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As a leading technology and solutions development organization, the Alliance for 
Telecommunications Industry Solutions (ATIS) brings together the top global ICT companies to 
advance the industry’s business priorities. ATIS’ 150 member companies are currently working 
to address network reliability, 5G, robocall mitigation, smart cities, artificial intelligence (AI)-
enabled networks, distributed ledger/blockchain technology, cybersecurity, IoT, emergency 
services, quality of service, billing support, operations and much more. These priorities follow a 
fast-track development lifecycle from design and innovation through standards, specifications, 
requirements, business use cases, software toolkits, open-source solutions, and interoperability 
testing.

ATIS is accredited by the American National Standards Institute (ANSI). ATIS is the North 
American Organizational Partner for the 3rd Generation Partnership Project (3GPP), a founding 
Partner of the oneM2M global initiative, a member of the International Telecommunication 
Union (ITU), as well as a member of the Inter-American Telecommunication Commission 
(CITEL).

For more information, visit www.atis.org. Follow ATIS on Twitter and on LinkedIn.

The ATIS Next G Alliance is an initiative to advance North American wireless technology 
leadership over the next decade through private sector-led efforts. With a strong emphasis 
on technology commercialization, the work will encompass the full lifecycle of research and 
development, manufacturing, standardization, and market readiness. 
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Native support of artificial intelligence (AI) is widely expected by the industry to be one of the 
major features of the next-generation wireless network and is deeply woven into the mission of 
the Next G Alliance (NGA) to establish North American leadership in 6G and beyond. It is one of 
the six audacious goals of the National 6G Roadmap working group and as such addresses key 
North American imperatives. It is also one of NGA’s research priorities, meant to identify driving 
forces, technical challenges, and research directions. 

Although the initial application of AI and machine learning (ML) to wireless networks began 
with 5G, its application in 6G will be more real time, more comprehensive, and seamlessly 
integrated into the wireless system design. This paper surveys the research and technology 
directions required to make the vision of an AI-native wireless network a reality. The most 
challenging task in front of us is the integration of AI/ML into the layered architecture of current 
wireless networks. Research directions include issues like AI/ML model lifecycle management, 
performance evaluation and interpretation, training data availability, the mandate for extra 
system capability, security, and privacy. In addition to the challenges, the application of AI/ML 
will also bring new opportunities, such as joint optimization of network and device operations 
through distributed learning and federated learning.

The path toward an achievable AI-native wireless network laid out in this paper identifies two 
of the major challenges: the difficulty of obtaining real data from wireless networks for model 
training, validation, and testing, and the impact of AI’s application on existing communication 
standards and communication systems.
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1INTRODUCTION
The Next G Alliance is a bold, new initiative to advance 
North American wireless technology leadership over the 
next decade through private-sector-led efforts in association 
with government stakeholders. With a strong emphasis on 
technology market-readiness, the Next G Alliance’s work will 
encompass the full lifecycle of research and development, 
manufacturing, standardization, and market readiness. This 
effort is intended to be a reference to drive North American 
leadership across industry, academia, and government 
stakeholders to meet Next G Alliance objectives. 

Next G Alliance has identified six audacious goals that 
describe top priorities for North America’s contribution and 
leadership in these future global standards, deployments, 
products, operations, and services. An AI-native wireless 
network is one of those six audacious goals to increase 
the robustness, performance, and efficiencies of wireless 
and cloud technologies against more diverse traffic types, 
ultