signatures (2022). The present call has the following goals:

1. [Reference material] Create a basis of properly motivated, specified, implemented 

and analyzed threshold schemes, to support future recommendations and guidelines.

2. [Threshold feasibility] Assess the viability of threshold implementations of various 

primitives of interest, including of selected NIST-specified primitives.

3. [Pertinence of other primitives] In the threshold context, facilitate an initial assess-

ment of the merits of other cryptographic primitives that may be mature for adoption.






Table 1. Subcategories of interest in Cat1


Subcategory: Type Families of specifications Section
in this call


C1.1: Signing EdDSA sign, ECDSA sign, RSADSA sign A.1


C1.2: PKE RSA encryption, RSA decryption A.2


C1.3: 2KA ECC-CDH, ECC-MQV A.3


C1.4: Symmetric AES encipher/decipher, KDM/KC (to support 2KE) A.4


C1.5: Keygen ECC keygen, RSA keygen, bitstring keygen A.5


Note: In the second column, each item within a subcategory is itself called a family of specifications, since it
may include diverse primitives or modes/variants, some of which are mentioned in Table 4 (in Section 6).







Table 2. Examples of primitives in subcategories of Cat2


Subcategory: Type Example scheme Example primitive


C2.1: Signing Succinct & verifiably-deterministic signatures Signing
C2.2: PKE TF-QR public-key encryption (PKE) Decryption/encryption
C2.3: KA Low-round multi-party key-agreement (KA) Single-party primitives
C2.4: Symmetric TF-QR blockcipher/PRP Encipher/decipher


TF-QR key-derivation / key-confirmation PRF and hash function
C2.5: Keygen Any of the above Keygen
C2.6: Advanced QR fully-homomorphic encryption Decryption; Keygen


Identity-based and attribute-based encryption Decryption; Keygens
C2.7: ZKPoK ZKPoK of private key ZKPoK.Generate
C2.8: Gadgets Garbled circuit (GC) GC.generate; GC.evaluate


Legend: PRF = pseudorandom function [family]. PRP = pseudorandom permutation [family]. QR
= quantum resistant. TF = threshold-friendly. ZKPoK = zero knowledge proof of knowledge.







Table 3. Labels for some template threshold profiles


Corruption proportion Number of parties (n)


f/n Majority type
Two (2): Three (3): Small (S): Medium (M): Large (L): Enormous (E):


n = 2 n = 3 4 ≤ n ≤ 8 9 ≤ n ≤ 64 65 ≤ n ≤ 1024 n ≥ 1025


≥ 1/2 Dishonest (D) n2 n3 f D nS f D nM f D nL f D nE f D
> 1/3 Honest (h) — n3 f h nS f h nM f h nL f h nE f h
< 1/3 2/3 Honest (H) — — nS f H nM f H nL f H nE f H







Table 4. Primitives of interest in subcategories of Cat1


Subcategory: Type
(Sub)subcategory #:
Family of primitives


Some [Primitives] and/or {Threshold Modes}
Section


in this call


C1.1: Signing C1.1.1: EdDSA sign [EdDSA, HashEdDSA] {Prob; Q-PR; F-PR (not FE); FE} A.1.1


C1.1.2: ECDSA sign {Prob-FE; Q-PR; F-PR not-FE; PR-FE to Det-ECDSA)} A.1.2


C1.1.3: RSADSA sign [RSASSA-PSS; RSASSA-PKCS-v1.5] A.1.3


C1.2: PKE C1.2.1: RSA encryption [RSASVE.Generate, RSA-OAEP.Encrypt] {SSI} A.2.1


C1.2.2: RSA decryption [RSASVE.Recover, RSA-OAEP.Decrypt] {NSS, SSO} A.2.2


C1.3: ECC-2KA C1.3.1: ECC-CDH {NSS; SSO} A.3.1


C1.3.2: ECC-MQV [Full; One-pass] {NSS; SSO} A.3.2


C1.4: Symmetric C1.4.1: AES (en/de)cipher [encipher, decipher] A.4.1


C1.4.2: KDM/KC (for 2KE) [Hash, CMAC, HMAC, KMAC] A.4.2


C1.5: Keygen C1.5.1: ECC keygen [For ECC-signing and ECC-2KA] A.5.1


C1.5.2: RSA keygen [Just the modulus (mod); mod & keypair] A.5.2


C1.5.3: Bitstring keygen [RBG for AES keygen, RSA-SVE, and nonces] {SSO} A.5.3


Legend: 2KE = pair-wise key-establishment. Det = deterministic . FE = functionally equivalent. F-PR = fully PR (i.e., deterministic
even if the quorum changes). KD/KC = key derivation and key confirmation mechanisms; NSS = input/output is not secret-shared
(i.e., apart from the key); PKE = public-key encryption. PR = pseudorandom. Prob = probabilistic. RBG = random-bit generation.
Q-PR = PR per quorum. SSI/SSO = secret-shared input/output (see §2.3 of NIST IR8214A). SVE = secret-value encapsulation.







Table 5. Recommended implementation parameters for Cat1 primitives


Parameter type Primitives using said parameters For κ ≈ 128 For κ & 224


Elliptic curve EdDSA signing and keygen Edwards25519 Edwards448


ECDSA signing and keygen P-256 P-521


ECC CDH/MQVfor 2KA, and keygen {Curve25519, P-256} {Curve448, P-521}


RSA modulus size RSADSA, RSA PKE, and their keygen |N|= 3,072 |N| ≥ 11,264 *


RSA enc./ver. key RSA-related 216 < e < 2256 216 < e < 2256


Hash function EdDSA signing SHA-512 SHAKE256 (len 512, 912)


ECDSA/RSADSA; HMAC for KDM/KC SHA-256, SHA3-256, SHA-512, SHA3-512


SHA-512/256


SHAKE128 (len 256) SHAKE256 (len 512)


KMAC for KDM and KC KMAC128 KMAC256


Cipher KC (for RSA or ECC), encipher/decipher AES-128 AES-256


AES key-size AES encipher/decipher/keygen/CMAC |k|= 128 |k|= 256


Legend: κ = standardized “security strength” (in bits). enc./ver. = encryption/verification. len = length.


* The RSA modulus length |N| must be a multiple of 8; this call further suggests that it be a multiple of 512.
Approved hash functions or XOFs are specified in FIPS 180-4, FIPS 202, and SP 800-185, but only a subset
of them are suggested in this call. A XOF with predetermined length (len) can also be called a hash function.







Table 6. Notation (in Draft FIPS 186-5): EdDSA versus ECDSA


Element’s role In EdDSA In ECDSA


Signature (R,S) (r,s)
Private† key s d
Secret nonce r k
[Final]‡ nonce commitment R r
Challenge χ e


† EdDSA also uses d, but for the precursor private-key from which the signing key s and another
nonce-derivation key are obtained. ‡ The use of [final] is to convey that it is the actual value output in the
signature. It is an encoding of other intermediate computed values that are themselves also commitments
to the nonce. In particular, in ECDSA one of the intermediate values is denoted with symbol R.







Table 7. RSA-based primitives per party per RSA-2KE scheme


Type Scheme § in SP 800


-56B-Rev2
Party RSA-based primitive KDM


needed?


KA KTS1 §8.2 1st contributor (U) RSASVE.Generate Yes


2nd contributor (V ) RSASVE.Recover


KTS2 §8.3 Any RSASVE.{Generate & Recover}


KT KTS-OAEP §9.2 Sender (U) RSA-OAEP.Encrypt No


Receiver (V ) RSA-OAEP.Decrypt







Table 8. Seven ECC-KA schemes


Primitive ( f ) e s Scheme
Intermediate secret Z


(“agreed” by U and V )
§ in SP 800


-56A-Rev3


ECC CDH 2 2 (Cofactor) Full Unified Model f (eU ,EV )|| f (sU ,SV ) §6.1.1.2


2 0 (Cofactor) Ephemeral Unified model f (eU ,EV ) §6.1.2.2


1 2 (Cofactor) One-Pass Unified Model f (eU ,EV )|| f (eU ,SV ) §6.2.1.2


1 1 (Cofactor) One-Pass Diffie-Hellman f (eU ,SV ) §6.2.2.2


0 2 (Cofactor) Static Unified Model f (sU ,SV ) §6.3.2


ECC MQV 2 2 Full MQV f (sU ,SV ,eU ,EU ,EV ) §6.1.1.4


1 2 One-Pass MQV f (sU ,SV ,eU ,EU ,SV ) §6.2.1.4


Legend: || = concatenation. § = section in another document. e = number of generated ephemeral key pairs. f =


symbol representing the ECC primitive (CDH or MQV). s = number of generated static key pairs; U and V = the


two parties in the 2KA protocol. Let A represent one of the parties (U or V ). Abbreviated notation for keys: eA


(= de,A) and EA (= Qe,A) are the ephemeral private and public keys of party A; sA (= ds,A) and SA (= Qs,A) are the


static private and public keys of party A. The primitive f makes use of additional parameters not shown here.







Table 9. ECC-2KA primitives of interest for thresholdization


Primitive
Secret
input?


Secret
ouptut?


Threshold
friendly?


Section in
SP 800-56A-Rev3


Section in
this call


ECC keygen: get key-pair (d,Q) — Yes Yes §5.6.1.2 A.5.1
ECC CDH/MQV: Z = f (dA,QB, ...) Yes Yes Yes §5.7 A.3.1/2
Key derivation: k = KDM(Z, ...) Yes Yes No §5.8 A.4.2
Key confirmation: KC(Z, ...) Yes — No §5.9 A.4.2


Legend: d = private key. f = CDH or MQV transformation (primitive). k = final secret established by both parties.


KC = “key confirmation” pseudorandom function, to allow comparison between A and B. KDM = “key derivation


mechanism” function. Q = public key. Z = intermediate secret (before KDM) computed by both parties.







Table 10. Examples of keygen purposes


Keygen purpose (subsequent operation) Private/secret key Other public elements


ECC-signing; ECC-2KA primitives exponent d (integer mod n) Q = d ·G (elliptic curve point)


RSA signing and decryption primes (p,q) modulus N = p ·q


exponent d = e−1 mod φ N exponent e


RSA encryption for 2KE random bit-string Z c = RSAEP((n,e),Z)


Key-derivation / key-confirmation KC(Z, ...)


AES enciphering/deciphering random bit-string k —







Table 11. Criteria for the random primes of an RSA modulus


Type Sub-type Provable prime Probable prime


Simple provable p, q
probable p, q


Complex provable p1, p2 q1, q2 p, q
hybrid p1, p2, q1, q2, p, q
probable p1, p2, q1, q2, p, q


Per §A.1.1 of FIPS 186-5 (Draft): p1, p2, q1, q2 are called auxiliary primes and must be divisors of
p−1, p+1, q−1 and q+1, respectively, i.e., p1|p−1, p2|p+1, q1|q−1, q2|q+1.







Table 12. Example ZKPoKs of interest related to Cat1 primitives


Related
type


Related (sub)sub-
category: Primitive


Example ZKPoK (including consistency with public
commitments of secret-shares, when applicable)


Keygen C1.5.1: ECC keygen of discrete-log (s or d) of pub key Q
C1.5.2: RSA keygen of factors (p, q), or group order φ , or decryption key d
C1.5.3: AES keygen of secret key k (with regard to secret-sharing commitments)


PKE C1.2.1: RSA encryption of secret plaintext m (encrypted)
C1.2.2: RSA decryption of secret-shared plaintext m (after SSO-threshold decryption)


Symmetric C1.4.1: AES enciphering of secret key k (with regard to plaintext/ciphertext pair)
C1.4.2: Hashing in KDM of secret pre-image Z
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4. [Quantum resistance and other features] Help explore the space of threshold 

readiness in terms of quantum-resistance versus other advanced functional features.

The process of collecting high-quality security formulations, technical descriptions, open 

implementations, and performance evaluations is intended to compose a body of reference 

material. This will support a phase of analysis to identify sound approaches, best practices, 

and reusable building blocks. The results will help shape recommendations and guidelines.

Two categories for submissions.  To assess the viability of threshold schemes for cryp-

tographic primitives, the present call is organized into two categories of submissions, with 

regard to the primitives in consideration for thresholdization:

• Cat1: Selected NIST-specified primitives used in digital signature schemes in FIPS-

186-5-Draft, public-key encryption and respective decryption in SP800-56B-Rev2, 

elliptic-curve based pair-wise key-agreement in SP800-56A-Rev3, symmetric encipher-

ing/deciphering in FIPS-197, key-derivation and key-confirmation mechanisms in the 

SP 800-56 series (parts A, B, and C); and the corresponding key-generations.

• Cat2: Primitives not specified by NIST, including primitives for “regular” schemes 

of type similar to those in Cat1 (signing, public-key encryption, key-agreement, 

enciphering/deciphering, key-derivation and key-confirmation, and their keygen), 

primitives for “advanced” functionalities (e.g., fully-homomorphic, identity-based or 

attribute-based encryption), zero-knowledge proofs/arguments of knowledge (e.g., of 

a secret-shared private key that is consistent with a public key); and other threshold-

auxiliary gadgets. Primitives submitted in Cat2 should aim for threshold-friendliness 

and may be based on cryptographic assumptions different from those in Cat1. There 

is a particular interest in combined threshold-friendliness and quantum resistance.

The analysis in Cat1 will help assess threshold friendliness and develop future recommenda-

tions and guidelines for threshold schemes of NIST-specified primitives. The analysis in 

Cat2 will help assess new interests on primitives not currently standardized by NIST, and 

help characterize the possible alignment between (i) threshold-friendliness, (ii) quantum 

resistance, and (iii) additional useful features. This may also serve as relevant input to assess 

the ability to deploy secure multi-party applications with advanced privacy features.

Organization.  Section 2 explains the acronyms used in the document. Section 3 calls for 

submissions and explains the partition into two categories. Section 4 enumerates logistic 

and formatting requirements for the submission of packages. Section 5 defines technical 

requirements for threshold schemes. Section 6 lists primitives and threshold modes of interest 

for each subcategory of Cat1 (NIST-specified primitives), mentioning possible I/O interfaces 

and recommending cryptographic parameters. Section 7 describes the subcategories of 

interest in Cat2 (primitives not specified by NIST). Appendix A provides further details about 

subcategories. Appendix B displays a checklist of the elements of a submission.












2. Acronyms

Acronym Extended form

2KA Pair-wise key-agreement

2KE Pair-wise key-establishment

ABE Attribute-based Encryption

AEAD Authenticated encryption with associated data

AES Advanced Encryption Standard

API Application programming interface

CDH Cofactor Diffie–Hellman

CMAC Cipher-based MAC

CPU Central processing unit

CRS Common reference string

CRT Chinese remainder theorem

DKG Distributed key generation

DOI Digital object identifier

ECC Elliptic curve cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

EdDSA Edwards Curve Digital Signature Algorithm

FFC Finite field cryptography

FHE Fully-homomorphic encryption

FIPS Federal Information Processing Standards

FR Field representation indicator

GB Gigabyte (1,000,000,000 bytes)

GC Garbled circuit

HMAC Hash-based MAC

IBE Identity-based encryption

IETF Internet Engineering Task Force

I/O Input/output

IRTF Internet Research Task Force

ITL Information Technology Laboratory












Acronym Extended form

KA Key agreement

KAS1/2 Key agreement scheme 1 or 2

KAT Known-answer test

KC Key confirmation

KDM Key-derivation mechanism

KT Key-transport

KMAC Keccak-based MAC

LCM Least common multiplier

LTS Long term support

LWC Lightweight Cryptography

MAC Message authentication code

MPC (Secure) multiparty computation

MPTC Multi-Party Threshold Cryptography

MPKA Multiparty key agreement

MQV Menezes-Qu-Vanstone

NIST National Institute of Standards and Technology

NIZK Non-interactive zero-knowledge

NISTIR NIST Internal Report

NSS not-secret-shared (input/output)

OAEP Optimal Asymmetric Encryption Padding

PC Personal computer

PDF Portable document format

PF Platform

PEC Privacy-Enhancing Cryptography

PQC Post-Quantum Cryptography

PKC, PKCS Public-Key Cryptography, PKC Standards

PKE Public-key encryption

PRF Pseudorandom function family

PRP Pseudorandom permutation family












Acronym Extended form

PSS Probabilistic signature scheme

PVSS Publicly verifiable secret sharing

QR Quantum-resistant or quantum resistance

RAM Random access memory

RBG Random-bit generator/generation

RFC Request for Comments

RO Random oracle

RSA Rivest–Shamir–Adleman

RSADP RSA Decryption Primitive

RSADSA RSA Digital Signature Algorithm

RSAEP RSA Encryption Primitive

RSASSA RSA Signature Scheme with Appendix

RSASVE RSA Secret-Value Encapsulation

S2PC Secure two-party computation

SHA Secure hash algorithm

SHAKE Secure hash algorithm with KECCAK

SNARK Succinct non-interactive argument of knowledge

SP 800 Special Publication in Computer security

SSD Solid state drive

SSI, SSIO Secret-shared input, secret-shared input-and-output

SSO Secret-shared output

SVE Secret-value encapsulation

TB Terabyte (1,000,000,000,000 bytes)

TF Threshold-friendly

URL Uniform resource locator

VSS Verifiable secret sharing

XOF Extendable output function

ZKP Zero knowledge proof

ZKPoK Zero knowledge proof of knowledge












3. Call and Scope for Submissions

This document is a call for multi-party threshold schemes. It solicits high-quality specifi-

cations of threshold schemes for primitives across two categories: Cat1 (selected NIST-

specified primitives) and Cat2 (primitives not specified by NIST). Each submission should 

include a security characterization, a technical description, an open-source reference imple-

mentation, and a performance evaluation. Submitted schemes will benefit from exposure 

to public analysis, and will be considered in a future report. This is a preliminary phase 

for collection of reference material, and assessment of threshold schemes. The results of 

this phase will inform future development of recommendations, and may be considered in 

possible future efforts for development of guidelines or standards.

3.1. Category 1 (Cat1)

Cat1 consists of selected, stateless, NIST-specified cryptographic primitives, organized in 

Table 1 across five subcategories:

• C1.1, for EdDSA, ECDSA and RSADSA signing [FIPS-186-5-Draft];

• C1.2, for RSA encryption (for key-encapsulation) and decryption [SP800-56B-Rev2];

• C1.3, for ECC-based pair-wise key-agreement (2KA) [SP800-56A-Rev3] via CDH or MQV;

• C1.4, for AES-enciphering/deciphering [FIPS-197], and key-derivation (KD) and

key-confirmation (KC) for 2KE [SP800-56C-Rev2; SP800-135-Rev1; SP800-108-Rev1];

• C1.5, for ECC keygen [FIPS-186-5-Draft; SP800-56A-Rev3; SP800-186-Draft], RSA 

keygen [FIPS-186-5-Draft; SP800-56B-Rev2], and bitstring (or integer) keygen.

 Table 1. Subcategories of interest in Cat1

  Subcategory: Type  Families of specifications Section
in this call

 C1.1: Signing EdDSA sign, ECDSA sign, RSADSA sign A.1

 C1.2: PKE RSA encryption, RSA decryption A.2

 C1.3: 2KA ECC-CDH, ECC-MQV A.3

 C1.4: Symmetric AES encipher/decipher, KDM/KC (to support 2KE) A.4

 C1.5: Keygen ECC keygen, RSA keygen, bitstring keygen A.5

Note: In the second column, each item within a subcategory is itself called a family of specifications, since it 
may include diverse primitives or modes/variants, some of which are mentioned in Table 4 (in Section 6).















Section 6 presents more details about versions and modes of primitives in Cat1, including 

options for input/output interfaces (Section 6.1) and cryptographic parameters recommended 

for evaluation (Section 6.2). The analysis of Cat1 submissions will facilitate the devel-

opment of recommendations and guidelines on threshold schemes for the corresponding 

NIST-specified primitives, highlighting reference approaches, techniques, building blocks, 

and best practices. The results will be reported in a NISTpublication.

3.2. Category 2 (Cat2)

The goal of Cat2 is to enable submissions that make a strong case for certain threshold-

feasible primitives that are not standardized by NIST. While the scope is wide, Cat2-

submissions should be justified on the basis of the primitives being thresholdized having/en-

abling useful differentiating features, such as having/being: (i) threshold-friendly(ier) (TF); 

(ii) based on alternative cryptographic assumptions (e.g., pairings), possibly quantum-resistant 

(QR) (e.g., lattice-based); (iii) useful probabilistic properties (e.g., determinism versus non-

determinism), (iv) more efficient in a relevant metric, or/and (v) advanced functional features 

(e.g., allowing homomorphic computation over encrypted data).

Cat2 has eight subcategories, including five “regular” (somewhat matching the subcategories 

of Cat1), and three others (“advanced”, “ZKPoK” and “gadgets”), as listed in Table 2:

• “Regular”: 

– C2.1, for signing (e.g., verifiably-deterministic succinct signatures, and/or TF-QR);

– C2.2, for PKE (e.g., TF-QR decryption and key-encryption);

– C2.3, for key agreement (e.g., TF primitives that are QR and/or that facilitate 

low-round key-agreement for more than two parties);

– C2.4, for symmetric-key primitives (e.g., TF enciphering/deciphering), and hash-

ing-related primitives for key derivation and key confirmation;

– C2.5, for keygen for primitives in other subcategories.

• “Others”:

– C2.6, for primitives for cryptographic schemes with advanced functional features, 

e.g., fully-homomorphic, identity-based, and attribute-based encryption schemes.

– C2.7, for zero-knowledge proofs of knowledge (ZKPoK) that are deemed useful 

to support the threshold setting, such as for proving knowledge of private/secret 

information consistent with a correct secret-sharing setup.

– C2.8, for other auxiliary “gadgets” deemed useful to support the threshold setting, 

namely to support the implementation of other threshold schemes in scope.












 Table 2. Examples of primitives in subcategories of Cat2

 Subcategory: Type Example scheme Example primitive

 C2.1: Signing Succinct & verifiably-deterministic signatures Signing
 C2.2: PKE TF-QR public-key encryption (PKE) Decryption/encryption
 C2.3: KA Low-round multi-party key-agreement (KA) Single-party primitives
 C2.4: Symmetric TF-QR blockcipher/PRP Encipher/decipher
    TF-QR key-derivation / key-confirmation PRF and hash function
 C2.5: Keygen Any of the above Keygen
 C2.6: Advanced QR fully-homomorphic encryption Decryption; Keygen
    Identity-based and attribute-based encryption Decryption; Keygens
 C2.7: ZKPoK ZKPoK of private key ZKPoK.Generate
 C2.8: Gadgets Garbled circuit (GC) GC.generate; GC.evaluate

Legend: PRF = pseudorandom function [family]. PRP = pseudorandom permutation [family]. QR 
= quantum resistant. TF = threshold-friendly. ZKPoK = zero knowledge proof of knowledge.





Section 7 contains more details and examples on Cat2. Some Cat2-submissions may be 

evaluated within the scope of the NIST Privacy-Enhancing Cryptography (PEC) project 

[Proj-PEC]. It is expected that the results of this exercise will be reported in a NIST publication.

3.3. Vision

Quantum-resistant versus quantum-breakable primitives.  There is a strong interest 

in receiving submissions of threshold schemes for threshold-friendly quantum-resistant 

(TF-QR) primitives. As there is currently a gap between some known useful cryptographic 

features and quantum-resistance, there is also interest in submissions that have enhanced 

functional features even if they are only secure with respect to non-quantum adversaries.

Interchangeability.  This call is scoped on threshold schemes whose output can be used 

in subsequent operations (e.g., signature verification) that were specified to use the output 

of the corresponding conventional (non-threshold) primitive (e.g., signing). The intended 

notion is that of interchangeability, from §2.4 of NIST-IR8214A. EdDSA signing provides 

a notable example: the threshold setting favors a consideration not only of pseudorandom 

signatures, but also of probabilistic ones that are interchangeable in the sense of being 

verifiable by the standardized EdDSA verification (see NIST-IR8214B-ipd). In Cat1, the 

primitives of interest are already fixed. In Cat2-submissions, the primitives of interest need 

to be specified along with the corresponding threshold schemes.












Provable security.  The security of submitted threshold schemes is expected to be assessed 

based on multi-party protocol analysis, which is supported by a large and mature body of 

knowledge in provable security. This is different from the extensive cryptanalysis that would 

be required in a call for basic primitives based on new cryptographic assumptions. That 

said, the security of threshold schemes is still recognized as multi-dimensional, depending 

on security formulation (e.g., which ideal functionalities or security games to choose), 

implementation (e.g., susceptibility to side-channels), and deployment suitability (e.g., 

whether security assumptions are appropriate for the deployment environment).

Diversity.  The domain space of multi-party threshold schemes is considerably wider than 

that of the primitives (e.g., digital signatures) being thresholdized. Acknowledging this, 

the present call allows leeway for the submitters to select from a variety of system models, 

threshold configurations, security formulations, technical approaches, and benchmarking 

focuses. Thus, the usual criteria for “apples-to-apples” comparison (e.g., number of par-

ties, common programming language, application programming interface, etc.) will not 

be required in the initial phase. Nonetheless, the submissions are expected to adhere to 

certain criteria, with respect to both technical documentation (see Section 4) and technical 

characteristics of the proposed threshold schemes (e.g., needs to include a security formu-

lation against active corruptions — see Section 5). After a review of the system models 

proposed in the initial set of submissions, a request may be made for submitters to provide 

new performance evaluation results (e.g., with a particular number of parties and threshold 

values) based on adjusted parameters to facilitate a comparison across submissions.

Initial phase.  The initial phase of analysis is expected to take about one year after the 

submission deadline, and will consider comments from the public. It will also include a 

workshop for presentation of the submitted threshold schemes. A NIST report will follow. 

For Cat1, the results will help determine how the development of future recommendations 

and guidelines may be differentiated per primitive, and whether it will focus on full-fledged 

threshold schemes, on identifying building blocks and composition techniques, or a hybrid of 

these. For Cat2, the results will include an initial characterization of the space of submissions 

to help assess possible interest in a subsequent more-focused analysis.

Reliance on contributions.  The success of the process will depend on:

• high-quality submissions by teams with appropriate expertise, including in the areas 

of secure multiparty computation and distributed systems;

• expert public scrutiny, including assessments of security;

• comments on pertinence, by stakeholders of applications of threshold schemes.












4. Components of a Submission

4.1. Phases Until Full Submission

The submission process is organized with a deadline for package submissions, while also 

considering a possible early abstract and preliminary submission, as follows:

Ph1. (Optional) Early abstract: No later than about 90 days (exact date to be deter-

mined) after the final version of this call is published, a short document (with no 

more than three pages) can be submitted with a title, a list of team members, and 

a preliminary abstract of a planned full package to be submitted later (Ph3). The 

abstract should identify the primitives to be thresholdized and their corresponding 

category and subcategory(ies)/type(s), give an outline of the threshold approach 

(including system model, the protocol approach, and main security properties), and 

list the most relevant bibliographic references. This phase for optional submission 

(not mandatory and non-committing) is intended to facilitate early discussion of the 

expected coverage of each category/subcategory, and may help determine useful 

merges, differentiations, or alternative submissions.

Ph2. (Optional) Preliminary package: Submission packages received by NIST at least

45 days before the deadline for full packages will be early reviewed for complete-

ness. The submitters will be notified of identified deficiencies, tentatively within 25 

days, to allow amendments before the deadline.

Ph3. Full package: Full submission packages must be received by NIST no later than

about 150 days (exact date to be determined) after the final version of this call is 

published. Despite possible adjustments to be made in this call, submitters are en-

couraged to prepare early for future submissions, using the present draft as a baseline. 

A complete and proper package must contain the following main components:

• M1. Written specification: A technical specification (including security analy-

sis) of the threshold scheme and primitives (see Section 4.2).

• M2. Reference implementation: An open-source implementation (software), 

including code, license, comments, and explaining an API (see Section 4.3).

• M3. Execution instructions: Instructions to enable the execution of the thresh-

old scheme and reproduction of experimental results (see Section 4.4).

• M4. Experimental evaluation: A report describing an experimental setting, 

measuring performance, and interpreting the results (see Section 4.5).

• M5. Additional statements: Various statements (see Section 4.6).












Submissions medium.  The submission of any documentation — early abstract (Ph1), 

preliminary package (Ph2), full package (Ph3), or any amendment — must be at least 

confirmed by sending an email to MPTS-submissions@nist.gov. The final version of this 

call may specify a complementary platform to help manage the process of submission and 

review. More-specific instructions will be provided in the final version of this call.

Public posting. after the SUBMISSION deadlines, approved submissions of early abstracts 

(Ph1) and full packages (Ph3) will be posted online, and hyperlinked from the MPTC project 

website [Proj-MPTC], for public review.

Note on LaTeX templates. To facilitate some common document structure across submis-

sions, the final version of the call will provide LaTeX-based templates applicable to some of 

the submission documents, for compilation into portable document format (PDF) files.

Note on multiple threshold schemes per package.  A submission package may include a 

family of distinguished threshold schemes based on common building blocks, and whose 

implementations may make use of common portions of open-source code. Even if a 

submission package proposes more than one threshold scheme, each of the above-mentioned 

five components should appear only once, possibly using subsections (when applicable) to 

distinguish which primitives/schemes the comments relate to.

4.2. Main component M1: Written specification

Submitted specifications of threshold schemes must be compiled in a PDF document, 

written in English and aided with mathematical notation, containing various (numbered or 

unnumbered) sections, as described ahead across a frontmatter (see Section 4.2.1), a main 

matter (see Section 4.2.2), and backmatter (see Section 4.2.3).

4.2.1. Frontmatter

S1. Title pages: Two title-pages, as follows:

• A first title-page (cover page) with: a title for the proposed submission, the names 

and affiliations of the submitters; and the submission date.

• A second title-page, with all content of the first title-page, and additionally includ-

ing: contact email-addresses for all the submitters; applicable disclaimers related 

to affiliations and funding; and, if applicable, other pertinent information about the 

team and the submission.



mailto:MPTS-submissions@nist.gov
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S2. Abstract: A text with up to 500 words, identifying the primitives being thresholdized, 

their corresponding category and subcategory/type in the scope of this call, and the 

types of threshold schemes being proposed (i.e., their main features, cryptographic 

assumptions and performance highlights).

S3. Executive summary: An abridged explanation (up to four pages) of the content of 

the submission, highlighting relevant properties of the proposed threshold schemes, 

their applicability, their performance, and some of the challenges (e.g., in proving 

security). It should also briefly mention the submitted components beyond the 

specification, including the open-source software with reference implementation.

S4. Index: A table of contents (i.e., index of sections, subsections, etc.); and (however 

applicable) lists of figures, tables, pseudo-code, and other relevant enumerated com-

ponents. Each referenced element in the index should be hyperlinked to the respective 

position in the document, and also indicate the corresponding page number.

4.2.2. Main matter

S5. Clarification of prior work: An enumeration of the building blocks, techniques and 

ideas known to have been developed or authored in prior work and that are used in 

the specification of the primitives and threshold schemes of the present submission. 

With regard to the building blocks, techniques and ideas in the submission (preferably 

including hyper-references to the related portions of the submitted specification), 

this section should aim to clarify and distinguish between (i) those that may have 

been designed by authors that are not part of the submitters’ team, (ii) those that may 

have been previously developed/authored by members of the submitters’ team, and 

(iii) those that may be original in the present submission. Appropriate bibliographic 

references should be given where applicable, preferably including (when possible) 

a hyperlink to online-accessible documentation. If applicable, this section can also 

include known information pertinent to the “call for patent claims”.

S6. Conventional primitives/scheme: A review of the conventional (non-threshold) 

primitives/scheme that constitute the objects of thresholdization and determine the 

interchangeability requirements. For example, if a submitted package proposes a 

threshold scheme for ECDSA signing, then this section will provide a brief review 

of the conventional ECDSA signing algorithm, and the requirements related to 

the corresponding keygen and verification algorithms. The notation used in this 

description should be consistent with the one later used to describe the threshold 

scheme. Cat2-submissions are expected to be more thorough in this description.












S7. System model: A thorough description of the system model, including participants, 

communication network, and adversary (see T2).

S8. Protocol description: A detailed description of the multi-party threshold scheme, 

modularizing the description of primitives/gadgets where appropriate.

S9. Security analysis: A detailed security analysis, including security formulation (e.g., 

ideal functionalities and/or games), proof(s) of security, and discussion of security 

properties and ideal components (see T3 and T4).

S10. Analytic complexity: An analytical estimation of (i) memory complexity, (ii) com-

putational complexity, (ii) communication complexity, and (iii) round complexity. 

The estimates should: include a breakdown across the various possible phases of the 

protocol; clarify the complexity per party versus the aggregate in the entire system; 

clarify its dependence on various configurable parameters, such as for example the 

security strength, the number of parties and the thresholds.

S11. Choices and comparisons: A rationale for design decisions and the chosen system 

model, as well as an explanation of known advantages and limitations compared to 

other options and approaches.

S12. Technical criteria: An evaluation of various items of technical criteria (see Section 5 

and Section B.7).

S13. Deployment recommendations: A set of deployment requirements and recommen-

dations, including those related to security. This section should also include a list of 

known and proposed applications of the submitted threshold scheme(s).

4.2.3. Backmatter

S14. Notation: A section explaining the notation, including:

• a list of the used acronyms, and their extended expressions;

• a list of the used abbreviations, and their complete words;

• a list of the used mathematical symbols, and their brief explanations;

• (optional) a glossary of selected important terms, with succinct explanations.

S15. References: A list of external references cited throughout the document, ideally 

including persistent identifiers (e.g., DOI, and ia.cr) and a link to a corresponding 

publicly and (when possible) freely accessible version of the referenced document.












S16. Appendices: Auxiliary elements deemed too detailed or cumbersome for a first 

read may be deferred to appendices, at the end of the document, as long as properly 

referenced and hyperlinked in the corresponding above-mentioned sections.

4.3. Main component M2: Reference Implementation

Required clear implementation.  The submissions packages must contain open-source 

code (software), including explanatory inline comments, constituting a “clear” reference 

implementation of the proposed threshold scheme(s). The code and comments should strive 

for clarity and understanding, even if at some detriment to efficiency. Optionally, some 

modules may include additional code optimized for some efficiency metric(s), to enable 

demonstration of better experimental performance.

The implementation(s) must support all main features of the threshold scheme and be 

suitable to run each “party” in a modern personal computer (PC). To facilitate testing, the 

implementation should enable “running” the set of all parties in a baseline platform (PF1) 

consisting of a single PC (possibly virtualized), equipped with:

1. Processor: Central processing unit (CPU) with up to eight 64-bit processing cores.

2. Fast primary memory: Up to 32 gigabytes (e.g., of random-access memory [RAM])

3. Secondary memory: Up to 4 terabytes (e.g., in a solid state drive [SSD])

The code (and its instructions) should be designed to allow for a compilation and execution 

of the submitted implementation on top of a Linux Ubuntu Desktop 22.04.1 long-term 

support (LTS) operating system running installed in platform PF1, without requiring software 

download from external sources. Each party should be executed as one (or more) process(es), 

or within a software virtual container, separate from the other parties.

The submitted open-source software (and documentation) should satisfy the following:

Src1. Is self-contained: The code was tested to compile and execute properly within the 

baseline platform (PF1) with a Linux Ubuntu Desktop v22.04.1 operating system.

Src2. Is licensed as open-source: The code is explicitly licensed as open-source (e.g., 

possibly based on a license listed in https://opensource.org/licenses).

Src3. Contains inline comments: The code is explained with auxiliary comments.

Src4. Has a clear API: It explains the application programming interface (API), aimed 

at facilitating (i) testing, (ii) use in higher-level applications, and (iii) comparison 

of performance with other implementations that may follow the same API.



https://opensource.org/licenses









On programming choices.  As explained in Section 3.3, it is intentional that this call 

does not specify a concrete programming language, compiler, or API to be used across 

submissions. That said, it would be useful that the provided open-source reference im-

plementation comes accompanied with explained rationale for choices made. This may 

include recommendations on the API that future implementations should follow to be easily 

comparable with the provided reference implementation.

On validation and verification.  The validation of implementations and formal verification 

are not included as technical requirements for this call. However, it is expected that the 

public scrutiny of submitted schemes (namely their specifications and implementations) will 

facilitate the production of high-assurance software. The analysis of the submissions may 

clarify what software testing may be proposed across various types of threshold schemes.

4.4. Main component M3: Execution Instructions

A submission package must include execution instructions, as follows:

1. User manual: A “user manual” with instructions (and examples) on:

X1. Compilation: How to compile the open-source code.

X2. Parametrization: How to configure execution parameters, such as the number 

of parties, the corruption threshold, the type of communication channels, some 

adversarial choices, and some client choices (e.g., input to the cryptographic 

primitive). Preferably the configuration of each parameter can be done via the 

editing of a human-readable text file, and/or command line arguments.

X3. Execution: How to test and execute the various phases of the proposed threshold 

schemes and underlying primitives.

X4. KAT set: A set of “known answer-test” (KAT) values, to aid in correctness 

verification of the execution of the protocol.

2. Set of scripts:

X5. KAT-script: A script to automatically execute the threshold schemes in a way 

that reproduces the set of KAT values (X4) provided in the user manual.

X6. Benchmark-script: A script to automatically benchmark the threshold scheme 

in platform PF1, using the “clear” reference implementation, to produce a 

table recording various performance measurements (similar to that required 

in Section 4.5) for various configurations. If the submitted implementation 












includes additional code optimized for performance, and whose performance 

results are reported in M4, then corresponding scripts shoudl also be provided, 

to enable reproducibility of results.

X7. Other scripts (optional): Optionally, other scripts to provide better insights 

into the workings of the underlying primitives and threshold scheme.

4.5. Main component M4: Experimental evaluation

The package must include a report on experimental performance, obtained by executing the 

provided code in the baseline platform (PF1), evaluating a representative set of configurations 

supported by the proposed threshold scheme(s). The report must describe:

1. the experimental setting (see Section 4.5.1);

2. the measured performance (see Section 4.5.2); and

3. an analysis/interpretation of the results (see Section 4.5.3).

4.5.1. Experimental setting

The report must describe the expected performance characteristics of the experimental setting 

(namely of the underlying hardware) supporting the baseline implementation platform PF1. 

The description must describe at least the relevant expected characteristics of the (possibly 

emulated) processor (e.g., instruction set, and clock frequency), communication network 

(e.g., bandwidth, and latency), and memory (e.g., read and write speed).

The benchmarking can also include experimentation with different platforms (PF2, ...) of 

the submitter’s choice (motivated by real or conceivable applications). The performance 

results obtained with these alternative platforms (to also be described) may be better or worst 

than with PF1. For example, if there are more than eight parties and all require intensive 

computing, then the testing in a platform with more than eight cores may provide better 

results than with the baseline PF1.

4.5.2. Measurements

The evaluation of experimental performance should report, at least for platform PF1, at least 

the following metrics: 

• Perf1. Memory complexity (in # bytes required to be simultaneously stored).

• Perf2. Processing time (in seconds) and/or processing (e.g., # of processing cycles).












• Perf3. Communication complexity (in # communicated bytes).

• Perf4. Networking time (in seconds).

• Perf5. Round complexity (in # alternations of the direction of communicated messages).

The mentioned metrics should be evaluated and reported in (i) total per execution, (ii) per 

identifiable phase of the protocol, and (iii) per party. The results can be reported across 

various configurations, e.g., with distinct numbers of parties, and across two distinct security 

strengths (e.g., 128 and 224–256 bits).

The reported measurements should include results obtained with the submitted “clear” 

reference implementation (see Section 4.3). If the submission includes additional code 

optimized for performance, then the corresponding results can be added to the measurements’ 

report. As prescribed in X7, all these benchmarking should be reproducible by a simple 

execution of the submission-required scripts.

4.5.3. Analysis

The performance analysis should include a written explanation/interpretations of the ex-

perimental results, indicating expected or unexpected observations (e.g., some observed 

correlation between some complexity metric and the number of parties). The comparison 

of results across different configurations and/or experimental settings may be useful to 

understand, test of verify tradeoffs and scalability of the system across different metrics.

4.6. Main component M5: Additional Statements

The packages must include certain statements (on intellectual property, agreements or dis-

closures) to ensure free worldwide availability of the submitted packages for public review 

and evaluation purposes, and allowing derivative work and use, in particular for the possi-

ble future elaboration and publication of recommendations, guidelines and standards. The 

concrete statements (to be included or referenced in the final version of this call) will be 

aligned with the NIST ITL Patent policy, and are likely to be similar to those used by the 

NIST Post-Quantum Cryptography (PQC) project [Proj-PQC].












5. Technical Requirements (T) for Submission of Threshold Schemes

In addition to the structural requirements for submission packages, the specification of 

threshold schemes is subject to certain technical requirements (T1–T6) at a logical level. 

The following are based on a previous call for feedback on criteria [MPTC-Call2021a].

5.1. T1: Primitives

A submitted specification must explain in S6 the conventional (non-threshold) primitives 

(e.g., decryption) that are the object of thresholdization. Each such primitive must be framed 

within the subcategories structure established for Cat1 (see Sections 3.1 and 6) and Cat2 

(see Sections 3.2 and 7). The primitive must also be explained within the scope of an 

underlying conventional scheme, composed of various primitives. For example, a decryption 

primitive of a public-key encryption (PKE) scheme relates to corresponding encryption and 

key-generation primitives. The explanation of the primitive must define the corresponding 

scope of interchangeability, to be considered by the proposed threshold scheme.

Notwithstanding the advantage of referenceability to NIST specifications, a submission 

in Cat1 still needs to include a technical description of the primitives being thresholdized. 

The description should try to follow the notation and and operations specified in the cor-

responding NIST documentation. Some Cat2-submissions may require a more thorough 

description, since their underlying non-threshold primitive is not part of a NIST specification. 

The explanation should also include references to authoritative descriptions in publicly free 

documentation (e.g., papers and standards).

5.2. T2: System Model

A proposal of threshold schemes must strive for a clear description that facilitates under-

standing various options across possible deployment scenarios. Therefore, the specification 

of each submitted threshold scheme must describe (in S7) one system model (and may 

identify possible variants), including the set of participants, the communication model and 

the adversarial model (goals and capabilities). In addition to the actual “parties” that hold 

the secret-shared keys, the system may include coordinators, administrators, clients and 

other devices (e.g., routers, clocks, random-bit generators), etc. The model must also explain 

how the parties are activated (e.g., via an authorized/authenticated client request, or by an 

administrator). See also §2.3 of NIST-IR8214A.

Some of the paragraphs ahead describe baseline assumptions and options for a system 

model, with regard to participants (Section 5.2.1), communication (Section 5.2.2), and 












adversary (Section 5.2.3). These assumptions are intended as a baseline, neither precluding 

submissions with sophisticated nuances, nor eliminating the utility of security evaluation 

across diverse deployment scenarios.

5.2.1. T2.1: Participants

The parties in a threshold entity.  There is a “threshold entity” composed on n “parties”, 

responsible for executing a cryptographic primitive. At the onset, all parties “know who” the 

n parties are, agreeing on n identifiers (e.g., possibly public keys to support authenticated 

channels). The suitability of public keys may need to be verified, locally or interactively, 

possibly via zero-knowledge proofs, in the keygen phase or in subsequent proposed phases.

It is conceivable that a threshold scheme is bootstrapped without prior agreement of who the 

n parties/identifiers are (or even what is value of n). However, said agreement problem may, 

in some system models, be a distributed-systems problem outside the scope of exploring the 

essential cryptographic thresholdization of the primitive at stake. Therefore, the assumption 

of initial agreement on n identifiers is a possibility, not a requirement. A submission that 

considers an additional preparatory phase for agreement of n and who the n parties are 

should try to present said phase modularly separated from the remaining threshold scheme.

Beneficiaries. For some operations, such as threshold keygen, the beneficiaries of the 

computation are the parties, who end with a new (secret sharing) state (possibly requiring 

agreement in the sense of “security with unanimous abort”), and/or an administrator (e.g., 

who receives a new public key). For other operations, such as threshold signing, the 

beneficiary can be an external client who requested the computation, to obtain an output.

Client interface.  The client may or may not be aware of (and be able to interact distinctively 

based on) the n-party threshold composition. This can be affected by the input/output (I/O) 

interface (see §2.3 of NIST-IR8214A). For example, a secret-sharing of the I/O can affect 

whether or not a client can separately send/receive input/output shares to/from each party.

Intermediaries.  The possibility of concurrent execution requests must be considered. A 

baseline description can assume that there is a possibly malicious proxy that can: interme-

diate the communication between clients and the threshold entity, and authorize requested 

operations (e.g., the signing of a message).



https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8214A.pdf#subsection.2.3









5.2.2. T2.2: Distributed Systems and Communication

As long as the interface and rules for composition are clear, the specification of a threshold 

scheme can (and is recommended to) decouple the description of (i) the building blocks 

(e.g., consensus, reliable broadcast) of classical distributed-systems, from (ii) the description 

of cryptographic operations needed to support the secure multiparty computation over (or 

of) a secret-shared key.

The specification of instantiations of building blocks that make use of weaker resources (e.g., 

enabling broadcast based on point-to-point channels) can be provided by referencing existing 

specifications, while evaluating the impact of those replacements. Then, the provided open-

source implementation (see Section 4.3) of the overall threshold scheme can include (with 

proper attribution) open-source code from the referenced existing implementation of the 

applicable building blocks. The protocol can also be described with various phases (e.g., 

offline, online, secret resharing), which may have differentiated requirements.

A baseline description can make strong assumptions about the communication network, 

including synchrony and reliability of transmission. However, the proposal must discuss the 

pitfalls of deployment in environments with weaker guarantees (e.g., with asynchronous and 

unreliable channels), and possible mitigations.

Different threshold schemes may be better suited to different communication environments, 

with dependence on guarantees (or lack thereof) of synchrony, broadcast, and reliability. It 

is important to understand how security guarantees break across these environments.

5.2.3. T2.3: Adversary

The security analysis in S9 must consider a well-specified adversary, namely their goals and 

capabilities. In particular, the specification must consider an adversary that:

1. [active] is able to corrupt parties (up to one or various specified corruption thresholds), 

them controlling them to arbitrarily deviate from the prescribed multi-party protocol;

2. [adaptive] is able to decide which parties to corrupt after observing some of the 

protocol execution; and

3. [mobile] persistently continues (attempting to) corrupt parties across multiple execu-

tions of the main protocol, possibly corrupting parties after they have been recovered 

from a previous corruption.

The concrete ways in which the adversary performs corruptions may be related to other 

system-model options (e.g., communication network). In practice, some of the adversary’s 












capabilities will be modeled as part of the idealization required in T3. The characterization 

of threshold security may vary across various ranges of acceptable corruption thresholds 

mentioned in item 1. Furthermore, the case of item 3 is intended to induce characterization 

of various levels of insecurity (e.g., which properties break and which ones do not) when 

acceptable thresholds are surpassed. The latter characterization may in particular be affected 

by the use of proactive recovery mechanisms (see Section T4.3).

5.3. T3: Security Idealization

As mentioned in Section 3.3, provable security is a fundamental component of how modern 

cryptography analyzes the security of proposed multi-party threshold schemes. Therefore, 

the present call includes a requirement to include a security idealization that supports a proof 

of security. Such idealization will encompass the security goals of the threshold scheme. 

That said, there are aspects of security analysis that overflow the scope of a proof/idealization 

and that should also be discussed.

A proposal of threshold scheme must be supported on a simulation-based and/or a game-

based security formulation. This entails defining an ideal functionality (e.g., in the ideal-real 

simulation paradigm, within the universal composability framework) or/and an idealized 

adversarial game (or set of games). Since security analysis is a multi-dimensional exercise, 

it may include more than one form of idealization, and possibly even diverse proofs across 

different nuanced security properties or formulations.

A submission must include, in S9, a “security proof” that the proposed threshold scheme 

satisfies the proposed security formulation in a suitable adversarial context (see T4). Such 

proof can be given by showing “emulation” of the ideal functionality, or by showing that a 

non-negligible adversarial advantage in each security game implies breaking an assumption.

The security analysis must discuss which known useful properties are captured, and which 

ones are not, by the idealized security formulation. For example, even though availability is 

a desirable property, generically speaking, a security formulation with stronger emphasis 

on confidentiality and integrity may purposely specify that an adversary is allowed to 

abort protocol executions, so that the formulated security notion is achievable. As another 

example (now of an unsuitable formulation), a sole requirement of hiding and binding for a 

commitment scheme would not suffice for a use (e.g., committing bids in an auction) that 

would also require a non-malleability property.

In both cases (simulation and game-based), the security analysis should also discuss the 

security consequences of real implementation of idealized components. In particular, it must:












• identify the required cryptographic assumptions, and any possibly-idealized trusted 

components in the setup or operations;

• discuss the (in)security consequences of foreseen real instantiations of the setup and 

ideal components.

The “security analysis” (S9) asked in this call relates to the logical specification of the thresh-

old scheme (S6–S8), and not to the submitted reference implementation (M2). Nonetheless, 

comments about implementation security are also welcome in the security analysis. Further 

details about implementation security can be included in S13.

5.4. T4: Security Versus Adversaries

The security analysis in S9 must consider a well-specified adversary (see T2.3), namely their 

goals and capabilities. In consideration of the modeled adversary (see T2.3), a proposed 

threshold scheme must aim for certain security goals, particularly with regard to how the 

adversary corrupts up to a corruption threshold number f  of parties.

5.4.1. T4.1: Active Security (Against Active Corruptions)

Proposed threshold schemes must achieve active security (i.e., against active corruptions, 

which enable corrupted parties to “maliciously” deviate from the protocol), as opposed to 

passive only.

5.4.2. T4.2: Adaptive Security (Against Adaptive Corruptions)

There is a strong preference for considering threshold schemes that achieve adaptive 

security (i.e., security against adaptively chosen corruptions), as opposed to static only, 

with respect to critical safety properties (e.g., unforgeability [NIST-IR8214B-ipd, §5.2.3] and 

key-secrecy). Therefore, submitted schemes should also aim for security against adaptive 

corruptions for the major safety properties of interest.

Adaptive security may pose significant challenges in formal proofs of security, depending 

on the security formulation. For example, while deniability of execution may in some 

cases be required for indistinguishability between ideal and real executions, the use of 

non-committing encryption to achieve it could be excessive without a necessary practical 

benefit. On the other extreme, a proposed protocol must not allow the major safety properties 

of interest to be trivially broken in case of adaptive corruptions, as in the classical example 

of a protocol that delegates all capabilities to a small quorum that is difficult to guess in 

advance, but whose overall corruption (by an adaptive adversary) would be disastrous.












The set of security formulations across submissions of threshold schemes (some possibly 

proving adaptive security based on unrealizable assumptions, such as a programmable 

random oracle) is expected to serve as reference material for public discussion. It is 

acceptable that certain security assurances (e.g., liveness and termination options) vary 

across different adversaries. For example, a security analysis may prove security against 

static corruptions with respect to some formulation (e.g., simulation-based), and then in 

complement show which fundamental security properties or attributes (e.g., unforgeability) 

remain preserved against adaptive corruptions in another formulation (e.g., game-based), 

even if some other security properties (e.g., some aspect of composability) are not preserved.

Practical feasibility is also needed. Feedback is welcome on security formulations and 

reference approaches that simultaneously enable both practical feasibility and security 

against adaptive corruptions, as well as possible acceptable tradeoffs.

5.4.3. T4.3: Proactive Security (Against Mobile Attacks)

The proposed threshold schemes schould be compatible with modular subprotocols / mech-

anisms for proactive (and reactive) recovery, which attempt to recover possibly corrupted 

parties back to an uncorrupted state. This is especially important to better handle a persistent

mobile adversary that continuously attempts to corrupt more parties. With respect to re-

freshing secret shares, the solutions can be based on a modularized phase of secret-resharing 

(see T6), while also specifying the needed conditions (e.g., requirement of some initial/final 

agreement by a qualified quorum) for its integration.

5.5. T5: Threshold Profiles

For each primitive (to be identified in S6, within the scope established in Sections 6 and 7) 

considered for thresholdization, it may be useful to consider differentiated solutions across 

possible threshold parametrizations. Therefore, it is useful to consider a “threshold profile” 

that defines, for certain threshold-related parameters, which parametrization ranges are 

suitable for secure operation. The threshold profile should characterize at least the total 

number (n) of parties and the various thresholds ( f ) of corruption and (k) of participation. 

Table 3 proposes succinct labels for each default profile obtained from a restriction in the 

number of parties and the corruption threshold.

For convenience of discussion, the following nomenclature is defined to easily identify 

some default threshold profiles, based on the total number of parties and/or some corruption 

threshold ( f ) assumed clear in the context.












• Number n of parties: (2) “two” for n = 2; (3) “three” for n = 3; (S) “small” for 

4 ≤ n ≤ 8; (M) “medium” for 9 ≤ n ≤ 64; (L) “large” for 65 ≤ n ≤ 1024; and (E) 

“enormous” for n > 1024.

• Corruption proportion f/n: (D) “dishonest majority” for f ≥ n/2; (h) “honest 

majority” for f < n/2; (H) “two-thirds honest majority” f < n/3.

 Table 3. Labels for some template threshold profiles

 Corruption proportion  Number of parties (n)

f/n Majority type
 Two (2):  Three (3):  Small (S):  Medium (M):  Large (L):  Enormous (E):

 n = 2 n = 3 4≤ n≤ 8 9≤ n≤ 64 65≤ n≤ 1024 n≥ 1025

 ≥ 1/2  Dishonest (D) n2 n3 f D nS f D  nM f D nL f D nE f D
 > 1/3  Honest (h)  — n3 f h nS f h nM f h nL f h nE f h
 < 1/3  2/3 Honest (H)  —  — nS f H nM f H nL f H nE f H

Note: the default profiles exclude the cases f = 0 and f = n. Therefore: for the “two”-party 

profile (with n = 2) — the usual secure two-party computation (S2PC) setting — only 

the “dishonest majority” case matters (with f = 1); for the “three”-party profile, the 2/3 

honest majority case does not apply. Other threshold profiles can be considered in concrete 

submissions. For example, some threshold schemes may have advantageous properties when 

considering an even stricter honest majority, such as more than 3/4 of honest parties.

A submission can focus on a single or on various threshold profiles. In particular, a protocol 

may be designed for full threshold, i.e., to ensure (for some range of number n of parties) 

some specific useful security notion regardless of the corruption threshold value f  (with 

f < n) that it is instantiated with. In some of such cases it may be especially relevant to 

distinguish between corruption threshold and participation-minus-1 threshold. For each 

submitted threshold scheme, the system model (S7) and the security analysis (S9) must:

• characterize its proposed threshold profile(s), including discussing the diversity of 

thresholds associated with various security properties; and

• characterize the breakdown that occurs when threshold-profile assumptions are broken.

Note on alternatives access structures. Depending on which secret-sharing schemes 

support the distributed computation, it is possible to consider monotone access structures 

(i.e., where the superset of a valid quorum is also a quorum) different from a simple threshold. 

The use of the traditional term “threshold” in this call is not meant to suppress possible 

submissions for other useful and properly-justified access structures.












Motivating adoption. There is value in identifying motivating applications for the adoption 

of threshold schemes in each threshold profile. Therefore, the submission should identify 

(in S13) use-cases for which the proposed threshold ranges are adequate.

5.6. T6: Building Blocks

A submission should identify and modularize the description of building blocks (gadgets) 

that can be securely replaced by other instantiations with similar interface. These may be 

useful across various threshold schemes across various submissions. While some future 

guidelines and recommendations documents may focus on gadgets, the decision to do so is 

likely to be subordinate to their utility for concrete threshold schemes.

Example building blocks.  A notable building block is Shamir secret sharing (and Lagrange 

interpolation), either in the clear or homomorphically (e.g., “in the exponent”). Other secret 

sharing variants may also be useful, such as verifiable or publicly-verifiable secret-sharing. 

Other examples of gadgets include garbled circuits, oblivious transfer, generation of 

correlated randomness, commitments, secret resharing (possibly for new values f  and n),

multiplicative-to-additive share conversion, additively homomorphic encryption, MPC 

or ZKP friendly hashing, some zero-knowledge proofs, consensus and broadcast.

Modularized description.  To the extent possible, proposals of threshold schemes should 

modularize the description of gadgets. This means that a high-level description of the 

threshold scheme uses references to the interface and security properties of the gadgets, but 

not necessarily to low-level details. A lower level description can then be made for one (or 

more) possible instantiation of each needed gadget.

Modularized code.  The submitted open-source code (see Section 4.3) must include code 

for at least one instantiation of each used building block. If the proposed system model 

depends on special hardware components (e.g., a router) beyond the threshold “parties”, the 

submission should also include code for emulating the special component.

The challenges faced in (i) implementing networking between parties can be significantly 

different from those in (ii) implementing certain mathematical operations (cryptographic 

building blocks) per party. Also, neglecting any of these can lead to serious vulnerabilities. 

Therefore, it is strongly encouraged that there is a strong alignment between the proposed 

system model (see T2 in Section 5.2) and the provided implementation (see Section 4.3), 

notwithstanding possible virtualizations to enable execution in a personal computer. For 

example, if a system model relies on broadcast, then the provided implementation should 

instantiate it in alignment with the assumptions of the proposed system model.












6. Cat1 primitives — Specified by NIST

Table 4 lists various Cat1 primitive-families of interest for thresholdization, organized in 

various “types” (subcategories): Signing (Section A.1); PKE (Section A.2); ECC-2KA 

(Section A.3); Symmetric (Section A.4); and Keygen (Section A.5). Within each type, each 

listed “primitive family” (itself identified with a more detailed subcategory index) may 

include several primitive variants (including ones not listed) and/or threshold modes, some 

of which are listed (non-exhaustively) in the third column of Table 4. A submission of 

threshold schemes fitting within a primitive family is not required to cover all indicated 

variants or modes, and may instead focus on a single one.

 Table 4. Primitives of interest in subcategories of Cat1

 Subcategory: Type
(Sub)subcategory #:
 Family of primitives

Some [Primitives] and/or {Threshold Modes}
 Section

in this call

 C1.1: Signing C1.1.1: EdDSA sign [EdDSA, HashEdDSA] {Prob; Q-PR; F-PR (not FE); FE} A.1.1

 C1.1.2: ECDSA sign {Prob-FE; Q-PR; F-PR not-FE; PR-FE to Det-ECDSA)} A.1.2

 C1.1.3: RSADSA sign [RSASSA-PSS; RSASSA-PKCS-v1.5] A.1.3

 C1.2: PKE C1.2.1: RSA encryption [RSASVE.Generate, RSA-OAEP.Encrypt] {SSI} A.2.1

 C1.2.2: RSA decryption [RSASVE.Recover, RSA-OAEP.Decrypt] {NSS, SSO} A.2.2

 C1.3: ECC-2KA C1.3.1: ECC-CDH {NSS; SSO} A.3.1

 C1.3.2: ECC-MQV [Full; One-pass] {NSS; SSO} A.3.2

 C1.4: Symmetric C1.4.1: AES (en/de)cipher [encipher, decipher] A.4.1

 C1.4.2: KDM/KC (for 2KE) [Hash, CMAC, HMAC, KMAC] A.4.2

 C1.5: Keygen C1.5.1: ECC keygen [For ECC-signing and ECC-2KA] A.5.1

 C1.5.2: RSA keygen [Just the modulus (mod); mod & keypair] A.5.2

 C1.5.3: Bitstring keygen [RBG for AES keygen, RSA-SVE, and nonces] {SSO} A.5.3

Legend: 2KE = pair-wise key-establishment. Det = deterministic . FE = functionally equivalent. F-PR = fully PR (i.e., deterministic 
even if the quorum changes). KD/KC = key derivation and key confirmation mechanisms; NSS = input/output is not secret-shared 
(i.e., apart from the key); PKE = public-key encryption. PR = pseudorandom. Prob = probabilistic. RBG = random-bit generation. 
Q-PR = PR per quorum. SSI/SSO = secret-shared input/output (see §2.3 of NIST-IR8214A). SVE = secret-value encapsulation.






There are significant differences in threshold-friendliness and usefulness across the Cat1-

primitives. For example, some symmetric-key primitives, such as HMAC and KMAC used 

for key-confirmation, are much less threshold-friendly than primitives based on public-key 

cryptography for signing and encryption/decryption. These differences are expected to affect 

the interest of stakeholders in submitting corresponding threshold schemes. Threshold-

friendlier primitives can be considered in Cat2, as already conveyed in Table 2 in Section 3.2.












6.1. Input/Output (I/O) Interfaces

As discussed in §2.3 of NIST-IR8214A, threshold schemes can be considered in various 

modes with regard to the I/O interface. By default, a threshold keygen scheme produces a 

secret-shared output (SSO), i.e., a secret-shared secret/private key, and (when applicable) a 

corresponding not-secret-shared (NSS) public-key counterpart. Then, a subsequent threshold 

operation (e.g., signing) uses the private/secret key in a secret-shared input (SSI) manner. 

The mentioned secret-sharings (SSO and SSI) of the private/secret key are often left implicit. 

However, the secret-sharing of other input/output (that may itself be subject to confidentiality 

requirements) is relevant in some use cases, to hide said input/output from the threshold 

entity. Some of these SSI/SSO modes are explicit in Table 4. For example:

• a threshold decryption scheme can be in SSO mode to hide the decrypted plaintext;

• a threshold public-key encryption (exceptional case where there is no private key) can 

be in SSI mode to hide some secret key being encapsulated;

• a threshold CDH or MQV ECC key-agreement primitive may produce a SSO to hide 

the agreed key before it is subject to a final key-derivation (KD) transformation;

• a threshold signature scheme can be in SSI mode to hide the message being signed 

(not shown in Table 4).

A submitted specification of a threshold scheme must unequivocally identify which I/O 

parameters need to be in secret-shared form and which ones need not.

6.2. Cryptographic Parameters

Submitted threshold schemes should be implemented and evaluated with one set of pa-

rameters for security strength κ ≈ 128, and another one for some security strength κ ∈ ≈

[224,256]). Table 5 lists recommended options for cryptographic parameters.

6.2.1. Elliptic Curves, for ECC-related Primitives

NIST-approved curves for elliptic-curve cryptography are specified in SP800-186-Draft. 

There are various representations and curves over prime fields, including

• Weierstrass: P-256, P-384, P-521, W-25519, W-448

• Montgomery: Curve25519, Curve448

• Twisted Edwards: Edwards25519, Edwards448, E448












 Table 5. Recommended implementation parameters for Cat1 primitives

  Parameter type Primitives using said parameters For κ ≈ 128 For κ & 224

  Elliptic curve EdDSA signing and keygen  Edwards25519  Edwards448

    ECDSA signing and keygen  P-256  P-521

    ECC CDH/MQVfor 2KA, and keygen {Curve25519, P-256} {Curve448, P-521}

 RSA modulus size RSADSA, RSA PKE, and their keygen |N|= 3,072 |N| ≥ 11,264 *
 RSA enc./ver. key RSA-related 216 < e < 2256 216 < e < 2256

  Hash function EdDSA signing SHA-512 SHAKE256 (len 512, 912)

    ECDSA/RSADSA; HMAC for KDM/KC SHA-256, SHA3-256, SHA-512, SHA3-512

       SHA-512/256

       SHAKE128 (len 256) SHAKE256 (len 512)

 KMAC for KDM and KC KMAC128 KMAC256

  Cipher KC (for RSA or ECC), encipher/decipher AES-128 AES-256

 AES key-size AES encipher/decipher/keygen/CMAC |k|= 128 |k|= 256

Legend: κ = standardized “security strength” (in bits). enc./ver. = encryption/verification. len = length.

* The RSA modulus length |N| must be a multiple of 8; this call further suggests that it be a multiple of 512. 
Approved hash functions or XOFs are specified in FIPS-180-4, FIPS-202, and SP800-185, but only a subset 
of them are suggested in this call. A XOF with predetermined length (len) can also be called a hash function.







A submission of threshold scheme for an ECC-based primitive should include an implemen-

tation based on at least one curve for security level for κ ≈ 128, and another for κ & 224, 

from the subsets detailed in Table 5. The curves W-x (for some x) and E448 do not appear 

in Table 5, as they are only intended for possible intermediate representations.

Note that SP800-186-Draft also specifies curves over binary fields (in short-Weierstrass form, 

namely Koblitz curves (K-163, K-233, K-283, K-409, K-571) and some pseudorandom 

curves (B-163, B-233, B-283, B-409, B-571). However, these are for legacy-only appli-

cations, and have been deprecated due to their limited adoption. Therefore, these are not 

recommended for submissions of threshold schemes.

Additive notation.  In elliptic-curve cryptography, it is customary to use additive group 

notation. There, a public key Q can be determined by a repeated sum of the base-point G, 

a secret number d of times. The repeated-sum operation is (in additive notation) usually 

expressed as a multiplication by an integer. Thus, the private key d is the integer (not an 

elliptic curve element) needed to be multiplied with G to obtain Q = d ·G.

On the set of suggested curves for 2KA. SP800-56A-Rev3 (from 2018) considers (in 

its Table 24 in Appendix D) various curves for ECC key-agreement. Apart from Koblitz 












(K-x) and pseudorandom (B-x) curves that have been deprecated by SP800-186-Draft, the 

Weierstrass curves (P-x) remian valid. From the latter, P-256 and P-521 cover the cases 

for security levels κ ≈ 128 and κ & 224. The recent SP800-186-Draft also specifies new 

Montgomery curves Curve25519 and Curve448, and references the IRTF RFC7748 where 

those curves are suggested for use in 2KA. Despite their current potential for adoption, the 

older SP800-56A-Rev3 does not include the new Montgomery curves (from the more recent 

SP800-186-Draft) in the list of approved curves for 2KA. Therefore, for Cat1-submissions 

of threshold schemes for ECC-2KA (subcategory C1.3): (i) the reference implementation 

should use at least the approved Weierstrass curves (P-256, P-521); (ii) a complementary 

suggestion is that Montgomery curves (Curve25519, Curve448) also be implemented to 

allow for a comparison across the uses of the two types of curves.

6.2.2. RSA Modulus, for RSA-related Primitives

A submission of threshold schemes for RSA-related primitives (for signing, key-encapsu-

lation or decryption): should provide implementations with moduli of size |N| = 3072

for κ ≈ 128, and |N| ≥ 11,264 (or greater) for κ ≈ 224 (or greater, respectively). Note: 

SP800-56B-Rev2 uses the symbol s, instead of κ , to denote the “security strength” (in bits).

The recommended RSA-modulus length |N| for security parameter κ & 224 was obtained, 

from exponential interpolation between the cases (specified in SP800-57-P1-R5) using |N1|=

7680 for κ1 = 192, and N2=15,360 for κ2 = 256, and rounding up to the nearest multiple 

of 512. The used formula is |N|= 512 · d|N1| · (κ/κ1)
a/512e, where a = log(κ2/κ1)

(N2/N1). 

This is also the value that would be obtained by rounding up the result provided by the FIPS 

140-2 implementation guidance [IG-FIPS-140-2, §7.5, page 125].

NIST-specified requirements for the prime factors of an RSA modulus, and their primality 

testing, are described in Appendices A.1 and C of FIPS-186-5-Draft, for single-party genera-

tion. For threshold schemes that warrant different methods (e.g., direct biprimality testing), 

a rationale must be presented to convey why the used test (including the number of rounds) 

is appropriate. In particular, it is acceptable that the RSA modulus be biased toward being a 

Blum integer, i.e., with both primes being 3 mod 4.












7. Cat2 Primitives — Not Specified by NIST

Cat2 allows for submissions of threshold schemes for primitives that are not specified by 

NIST. This category is aimed to allow for the consideration of primitives that are threshold-

friendlier than those in Cat1, and/or that have distinctive features, such as being based on 

distinct cryptographic assumptions (possibly being quantum-resistant), or having advanced 

functional features. Section 3.2 already enumerated the subcategories and listed some 

examples (see Table 2). A submission in Cat2 must provide a thorough description of the 

corresponding conventional (non-threshold) scheme that the primitive (being thresholdized) 

is part of. For example: a submission of threshold scheme for a signing primitive not 

specified by NIST must include a description of not only the conventional signing primitive 

but also its corresponding verification and keygen primitives.

7.1. “Regular” Primitives (Subcategories C2.1–C2.5)

As already enumerated in Section 3.2 (including listed in Table 2), Cat2 covers five regular 

types of primitives across subcategories C2.1 (for signing), C2.2 (for PKE), C2.3 (for 

key-agreement), C2.4 (for symmetric-key and hashing primitives) and C2.5 (for keygen).

Since selected candidates from the NIST PQC and Lightweight Cryptography (LWC) pro-

jects [Proj-PQC; Proj-LWC] are not yet standardized, possible threshold schemes for their 

primitives can be presented in the scope of Cat2, specifically in their matching subcategories: 

C2.1 (signatures) and C2.2 (public-key encryption) for PQC; C2.4 (symmetric-key and 

hashing primitives) for LWC. However, the present call is also intended to elicit submissions 

for threshold schemes for primitives that are threshold-friendlier. Submissions of threshold 

schemes for quantum-resistant primitives should include a comparison with the security 

levels (1–5) defined by the NIST PQC project [Proj-PQC].

Subcategory C2.3, for single-party primitives for use in multi-party key-agreement, also 

expects possible submissions of TF-QR type. Such submissions should demonstrate the 

use of the thresholdized primitives in the scope of an actual key-agreement application. 

Compared to NIST-standardized KA protocols, submissions in this sub-category may enable 

improved KA schemes, justified based on different assumptions.

Note on PKE versus KA.  Primitives within subcategory C2.2 for PKE can be used 

for multi-party key-establishment protocols, by allowing the confidential transmission 

of a contribution to a key. The subcategory C2.3 for KA (within Cat2) is intended for 

complementary primitives, such as those that may enable key-exchange protocols a la












Diffie-Hellman, though possibly based on different assumptions (e.g., to be QR) or for more 

than two parties. Therefore, the subcategory C2.3 for KA excludes the key-transport-only 

mechanisms (whose main cryptographic primitive is already scoped by PKE).

7.2. “Other” Primitives/Schemes (Subcategories C2.6–C2.8)

Beyond the “regular” type of primitives (covered by Cat1 and Cat2), there are “other” types 

of primitives covered by Cat2, namely “advanced” primitives (C2.6; see Sections 7.2.1 

and A.6), “ZKPoKs” (C2.7; see Sections 7.2.2 and A.7) and “auxiliary gadgets” (C2.8; 

see Sections 7.2.3 and A.8). The subcategories for ZKPoK (C2.7) and gadgets (C2.8) are 

meant to allow for the submission of primitives that can support the threshold setting. Such 

a submission requires the specification of a conventional (non-threshold) primitive (see S6), 

but (in contrast with other subcategories) the specification of a threshold scheme is optional.

7.2.1. Cat2 subcategory C2.6: “Advanced”

Subcategory C2.6 (see more details in Section A.6) is suited for primitives with advanced 

functional features that are not covered by current NIST standards. For example, an 

encryption scheme may allow (i) homomorphically performing operations over encrypted 

data (possible with fully-homomorphic encryption), or (ii) selectively restricting the ability 

for decryption to designated sets of recipients (possible with identity-based and attribute-

based encryption). A submission in subcategory C2.6 should present a strong rationale for 

the utility of the enhanced features, compared to what is possible with primitives in the 

other subcategories. Since quantum resistance is a strongly desirable feature, a submission 

without such a property is encouraged to specifically present rationale about the lack of 

good TF-QR alternatives.

7.2.2. Cat2 subcategory C2.7: ZKPoK

Subcategory C2.7 (see more details in Section A.7) allows for the submission of zero-knowl-

edge proofs of knowledge (ZKPoKs) that can support the threshold environment. For 

example, they may be useful to prove knowledge of a secret/private key or input that is 

consistent with:

• a public-key and/or with the public commitments of secret-shares;

• the output of a cryptographic operation (e.g., public-key encryption, AES enciphering, 

or KDM hashing), when the input was secret-shared and committed.












The generation of a ZKPoK can be considered both in conventional (non-threshold) and in 

threshold forms. For example:

• [Conventional generation] A dealer (single-party) of a secret-sharing (SS) can 

produce a ZKPoK that enables the various parties of a threshold entity (recipients of 

secret-shares) to non-interactively verify that the SS is adequate;

• [Threshold generation] The set of parties that interacted in a DKG to obtain a secret-

sharing of a secret/private-key, and when applicable also obtain a corresponding 

public-key, can interact in an MPC to distributively generate a ZKPoK string that 

proves access to (i.e., knowledge of, albeit in a threshold manner and despite the secret-

sharing aspect possibly remaining hidden from the proof) an adequate secret/private 

key consistent with a corresponding public commitment (possibly the public key) of 

the given threshold scheme.

(Note that the latter example is dissociated from a conceivable proof of distributed 

generation of a key, which can be considered if tied to public keys of the intervening 

parties, believed to not reveal their private keys.)

The above two examples have similarities with, respectively, (i) verifiable secret sharing 

(VSS), which can also be extended to publicly verifiable secret-sharing (PVSS), and (ii) 

publicly verifiable MPC. Said verifiable features are welcome in submitted threshold schemes, 

and may (preferably) be included as part of a submission more focused on one of the other 

subcategories, while identifying the applicability of the ZKPoK to the present subcategory. 

A submission that simply focuses in subcategory C2.7 must specify at least a conventional 

ZKPoK, and may (optionally) specify a corresponding threshold version thereof.

7.2.3. Cat2 subcategory C2.8: Auxiliary Gadgets

Subcategory C2.8 (see more details in Section A.8) allows for the submission of specifi-

cations of other auxiliary primitives, here called gadgets. They may be auxiliary in their 

conventional (non-threshold) form and/or in a threshold form. Gadgets can be modularized 

in the submission of a higher-level threshold scheme associated with another subcategory 

within Cat1 or C2.1–C2.7. Such modularization is already recommended by criterion T6 

(in Section 5.6) for various gadgets (e.g., those enumerated in §4.5.2 of NIST-IR8214B-ipd 

and §5.3.1 of NIST-IR8214A) whose underlying primitives (e.g., garbled-circuit generation, 

garbled circuit evaluation, commit, decommit) are not themselves thresholdized.












A. Details for Subcategories and Primitives of Interest

A.1. Subcategory C1.1: Cat1 Signing

The three Cat1-signing primitives of interest are from EdDSA, ECDSA, and RSADSA. 

Submissions in this subcategory should take in consideration the aspects of unforgeability 

and threshold security mentioned in NIST-IR8214B-ipd (while some aspects are specific to 

EdDSA, others are applicable to generic signature schemes). For example, it is useful to 

differentiate between regular unforgeability and strong unforgeability.

A.1.1. Subcategory C1.1.1: EdDSA Signing

EdDSA is specified in §7 of FIPS-186-5-Draft. The default signing mode is pseudorandom, 

determining the secret nonce r as a hash output whose pre-image includes a nonce-derivation 

key ν . Ignoring some encoding details, the algorithm for EdDSA signing Signn[s,ν ](M)

of a message M outputs a signature σ = (R,S), where R = r ·G, G is the conventioned 

base-point of the elliptic curve, r = H(ν ,M), H represents a cryptographic hash function, 

S = r+ χ · s, χ = H(R,Q,M) is the “challenge”, and s is the private signing key (integer) 

needed to be multiplied with G to obtain the public-key Q.

A submission of threshold scheme for EdDSA signing: can choose to implement just one 

of or both HashEdDSA and EdDSA types (defining whether or not the message is “pre-

hashed”); should provide implementations with curves Edwards25519 (for κ ≈ 128) and 

Edwards448 (for κ ≈ 224), which are specified in SP800-186-Draft; and must include only 

schemes that are interchangeable with regard to EdDSA verification (see related notes in 

NIST-IR8214B-ipd). With respect to nonce generation, submissions are expected to include 

one or more of the following modes:

1. Probabilistic (via a random or hybrid contribution per party)

2. Pseudo-random per quorum (via a ZKP of pseudorandom contribution per party)

3. Pseudo-random (based on a threshold-friendly PRF)

4. Functionally equivalent to HashEdDSA (via MPC hashing)

Note. An SSI mode for threshold signing is costly because it requires a distributed com-

putation of a threshold-non-friendly hash of the message. However, if the regular NSS 

mode already requires such type of difficult computation (which is the case in functionally-

equivalent EdDSA threshold signing), then the SSI mode may be achieved with a simple 

extension, using the gadgets already required for the NSS mode.












A.1.2. Subcategory C1.1.2: ECDSA Signing

ECDSA is specified in §6 of FIPS-186-5-Draft. The default signing mode is probabilistic 

(§6.3.1), but there is also a deterministic ECDSA mode (§6.3.2). Table 6 shows how the 

meanings of some symbols change significantly between EdDSA and ECDSA.

 Table 6. Notation of EdDSA versus ECDSA (in Draft FIPS 186-5)

  Element’s role  In EdDSA  In ECDSA

  Signature (R,S) (r,s)
  Private† key s d
  Secret nonce r k
  [Final]‡ nonce commitment R r
  Challenge χ e

† EdDSA also uses d, but for the precursor private-key from which the signing key s and another 
nonce-derivation key are obtained. ‡ The use of [final] is to convey that it is the actual value output in the 
signature. It is an encoding of other intermediate computed values that are themselves also commitments 
to the nonce. In particular, in ECDSA one of the intermediate values is denoted with symbol R. 









Ignoring some encoding details, the algorithm for ECDSA signing Signn[d](M) of a mes-

sage M outputs a signature σ = (r,s), where d is the private signing key (the integer 

needed to be multiplied with the base-point G to obtain the public-key Q); the “challenge” 

e = Encode(1)n (Hash(M)) is an encoding (mod n) of the hash of the message being signed; 

k←$ [1, . . . ,n−1] is (in the probabilistic version) a uniformly selected nonce that needs to 

remain secret; R= k •G is the “nonce commitment” and r =Encode(2)n (R) is a corresponding 

encoding (mod n); and s = k−1 · (e+ r ·d) (mod n).

A submitted threshold scheme for ECDSA signing should provide an implementation 

with at least one parametrization for κ ≈ 128 and another for κ & 224, with parameters 

recommended in Table 5. With respect to nonce generation, submissions are expected to 

include at least one of the following modes:

1. Probabilistic (via random or hybrid contributions per party)

2. Pseudo-random per quorum (via a ZKP of pseudorandom contribution per party)

3. Pseudo-random (based on a threshold-friendly PRF)

4. Pseudo-random functionally equivalent to Deterministic ECDSA (via MPC hashing)

Note on SSI-signing: In the case of SSI-signing for Deterministic ECDSA, the client 

can directly provide a secret-shared challenge (the hash e of the message), whereas in 

(Deterministic) EdDSA the pseudorandom challenge χ requires knowledge of a nonce 












commitment that depends on a private element not known by the client. Note that signature 

verification still requires the ability to hash the message.

A.1.3. Subcategory C1.1.3: RSADSA Signing

RSA signature modes are specified in §5.4 of FIPS-186-5-Draft, by reference to IETF RFC8017. 

A submission for the RSADSA signing family is expected to implement a threshold signature 

scheme that is interchangeable with at least one of the following modes:

1. RSASSA-PSS (probabilistic signature scheme), using an approved hash function or XOF

2. RSASSA-PKCS-v1.5 (deterministic), using an approved hash function

A.1.4. Signing in Secret-Shared-Input (SSI) Mode

In an SSI-signing mode, no single-party (nor any collusion up to a certain number of parties) 

of the threshold entity will learn the hash of the message. This is akin, though not the same 

as, what is achieved with blind signatures. The difference is that in the threshold setting it is 

possible that a large enough collusion of parties is able to reconstruct the input message.

The SSI mode may be of use, for example, for private-preserving time-stamping, producing 

a certificate interchangeable with those produced by the conventional protocol where the 

authority learns the hash of the document being timestamped.

The threshold-generation of signatures in SSI mode may pose challenges with regard to 

unforgeability. For example, a protocol must prevent that a malicious party that maliciously 

changes their secret-share would affect the overall message being signed, i.e., must prevent 

the signing of a message whose signature has bot been requested. Such challenges may 

be resolved based on various techniques, including zero-knowledge proofs, or based on 

verifiability or error correction properties of the secret-sharing. For example, each party can 

prove that their interaction in the distributed computation is consistent with a secret-share 

that has been certified by the client, with regard to the ongoing signing session.

A.2. Subcategory C1.2: Cat1 Public-Key Encryption (PKE)

The PKE cryptosystem of interest is RSA. The main use case considered for RSA encryp-

tion/decryption is pair-wise key-establishment (2KE), as specified in SP800-56B-Rev2. 2KE 

can take the form of a key-agreement (KA) type of protocol (with contributions from both 

parties) or be more simply based on key-transport (KT) type of protocol (with contribution 

from a single party). For RSA-based instantiations, both types of protocol rely on secret-

value encapsulation (SVE), where RSA encryption is used to encapsulate a secret value 












k (also denoted as a plaintext m) into a ciphertext c, which is then sent to another party 

for decryption. Ignoring some encoding details, the low-level RSA-based cryptographic 

primitives of interest are:

• RSA encryption primitive (RSAEP): Encryption c = memod N  (transforming a 

plaintext m into a ciphertext c). A threshold version of it uses a secret-shared input m 

(SSI) and a not-secret-shared public encryption key.

• RSA decryption primitive (RSADP): Decryption m= cdmod N . A threshold version 

of it uses a secret-shared private-key d (which is never reconstructed); the threshold 

operation produces an output that is either secret-shared (SSO) or not (NSS).

Additional relevant primitives include:

• Generation of an RSA modulus and/or key-pair (see Section A.5.2).

• Generation of a random bit-string (see Section A.5.3).

The values generated in SSO mode are for subsequent consumption in SSI mode.

A.2.1. Subcategory C1.2.1: RSA Encryption (of a Secret-Value)

Threshold schemes in this call are intended to operate over secret-shared material. Therefore, 

in the case of public-key encryption the secret-sharing does not usually apply to the public 

key. However, the application of key-encapsulation for key-transport/agreement uses the 

plaintext itself (being encrypted) as a value whose confidentiality requirement may warrant 

threshold protection. By default, a threshold scheme for such encryption will be in “secret-

shared input” (SSI) mode (see [NIST-IR8214A]) with regard to the value being encrypted, 

but will not secret-share the public key (to be known by every party).

The basic RSA encryption primitive (RSAEP) computes a ciphertext c = me (mod N), 

where m is a secret plaintext, e is the public encryption key, and N is the public modulus. 

The goal is to compute c from a secret sharing [m] of m. For interchangeability with regard to 

a subsequent decryption, an actual full-fledged threshold scheme for RSA key encapsulation 

should consider all of the appropriate encoding and padding details. In SP800-56B-Rev2, the 

primitive RSAEP (§7.1.1) is specified for use within two higher-level primitives:

1. RSASVE.Generate (§7.2.1.2): RSA for Secret-Value  Encapsulation (which also 

includes the generation of the random key to encapsulate)

2. RSA-OAEP.Encrypt (§7.2.2.3): RSA with Optimal Asymmetric  Encryption Padding












A.2.2. Subcategory C1.2.2: RSA Decryption

SP800-56B-Rev2 specifies the use of RSA decryption in two higher-level primitives:

1. RSASVE.Recover (§7.2.1.3): Secret-Value Encapsulation recovery

2. RSA-OAEP.Decrypt (§7.2.2.4): Optimal Asymmetric Encryption Padding decryption

The RSA decryption primitive, RSADP(privKey, c), used to decrypt a ciphertext c, accepts 

the private decryption key privKey [SP800-56B-Rev2, §6.2.2] in three possible formats:

1. Basic format: (n,d)

2. Prime-factor format: (p,q,d)

3. Chinese-remainder theorem (CRT) format: (n,e,d, p,q,dP,dQ,qInv)

The notation [SP800-56B-Rev2, §3.2] is as follows: n is the public modulus; (p,q) is the pair 

of secret prime factors of n; d is the private decryption key; e is the public encryption key; 

dP is dmod (p−1); dQ is dmod (q−1); and qInv is the inverse of qmod p.

A.2.3. Implementation Recommendations and Options

A submitted threshold scheme for RSA encryption or decryption primitives should include 

an implementation in the scope of an RSA-based 2KE protocol, as follows:

• With an instantiation for κ ≈ 128 and another for κ & 224 (see Table 5).

• Showcasing at least one of the key-establishment protocols listed in Table 7, with at 

least one of the parties (U , or V ) being threshold-decentralized;

• If implementing threshold RSADP:

– secret-sharing the decryption key, for at least one of the three approved formats 

(Section A.2.2); the public elements (n and e) do not need to be secret shared;

– outputting the plaintext (the key that was encapsulated) in one of two forms: 

secret-shared, or not secret-shared.

• If implementing threshold RSAEP: using an SSI mode for the plaintext.

The various RSA-2KE schemes. SP800-56B-Rev2 specifies various RSA-2KE schemes. 

Two are of the key agreement (KA) type (obtaining contributions from both parties), whereas 

another one is based on key transport (KT) using a contribution from a single party. Table 7 

lists, across these three schemes, the corresponding RSA-based operations (excluding 

needed RSA key-pair generation). Each of the listed schemes allows for a basic version, 












and a version with key confirmation (unilateral or bilateral, not based on RSA). The KDM 

operation specified for KA schemes is not RSA based.

 Table 7. RSA-based primitives per party per RSA-2KE scheme

  Type  Scheme  § in SP 800

-56B-Rev2
 Party RSA-based primitive KDM

 needed?

 KA KTS1  §8.2  1st contributor (U) RSASVE.Generate  Yes

           2nd contributor (V ) RSASVE.Recover

    KTS2  §8.3  Any RSASVE.{Generate & Recover}

 KT KTS-OAEP  §9.2  Sender (U) RSA-OAEP.Encrypt  No

           Receiver (V ) RSA-OAEP.Decrypt

In KTS1, one party (U) uses RSASVE.Generate to generate and encrypt a secret value Z, 

and the other party (V ) uses RSASVE.Recover to decrypt Z. The latter party then contributes 

a non-encrypted nonce NV . (Per §5.4 of SP800-56B-Rev2, the nonce used in KTS1 should 

be random.) Both the secret value and the nonce are then used as input to a KDM, which 

produces a final agreed key k (not to be confused with the nonce k of ECDSA). In KTS2, 

the clear-text nonce from party V  is replaced with an encapsulated key, therefore requiring 

both parties to implement both RSASVE.Generate and RSASVE.Recover. Both KTS1 and 

KTS2 include a subsequent KDM, either in a one-step version or a two-step version, which 

transforms the pair of contributions (Z and NV ) into a final derived key k. A threshold keygen 

can consider the generation of Z and/or NV  in SSO mode Section A.5.3, if they are to then 

be consumed in SSI mode by the subsequent KDM.

The KTS-OAEP scheme does not use a KDM. Instead, the output key is decided by one of 

the parties, who then sends it encrypted to the other party. The threshold modes of interest 

for KTS-OAEP depend on the primitive, as follows:

• RSA-OAEP.Encrypt with the plaintext (a key to be encapsulated) in SSI mode.

• RSA-OAEP.Decrypt with the plaintext (the key that was encapsulated) in SSO mode.

Each 2KE scheme can be implemented in either a basic form (without key confirmation), or 

with KC in either a unilateral or bilateral manner. Both KDM and KC primitives rely on 

hash-functions of symmetric-key cryptography (see Section A.4.2).

SP800-56B-Rev2 also specifies that any of the mentioned RSA-2KE schemes (KTS1, KTS2, 

and KTS-OAEP) can be followed by a key transport where the established key is wrapped 












with an approved (symmetric-key based) key-wrapping algorithm [SP800-38F]. However, 

threshold-wise said key-wrapping algorithms are more-unfriendly than KTS-OAEP.

On the ability to bias the key in a 2KE protocol. The various mentioned NIST-specified 

protocols allow one of the parties to significantly bias the result. Specifically, the second 

contributor party in the KTS1 and KTS2 protocols can brute-force its contribution to bias 

several bits (e.g., 40 bits, at a parallelizable computational cost of approximately 240 KDM 

operations). In KTS-OAEP the sender fully determines the key being transported. This is is 

contrast with Blum-style coin-flipping protocols, where the contribution from each party is 

only revealed once the contribution from the other party is committed to, thus implying that 

an honest party can guarantee that the output is not biased (up to abort by the other party).

A.3. Subcategory C1.3: Cat1 ECC Primitives for Pair-Wise Key-Agreement (2KA)

Pair-wise key-agreement (2KA). SP800-56A-Rev3 specifies various pair-wise (i.e., two-

party) key-establishment (2KE) schemes of the KA-type (where the final key depends on 

contributions from the two parties), based on discrete logarithm cryptography. In a 2KA 

scheme, each party uses their own private key(s) and the public key(s) from the other party, to 

first obtain an intermediate common secret Z, and then applies a transformation to obtain a 

final key (called DerivedKeyingMaterial) k that is equal to the one obtained by the other party 

(not to be confused with the nonce k of ECDSA).

In some NIST publications the intermediate secret Z is referred to as a “shared” secret, 

meaning it is known by both parties of the 2KA. This should not be confused with the case of 

a “secret-shared” Z when “thresholdizing” (i.e., decentralizing) one of the original parties.

Each 2KA protocol specified in SP800-56A-Rev3 can be described with up to three phases:

1. A public-key cryptography (PKC) phase, where the parties interact to determine an 

intermediate common secret Z.

2. An asymmetric-key cryptography phase, where each individual party uses a key-

derivation mechanism (KDM) to derive a final key k.

3. An optional key confirmation (KC) phase, based on comparison of message authen-

tication code (MAC) tags, which allows at least one of the parties to confirm that their 

obtained key is equal to the key of the other party.

The subcategory C1.3 (2KA) of Cat1 in this call is only focused on the PKC primitives used 

in the initial phase, namely the Cofactor Diffie-Hellman (CDH) or Menezes-Qu-Vanstone 

(MQV) primitives. However, a submission of a threshold scheme for such a primitive should 

be demonstrated in an implementation of a full-fledged 2KA protocol. Therefore, this section 












also provides some context about the KDM and (the optional) KC operations, whose possible 

thresholdization is considered in Section A.4.2.

ECC scope. From the schemes in SP800-56A-Rev3, Cat1 only includes those based on 

ECC, which are implementable with elliptic curves specified in SP800-186-Draft. Table 5 

in Section 6.2 lists the curves of interest. 2KA based on finite field cryptography (FFC) is 

left out of scope, following the trend of deprecating FFC in favor of more succinct ECC, 

as done in FIPS-186-5-Draft (which deprecated DSA in favor of ECDSA). The seven 2KA 

schemes in scope are listed in Table 8 and can be classified based on three factors:

• the underlying ECC primitive: CDH or MQV.

• the number of ephemeral (e) keys (2, 1 or 0),

• the number of static (s) keys (2, 1 or 0); and

 Table 8. Seven ECC-2KA schemes

  Primitive ( f ) e s  Scheme
 Intermediate secret Z

 (“agreed” by U and V )
 § in SP 800

-56A-Rev3

 ECC CDH  2  2  (Cofactor) Full Unified Model f (eU ,EV )|| f (sU ,SV )  §6.1.1.2

     2  0  (Cofactor) Ephemeral Unified model f (eU ,EV )  §6.1.2.2

     1  2  (Cofactor) One-Pass Unified Model f (eU ,EV )|| f (eU ,SV )  §6.2.1.2

     1  1  (Cofactor) One-Pass Diffie-Hellman f (eU ,SV )  §6.2.2.2

     0  2  (Cofactor) Static Unified Model f (sU ,SV )  §6.3.2

 ECC MQV  2  2  Full MQV f (sU ,SV ,eU ,EU ,EV )  §6.1.1.4

     1  2  One-Pass MQV f (sU ,SV ,eU ,EU ,SV )  §6.2.1.4

Legend: || = concatenation. § = section in another document. e = number of generated ephemeral key pairs. f  = 
symbol representing the ECC primitive (CDH or MQV). s = number of generated static key pairs; U and V  = the 
two parties in the 2KA protocol. Let A represent one of the parties (U or V ). Abbreviated notation for keys: eA
(= de,A) and EA (= Qe,A) are the ephemeral private and public keys of party A; sA (= ds,A) and SA (= Qs,A) are the 
static private and public keys of party A. The primitive f  makes use of additional parameters not shown here. 







Interchangeability scope. Regardless of the decentralization of any party, a 2KA scheme 

is already a protocol between two parties that intend to obtain a commonly agreed secret. 

Therefore, when considering a threshold scheme for a Cat1-primitive of a 2KA protocol, the 

interchangeability requirement is narrowed to “functional equivalence”. This ensures that 

the output secret (albeit possibly in secret-shared format) on one decentralized side will be 

equal to the one obtained by the other (possibly legacy) party in the 2KA interaction. Cat2 












(see Section 7) allows for interchangeability in a broader sense, assuming that both parties 

interacting in the 2KA can agree on the new subsequent (KD/KC) mechanisms.

Single-party primitives. The objects of thresholdization are the primitives (see Table 9) 

computed by each individual party in the 2KA protocol. Each of these primitives has 

private/secret key-material in the input or/and output. The threshold protection provided to 

the keys handled by one side of the ECC-2KA depends on which primitives are thresholdized.

 Table 9. ECC-2KA primitives of interest for thresholdization

  Primitive
 Secret
 input?

 Secret
 ouptut?

 Threshold
 friendly?

 Section in
SP800-56A-Rev3

 Section in
 this call

 ECC keygen: get key-pair (d,Q)  —  Yes  Yes  §5.6.1.2 A.5.1
 ECC CDH/MQV: Z = f (dA,QB, ...)  Yes  Yes  Yes  §5.7 A.3.1/2
  Key derivation: k = KDM(Z, ...)  Yes  Yes No  §5.8 A.4.2
  Key confirmation: KC(Z, ...)  Yes  — No  §5.9 A.4.2

Legend: d = private key. f  = CDH or MQV transformation (primitive). k = final secret established by both parties. 
KC = “key confirmation” pseudorandom function, to allow comparison between A and B. KDM = “key derivation
mechanism” function. Q = public key. Z = intermediate secret (before KDM) computed by both parties. 





A threshold scheme for an ECC CDH/MQV primitive allows for confidentiality of the 

private key d. This can be useful even if the intermediate secret Z is reconstructed due 

to a subsequent non-thresholdized KDM. Conversely, in a full-fledged thresholdization of 

the sequence of 2KA primitives, the output Z of the ECC CDH/MQV primitive would be 

secret-shared (i.e., SSO mode), to serve as input to the subsequent threshold KDM phase.

The ECC-2KA“type” includes only the ECC primitives that produce the intermediate 

secret Z, from secret-shared ECC private keys (static or ephemeral). There are two such 

primitives: ECC-CDH (Section A.3.1) and ECC-MQV (Section A.3.2). The ECC key-gen 

and KDM/KC primitives are respectively considered in Sections A.5.1 and A.4.2.

Submissions.  A submitted threshold scheme for an ECC CDH or MQV primitive should:

• Evaluate it for at least one curve for κ ≈ 128, and another for κ ∈ ≈[224,256] — see 

Table 5 in Section 6.2.

• Showcase the execution of at least one of the seven 2KA ECC-based schemes (see 

Table 8), with at least one decentralized party (A, B, or both) using secret-shared 

private keys in the threshold ECC CDH/MQV computation. The implementation 

should also include the KDM (and optionally the) KC procedures, either threshold (see 












Section A.4.2, if the threshold ECC CDH/MQV is in SSO mode) or non-threshold. In 

other words, the ECC CDH/MQV output may or not be secret-shared, depending on 

whether or not the subsequent KDM/KC primitive is thresholdized.

A.3.1. Subcategory C1.3.1: ECC-CDH Primitive

With a decentralized party A (which can be U  or V ), the ECC-CDH primitive is as follows:

• Secret-shared input:

– [dA] (secret sharing of private key of party A)

• Public input: (known to every party of the decentralized entity representing A)

– QB (the public key of party B);

• Secret-shared output: Secret sharing [Z] of a secret Z = Encode(P), where:

– P = (h ·dA) ·QB (where h is the cofactor)

– Encode is an encoding that does a field-element-to-byte string conversion of the 

x-coordinate of the input.

The output is distributively computed in a way that Z remains threshold confidential.

A.3.2. Subcategory C1.3.2: ECC-MQV Primitive

With a decentralized party A (which can be U  or V ), the ECC-MQV primitive is as follows:

• Secret-shared input:

– [ds,A], [de,A] (secret sharings of the static and ephemeral private keys of party A)

• Public input: (known to every party of the decentralized entity representing A)

– Qe,A (the ephemeral public key of party A);

– Qs,B and Qe,B (the static and ephemeral public keys of party B)

• Secret-shared output: Secret sharing [Z] of a secret Z = Encode(P), where:

– P = h · impsigA · (av f (Qe,B) ·QS,b);

– impsigA = (de,a +av f (Qe,A) ·ds,A) mod n;

– av f (Q) is an integer associated to a public key Q, computed via an “Associate 

Value Function” ([SP800-56A-Rev3, §5.7.2.2]);












– Encode is the same encoding as defined for ECC CDH.

There are two possible implementation forms for the ECC MQV primitive:

1. The full form ([SP800-56A-Rev3, §5.7.2.3.1]), implemented as described above, where 

both static and ephemeral keys exist and are distinct.

2. The one-pass form ([SP800-56A-Rev3, §5.7.2.3.2]), where exactly one other party (A

or B) does not have an ephemeral key, and so the above algorithm uses instead the 

corresponding static key:

• If party A does not have an ephemeral key, then de,A and Qe,A are respectively 

instantiated by ds,A and Qs,A.

• If party B does not have an ephemeral key, then Qe,B is instantiated by Qs,B.

A.4. Subcategory C1.4: Cat1 “Symmetric”

The “symmetric” subcategory includes primitives for the NIST-approved symmetric-key 

enciphering scheme (the advanced encryption standard [AES]), as well as for other NIST-

approved primitives used for KDM/KC. Some primitives in scope (e.g., hashing) are techni-

cally defined as keyless, but in practice they can be considered in settings (e.g., for KDM/KC) 

where their “plaintext” input is a key (symmetrically) known by two parties.

While “symmetric” primitives are often used in standardized “modes of operation” for large 

inputs, the thresholdization focus of this call is on the basic primitives, where the complexity 

of specifying a threshold scheme lies. For example, once a threshold scheme for AES 

enciphering/deciphering is defined, then it is straightforward to apply it to some mode of 

operation based on AES, including for the purpose of computing a cipher-based message

authentication code (CMAC), or a ciphertext based on a mode for authentication encryption 

with associated data (AEAD). Similarly, a threshold scheme for an approved hash function 

could then also be applied to calculate an HMAC. Some threshold schemes may nonetheless 

allow a cost amortization when repeatedly executed.

A.4.1. Subcategory C1.4.1: AES Enciphering/Deciphering

With respect to threshold enciphering/deciphering in Cat1, there is only one symmetric-key 

block-cipher of interest: AES, specified in FIPS-197. A submission of threshold scheme 

for AES enciphering/deciphering must assume a secret-sharing of the secret key, and 

should provide implementations for at least the key-sizes 128 and 256. A submission 

can choose to implement any (or various) types of input/output interface from {NSS, SSI, 

SSO and SSIO}. In applications where the high-sensitivity of the plaintext warrants a 












distribution of trust over its knowledge, then it can make sense to consider: an SSI mode for 

enciphering, and/or an SSO mode for deciphering, so that the plaintext is not reconstructed 

within the decentralized AES-evaluator. For benchmarking purposes, a submission should 

evaluate performance at least in the single evaluation case, i.e., for a single AES enciphering 

and/or deciphering. However, to help clarify possible amortization gains and/or clarify the 

feasibility of the threshold approach for AES modes of operation (in the SP800-38-series), 

the benchmarking can also measure performance for the threshold execution of 26 and/or 

210 AES encipherings/decipherings in some specific mode of operation.

Threshold AES enciphering versus oblivious AES evaluation.  Oblivious AES evaluation 

is a common secure 2-party computation (S2PC) benchmark in the literature. There, a single 

party holding the plaintext does not share it with a single party holding the key, and yet 

receives the corresponding ciphertext. The application of threshold AES in scope in this call 

is different, in that the threshold entity is responsible for computing the output, when the 

key has been secret-shared. The plaintext is either (i) directly shared with the threshold-de-

centralized entity responsible for the enciphering or deciphering, or (ii) is secret-shared in 

the input/output. A secret-shared-I/O threshold AES enciphering may also be useful for the 

computation of a CMAC, which can in turn be useful for 2KE KDM/KC. That said, techniques 

developed for threshold AES are likely to also be useful for oblivious AES evaluation.

A.4.2. Subcategory C1.4.2: KDM and KC for 2KE

The protocols for pair-wise key-establishment (2KE), in both the ECC-based [SP800-56A-

Rev3] and RSA-based [SP800-56B-Rev2] cases, are finalized with the use of a key-deriva-

tion mechanism (KDM) [SP800-56C-Rev2; SP800-108-Rev1] and optional key-confirmation 

(KC). These operations follow after the generation of a precursor intermediate secret M, 

obtained/produced via a key-agreement of key-transport type of 2KE protocol.

Threshold unfriendliness.  The current NIST-specified KDM and KC primitives are 

possible to thresholdize based on complex MPC protocols, but are based on threshold-

unfriendly hash-or-XOF functions ([FIPS-180-4; FIPS-202]) or MAC/PRFs (of the type 

CMAC [SP800-38B], HMAC [FIPS-198-1] or KMAC [SP800-185]).

Considering the “pair-wise” nature of key-establishment protocols (i.e., involving two sides), 

some use cases (namely when party A has to be thresholdized, but party B has to use a legacy 

implementation) may require the use of a KDM and/or KC that is functionally-equivalent 

to a currently NIST-specified one. However, the costs and benefits of implementing a 

potentially costly MPC in such a case should be carefully considered.












Threshold schemes for AES enciphering/deciphering may be easy to adapt to threshold sch-

emes for CMAC primitives. Techniques used to enable threshold schemes for the hashing that 

is useful for KDM or KC may also be reusable for (pseudorandom) EdDSA and Deterministic 

ECDSA, which require a secret-nonce computed as a hash whose pre-image contains a private 

nonce-derivation key.

Cat2 of this call enables proposals of threshold-friendlier KDM and KC primitives that would 

still retain the desired properties of the final generated key, namely indistinguishability from 

uniform selection, and one-wayness with respect to the intermediate key Z used as input.

A.4.2.1. Key Derivation Mechanism (KDM)

A threshold KDM scheme makes sense if the corresponding party (in the pair-wise key-

-establishment) is supposed to not learn the final secret k. The threshold KDM scheme 

produces a secret-shared output (SSO) (similar to a threshold keygen scheme), so that the 

final secret k (to be consumed by another primitive) is secret-shared. There are one-step 

(extraction) and two-step (extract-then-expand) KDMs (see SP800-108-Rev1 for the second 

step). Additionally, there are variants (see SP800-135-Rev1) approved for specific applications.

Since the final key k can be easily derived from the intermediate key M, it follows that it only 

makes sense to thresholdize a KDM if the input (intermediate) key M is also secret-shared. 

Conversely, if a KDM is not thresholdized but Z has itself been produced in a threshold 

manner, (i.e., based on a secret-shared private key d), then the reconstruction of Z does not 

break the confidentiality of the private key d.

A.4.2.2. Key Confirmation (KC)

A threshold key-confirmation primitive computes a PRF image of the intermediate secret Z, 

without Z ever being reconstructed. This can make sense if the KDM is also thresholdized 

in SSI mode, to directly use a secret-shared Z as input, withouth needing to reconstruct it. 

Key-confirmation is defined, in various possible modes (unilateral or bilateral), for ECC-

based key-agreement in SP800-56A-Rev3 (§5.9, Table 5) and RSA-based key-establishment 

in SP800-56B-Rev2 (§5.6, Table 1).

A.5. Subcategory C1.5: key-Generation (keygen) for Cat1 Schemes

A key-generation (keygen) primitive determines a private/secret “key” that is needed by 

subsequent primitives. The threshold scheme may also compute other public parameters. For 












example, the keygen primitive of a digital signature scheme produces a private/public keypair, 

whose private element is then required to produce signatures, and whose public element is 

used to verify the correctness of signatures. Typical requirements for private keys include 

unbiasing and confidentiality. These requirements can also apply to the generation of other 

secret material, such as a random secret nonce. Secrets generated via a keygen primitive may 

be persistent (e.g., for multiple-times use, without planned erasure), or ephemeral (e.g., for 

single-time use, followed by erasuse). Table 10 provides a non-exhaustive list of parameters 

that may be generated via a keygen operation (some variations are possible).

 Table 10. Examples of keygen purposes

  Keygen purpose (subsequent operation)  Private/secret key  Other public elements

 ECC-signing; ECC-2KA primitives  exponent d (integer mod n) Q = d ·G (elliptic curve point)

 RSA signing and decryption  primes (p,q)  modulus N = p ·q
     exponent d = e−1mod φ N  exponent e

 RSA encryption for 2KE  random bit-string Z c = RSAEP((n,e),Z)

  Key-derivation / key-confirmation    KC(Z, ...)

 AES enciphering/deciphering  random bit-string k  —

Terminology and scope for threshold schemes for keygen. Threshold schemes for keygen 

are often called distributed key generation (DKG) protocols. In this call, the focus on DKG is 

only on the generation of the private/secret keys and (when applicable) the public parameters 

that depend on them (e.g., an RSA modulus obtained from the product of two secret primes, 

or the elliptic curve public point obtained from integer-multiplying a base point by the secret 

key). Other “domain parameters”, such as the security strength κ , the parameters of an 

elliptic curve, or an RSA encryption key, which may be determined before the computation of 

the private key (but which in conventional specifications may sometimes be included within 

the keygen primitive) can be assumed to be fixed or pre-agreed upon.

Interchangeability of random values. In a DKG protocol, the random private/secret 

key to be output in secret-shared form, and possibly other intermediate random elements, 

is obtained by combining random contributions from several parties. This call does not 

pose specific requirements on these random values, i.e., beyond the requirement of inter-

changeability with regard to some subsequent operation of interest, However, a submitted 

DKG protocol should be accompanied by an explanation of why the proposed randomness 

generation mechanism provides appropriate security assurances, namely compared to the 












assurances provided by the conventional random-bit generation (RBG) [SP800-90A-R1; 

SP800-90B; SP800-90C-3PD] that may be required in the corresponding conventional (non-

threshold) keygen specification. Some original RBG-related requirements associated with 

random values in the conventional specification may still be considered for the individual 

contributions of each party in a corresponding DKG.

A.5.1. Subcategory C1.5.1: ECC Keygen (for ECDSA, EdDSA, and ECC-2KA)

The ECC keygen of a private/public key-pair is similar across various schemes, including 

for ECDSA and EdDSA signature schemes [FIPS-186-5-Draft], and for ECC-2KA primitives, 

such as CDH and MQV [SP800-56A-Rev3]. In a threshold ECC keygen (i.e., DKG for an 

ECC scheme), the usual goal is to produce a secret-sharing [d] of a private key d (usually a 

positive integer mod n, the order of the subgroup of interest), along with a corresponding 

(not-secret-shared) public key Q = d ·G. In a threshold 2KA scheme, each party may 

need this decentralization (secret-sharing) for their static private key dA (or ds,A) and/or an 

ephemeral private key (de,A).

Some schemes, such as EdDSA, may include additional private/secret elements (e.g., a 

nonce-derivation key for pseudorandom generation of nonces) that do not require a sub-

sequent verifiable relation with the public key. The generation of said components in the 

threshold setting may be considered differently (or may even not be necessary), provided 

that an appropriate interchangeability property is satisfied with regard to the subsequent 

operations that use the ECC private/public keypair.

Submissions of threshold schemes for ECC signing and ECC-2KA primitives are expected 

(though not required) to include a corresponding proposal of a compatible ECC-DKG 

protocol. Implementation recommendations for a submitted DKG (e.g., which elliptic curves 

and security parameters) should apply to at least one subsequent threshold scheme of interest.

A.5.2. Subcategory C1.5.2: RSA Keygen

RSA keygen is needed for the RSADSA scheme (Section A.1.1) and the RSA PKE scheme 

used for 2KE (Section A.2). In its basic format, RSA keygen consists of:

• generating a pair of random secret primes (p,q), and outputting their product N; and

• computing and outputting as private key d the inverse (mod LCM(p−1,q−1)) of a 

public exponent e, where e is selected (randomly or as an input parameter) before the 

selection of the primes.












DKG schemes for RSA can be submitted separately from subsequent threshold operations, 

such as threshold RSA signing, threshold RSA decryption, or threshold RSA SSI-encryption. 

Still, a submission of RSA DKG should be compatible with said subsequent schemes, 

and should include evaluation for at least two security parameters consistent with the 

recommendations from Table 5.

FIPS-186-5-Draft (§A.1) and SP800-56B-Rev2 (§6.2–§6.3) specify various requirements for 

the RSA keygen, respectively for signing and PKE. Possible variations of the format 

of the output key include the prime-factor format and the CRT format, as explained in 

Section A.2.2. The following paragraph list some of the requirements.

A.5.2.1. Criteria for the RSA Modulus and Primes

• p and q must be of the same bit length (i.e., half the length of the RSA modulus N).

• p and q must be randomly generated (but the two most significant bits of each may be 

arbitrarily set), as “probable” or “provable” primes, satisfying at least one of the five 

options from Table 11.

 Table 11. Criteria for the random primes of an RSA modulus

  Type Sub-type Provable prime Probable prime

  Simple provable p, q

    probable p, q

  Complex provable p1, p2 q1, q2 p, q

    hybrid p1, p2, q1, q2, p, q

    probable p1, p2, q1, q2, p, q

Per §A.1.1 of FIPS-186-5-Draft: p1, p2, q1, q2 are called auxiliary primes and must be divisors of 
p−1, p+1, q−1 and q+1, respectively, i.e., p1|p−1, p2|p+1, q1|q−1, q2|q+1.





To satisfy the “complex” type of key-generation, the auxiliary primes must exist with certain 

minimum lengths. If p and q are required to be provable primes, then their minimal required 

bit-length is roughly half of the minimal required length of probable primes.

In a submitted RSA DKG, the threshold computation of the primes and modulus may be 

modularized from the subsequent calculation of the private decryption/signing exponent 

d. Interestingly, there are conceivable applications (beyond signatures, encryption, and 

decryption) where RSA moduli are useful and a private exponent is not necessary.












A.5.2.2. Criteria for the Private Exponent

The private exponent d = e−1 (mod L), where L = LCM(p−1,q−1), must be larger than 

2nlen/2 and smaller than L, where the public exponent e is an integer between 216 and 2256

selected before the generation of p and q.

A.5.3. Subcategory C1.5.3: Bitstring Keygen

Various primitives require the random generation of a secret bit-string (or integer within a 

defined interval), without the need for a corresponding public component. For example, this 

is the case with generating: an AES key; a secret-key for encapsulation under an RSA PKE; 

a nonce for use in other schemes; a salt for a KDM or KC in the scope of a 2KA.

A DKG based on verifiable secret-sharing may require public commitments of the shares of 

each party, even if the original primitive did not require any public key. A submission should 

explain how/whether the cryptographic assumptions sustaining the security of the threshold 

scheme change in comparison with those required for the security of the original primitive. 

For example, AES-256 is considered to be post-quantum secure, whereas ECC-based 

commitments used in typical MPC protocols might not be.

A.6. Subcategory C2.6: Advanced

As mentioned in Section 7.2.1, subcategory C2.6 allows for the submission of threshold 

schemes for primitives that support cryptographic schemes with advanced functional features 

that are different from those in current NIST standards. For example, in the case of a

fully-homomorphic encryption (FHE) scheme, the supported operations go beyond the usual 

keygen, encryption and decryption from a regular encryption scheme. There is also a set of 

homomorphic operations (e.g., addition and multiplication) over ciphertexts (see, e.g., [HES, 

§1.1.1]). As another example, an identity-based encryption (IBE) scheme has not just one 

key-generation primitive, but rather two: one for generating a public key and a master private 

key, and another one (requiring the master key as input) for generating a decryption key for 

each possible “identity” (e.g., email addresses). A generalization of IBE is attribute-based

encryption (ABE), where the private key of each user is created based on a set of attributes.

In this subcategory, the selection of the use-cases used to benchmark performance is left to 

the discretion of the submitters. For example, different FHE schemes may require different 

benchmarking operations to highlight their best features. One FHE scheme may be better 

suited to homomorphic Boolean operations (operations over bits), while another one may be 

better suited for homomorphic modular operations over large integers.












A.6.1. Use-Case Example: Non-Threshold FHE-Based AES Oblivious Enciphering

0a. Setup FHE (keygen): An FHE scheme is initialized with encryption key e (for encryp-

tion operation FHE.Ence), and decryption key d (for decryption operation FHE.Ence), 

and allows homomorphic-evaluation (over FHE-ciphertexts) of any function f  (within 

a certain range of functions) using operation FHE.Hom[ f ].

0b. Setup AES (keygen): An AES cipher is initialized with secret key k, with AES.Enck

denoting the corresponding enciphering operation.

0c. Setup parties (private inputs): (i) Client A knows a secret plaintext m, and the FHE 

encryption key e; (ii) Server S knows the AES secret-key k; (iii) and client B (possibly 

the same as client A) knows the FHE decryption key d.

1. FHE-Encrypt. The client A FHE-encrypts the secret plaintext m, obtains the FHE-

ciphertext C = FHE.Ence(m), and sends it to the server S.

2. FHE-Homomorphic-Evaluate. The server S homomorphically evaluates the AES-

enciphering, obtains H = FHE.Hom[AES.Enck](C) (which is a valid FHE-encryption 

of the AES-enciphering of secret plaintext m), and sends the result to client B.

3. FHE-Decrypt. The client B FHE-decrypts the received ciphertext H, and thus obtains 

the AES-enciphering of the secret plaintext: AES.Enck(m) = FHE.Decd(H).

4a. (Optional) Prove correctness. The server S may also send a ZKPoK string π =

ZKPoK.Prove[k;(H,C) : FHE.Hom[AES.Enck](C) = H] to client B, thus ZK-proving 

knowledge of a secret AES key (k) that is consistent with the homomorphic operation 

that transformed the initial FHE-ciphertext C into the final FHE-ciphertext H. A more 

sophisticated ZKPoK can also be used to prove consistency with some additional 

public commitment of the AES-key k.

4b. Verify the proof. Anyone with the FHE-ciphertexts (C, H) can verify the correctness 

of the ZKPoK π , by checking true=? ZKPoK.Verify(π,(H,C),AES.Enc).

External engagement. Proposals of FHE schemes (and their threshold schemes) are 

welcome to be submitted and/or analyzed in connection with other related ongoing public 

efforts, such as HomomorphicEncryption.org and FHE.org, as a way of promoting: (i) 

fulfillment of community-based technical recommendations; (ii) alignment with existing 

reference material/specifications; and (iii) further public scrutiny of proposed schemes. Such 

engagements may also help clarify reference use-cases for useful benchmarking.












A.6.2. Threshold Schemes for FHE-based AES Oblivious Enciphering

Once a conventional (non-threshold) scheme is specified (S6) in scope of the “advanced” 

subcategory C2.6, there may be multiple types of decentralization to consider. For the above-

described example of FHE application (Section A.6.1), the following is a non-exhaustive list 

of possible decentralizations of one of the original participants (client A, server S, or client 

B) into a threshold entity composed of multiple parties.

1. Threshold FHE.Keygen. In a setup phase with a thresholdized client B, a DKG can 

distributively compute a secret-sharing of an FHE decryption key d. Whether or not 

the encryption key e is secret-shared can depend on whether the FHE scheme is of, 

respectively, symmetric-key or asymmetric-key (i.e., public/private key pair) type.

2. SSI threshold FHE-Encryption. If client A is thresholdized, and set up with a secret-

shared plaintext m, a threshold scheme can compute C = FHE.Ence(m) without 

anyone learning m.

3. Threshold Homomorphoic evaluation (of function with secret parameter). If the 

server S is thresholdized, and setup with a secret-sharing of the AES key k, then the 

parties can distributively compute the homomorphic-evaluation operation, to obtain 

H = FHE.Hom[AES.Enck](C)), without anyone learning k.

• In an NSS mode, all server-parties learn H.

• In an SSO mode, each server learns a secret-share of H.

4. Threshold FHE decryption. If client B is thresholdized, and setup with a secret-

sharing of the FHE-decryption key d, then a threshold scheme can decrypt the received 

value H to obtain C = AESk(m), without anyone learning d.

• In a NSS mode, all clientB-parties learn C.

• In a SSO mode, each clientB-party learns only a secret-share of C.

5. Threshold ZKPoK. (See subcategory C2.7 in Section A.7)

On the use case of oblivious AES enciphering.  The use case is called oblivious AES-

enciphering because the client B obtained an AES-enciphering of the secret plaintext m

even though the AES-key holder (the server S) remained oblivious to the secret plaintext. 

Interestingly, oblivious AES-enciphering is also a typical benchmark case for secure 2-party 

computation (S2PC; consider the case where clients A and B are the same), usually using 

different techniques, such as garbled circuits and/or oblivious transfer. Compared with an 

FHE-based solution, usual S2PC protocols (expectably) lead to much faster execution, but 

also much larger communication complexity. 












A.7. Subcategory C2.7: ZKPoKs

Besides (secure) multi-party computation (MPC), a broad type of primitive of great interest 

in the threshold context is the zero-knowledge proof of knowledge (ZKPoK), which is 

covered by subcategory C2.7. As mentioned in Section 7.2.2, a submission of ZKPoK in 

this subcategory must specify a conventional ZKPoK, and possibly also specify a threshold 

version (when the prover is distributed and there is a secret-sharing of the secret input).

In usual ZKP terminology [ZkpComRef], a ZKPoK is used to prove a statement of knowledge, 

such as knowledge of a secret witness (w) that satisfies a given relation (R) with a public

instance (x), such that R(x,w) is true. For example, in a ZKPoK of a private RSA key, the 

instance can be the RSA modulus N, the secret witness can be the corresponding pair (p,q)

of prime factors, and the relation can be the predicate that returns true if and only if the 

input witness is indeed a pair of primes and their product is the public modulus.

Type of “proofs” of interest:

• Proofs and arguments: The use of “proof” in this call is meant to also include the 

case of arguments with computational soundness. Any submission of ZKPoK should 

clarify its soundness type (to allow for differentiation between “proof” and argument).

• ZKP of knowledge (versus of correctness): The proofs in scope are ZKPoKs, but can 

also serve the purpose of ZK-proving correctness of the secret data (whose knowledge 

is being proven) as well as of the corresponding public data. In the literature, a ZKP 

of correctness is also known as a ZKP of “language membership”.

• Transferable and non-interactive. Traditionally, ZKPs and ZKPoKs are defined as 

two-party protocols with a requirement of deniability (also known as non-transferabil-

ity), implying that a verifier convinced by a proof cannot later transfer said confidence 

to a third party. This property often stems from interactivity between prover and 

verifier, and/or relies on local setup assumptions, such as a local common reference

string (CRS) or local random oracle (RO). Conversely, the present call is by default 

interested on transferable non-interactive zero-knowledge (NIZK) proofs that can be 

publicly verified non-interactively. A submission of ZKPoK can deviate from this 

default (non-interactiveness and transferability) as long as justified on the basis of 

utility to the threshold setting.

The instantiation of some of the above-listed attributes (e.g., transferability, and compu-

tational soundness) may affect some aspects of composability. These effects should be 

discussed in any submission that proposes a ZKPoK.












Distributed prover (not verifier).  In this call, the default setting of interest for thresholdiza-

tion of a ZKPoK is the secret-sharing, across multiple parties, of the secret key (traditionally 

held by a single prover) whose knowledge is being proven. While a ZKPoK variant can 

also be conceived for the case of distributed verification (with the ZK property requiring 

that a threshold number of verifier parties do not collude), such setting is not the default. A 

deviation from the mentioned default in a submission of ZKPoK is possible but its auxiliary 

utility for the threshold setting then needs to be thoroughly argued for.

Examples.  Table 12 lists various examples of ZKPoK of anticipated interest with regard to 

Cat1 primitives. Other examples can be conceived for primitives in Cat2.

 Table 12. Example ZKPoKs of interest related to Cat1 primitives


 Related

 type
 Related (sub)sub-

 category: Primitive
 Example ZKPoK (including consistency with public

 commitments of secret-shares, when applicable)

 Keygen C1.5.1: ECC keygen of discrete-log (s or d) of pub key Q
    C1.5.2: RSA keygen of factors (p, q), or group order φ , or decryption key d
    C1.5.3: AES keygen of secret key k (with regard to secret-sharing commitments)
 PKE C1.2.1: RSA encryption of secret plaintext m (encrypted)
    C1.2.2: RSA decryption of secret-shared plaintext m (after SSO-threshold decryption)
 Symmetric C1.4.1: AES enciphering of secret key k (with regard to plaintext/ciphertext pair)
    C1.4.2: Hashing in KDM of secret pre-image Z

Some observations:

• A ZKPoK of a secret AES key that transforms a given plaintext into a given ciphertext 

corresponds to a signature primitive submitted to the PQC process.

• No ZKPoK example was provided in association with the signing operation, since 

their public verification operation already inherently verifies the signature correctness. 

In fact, a digital signature often constitutes a transferable NIZKPoK of the private 

signing key corresponding to the public key, with said proof being additionally bound 

to a message (the element being signed). For example, an EdDSA/Schnorr signature 

(Section A.1.1) is itself a NIZKPoK of discrete-log.

• The cases of ZKPoK related to a private signing key, but possibly without producing 

a signature, are associated with keygen (subcategories C1.5 and C2.5).

If a submission of threshold scheme uses a ZKP/ZKPoK that may be of interest to support 

other threshold schemes, then it should modularize the specification of said ZKP/ZKPoKand 

indicate it as useful also for consideration in subcategory C2.7.












Submission of a ZKPoK as auxiliary to other threshold scheme(s): 

• Specification of a non-threshold version. A submission in the ZKPoK subcategory 

must specify a conventional (non-threshold) ZKPoK. This may be submitted without 

a corresponding distributed/threshold version, as long as the documentation clarifies 

how the conventional ZKPoK can be useful for the threshold setting (perhaps some 

other concrete threshold scheme). For example, a conventional ZKPoK can be justified 

for use by a dealer to prove correctness of an established secret-sharing setup. There 

may nonetheless be an additional value in also specifying a threshold version of the 

ZKPoK (i.e., when the secret input is distributed).

• Standalone versus embedded proposal of a ZKPoK. A package that proposes 

an auxiliary ZKPoK (and possibly a distributed version thereof) can be submitted 

within the standalone ZKPoK subcategory, or within a submission of a threshold 

scheme(s) for other primitives in Cat1 or Cat2. In the standalone case, the proposal 

must clarify how the secret and public knowledge matches the setting of (e.g., a 

particular secret-sharing useful for) a threshold scheme for some primitive of interest.

• External engagement. Proposals of ZKPoK schemes (and their threshold schemes) 

are welcome to be submitted and/or analyzed in connection with other related on-

going public efforts, such as ZKProof.org, as a way of promoting: (i) fulfillment of 

community-based technical recommendations; (ii) alignment with existing reference 

material/specifications; and (iii) further public scrutiny of proposed schemes. Such 

engagements may also help clarify reference use-cases for useful benchmarking.

Notes on features.

• Succinctness: For practicality, succinctness is a useful feature of a ZKPoK. When 

focusing on succinct and non-interactive ZKPoKs, it is also common to refer to them 

as SNARKs (succinct non-interactive arguments of knowledge).

• Transferability: As mentioned above, non-interactive public verifiability / transfer-

ability are default desired features

• Security assumptions: While the assessment of security of a ZKPoK may be based on 

assumptions different from those inherent to the underlying cryptographic primitive, 

or to a related proposed threshold scheme, said implications should be distinguished 

across various security properties. In particular, it is relevant to characterize the 

properties of ZK, soundness and non-malleability, and how they may vary upon 

various types of protocol composition (e.g., concurrent executions).












Specialized versus generic ZKPoKs.  Some ZKPoKs (e.g., of a discrete-log, or of an RSA 

private key) may be based on specialized techniques somewhat similar to the operations 

(e.g., exponentiations) used to commit the secret pre-image. Conversely, other ZKPoKs (e.g., 

when proving knowledge of a pre-image of AES-enciphering, or of SHA-based hashing) 

may stem more easily from a generic ZKP system that simply requires “arithmetizing” the 

statement of knowledge, the instance and the witness in some suitable representation (e.g., 

specifying a Boolean or arithmetic circuit, and instantiating its input variables). In the latter 

case, a submitted ZKPoK can be explained generically, and then a simple explanation be 

given on how to apply it to a circuit (or other applicable representation). For example, 

the NIST Circuit Complexity project [Proj-CC] collects Boolean circuit representations of 

various NIST-approved primitives, such as from AES and SHA. The final version of this call 

may reference a specific representation for Boolean circuits, to facilitate an interchangeable 

specification of circuits of certain NIST-specified primitives (e.g., of certain block-ciphers 

and hash-functions) whose proof of knowledge of pre-image may be useful.

A.8. Subcategory C2.8: (Auxiliary) Gadgets

As mentioned in Section 7.2.3, subcategory C2.8 allows for the consideration of gadgets, 

such as garbled circuits, oblivious transfer, generation of correlated randomness, commit-

ments, secret resharing (possibly for a new threshold value and a new total number of 

parties), multiplicative-to-additive share conversion, additively homomorphic encryption 

(AHE), MPC or ZKP friendly hashing, consensus, and broadcast. The specification of 

some gadgets may also fit other subcategories. For example, an AHE scheme allows for an 

advanced feature (homomorphic addition over ciphertexts), and thus can fit in “advanced” 

subcategory C2.6 (if accompanied by a corresponding threshold scheme), and at the same 

time can also be useful to support multiple other threshold schemes, and thus fit in subcate-

gory C2.8. In such type of cases, a submission should identify (e.g., including in S2 and S3) 

the fit in various subcategories.

Gadgets can be proposed in a standalone manner in a submission, or as a module in a more 

encompassing submission in the scope of other subcategories. A standalone submission 

of an auxiliary gadget (and possible threshold version thereof) should make a strong case 

for its utility in supporting the threshold environment, and/or in directly supporting various 

concrete threshold schemes in scope of other subcategories in this call. 












B. Submission Checklists

The following are draft templates of checklists to help keep track of the fulfillment of the 

various requirements for a complete submission:

B.1. Checklist for Submission Phases (Ph) (see Section 4)

 Check  #  Item Comments

 � Ph1  (Optional) Early abstract
 � Ph2  (Optional) Preliminary package
 � Ph3  Full package (M1–M5)

B.2. Checklist for Package Main Components (M) (see Section 4)

 Check  #  Item Comments

 � M1  Written specification (S1–S16)
 � M2  Reference implementation (Src1–Src4)
 � M3  Execution instructions (X1–X7)
 � M4  Experimental evaluation (Perf1–Perf5)
 � M5  Additional statements

B.3. Checklist for M1: Written Specification Sections (S) (see Section 4.2)

 Check  #  Item Comments

 � S1  Title pages
 � S2  Abstract
 � S3  Executive summary
 � S4  Index
 � S5  Clarification of prior work
 � S6  Conventional primitives/scheme
 � S7  System model
 � S8  Protocol description
 � S9  Security analysis
 � S10  Analytic complexity
 � S11  Choices and comparisons
 � S12  Technical criteria
 � S13  Deployment recommendations
 � S14  Notation
 � S15  References
 � S16  Appendices (optional)












B.4. Checklist for M2: Open source (Src) Reference Implementation (see Section 4.3)

 Check  #  Item Comments

 � Src1  Is self-contained
 � Src2  Is licensed as open-source
 � Src3  Contains inline comments
 � Src4  Has a clear API

B.5. Checklist for M3: Execution Instructions (X) (see Section 4.4)

 Check  #  Item Comments

 � X1  User manual: compilation
 � X2  User manual: parametrization
 � X3  User manual: execution
 � X4  User manual: KAT set
 � X5  Script: KAT
 � X6  Script: benchmark
 � X7  Script: others (optional)

B.6. Checklist for M4: Performance Analysis (Perf) (see Section 4.5)

 Check  #  Item Comments

 � Perf1  Memory complexity
 � Perf2  Processing time
 � Perf4  Networking time
 � Perf3  Communication complexity
 � Perf5  Round complexity

B.7. Checklist for Technical Requirements (T) (see Section 5)

 Check  #  Item Comments

 � T1  Primitives
 � T2  System model
 � T2.1  Participants
 � T2.2  Distributed systems and communication
 � T2.3  Adversary
 � T3  Security idealization
 � T4  Security versus adversaries
 � T4.1  Active
 � T4.2  Adaptive
 � T4.3  Pro-active
 � T5  Threshold profiles
 � T6  Building blocks
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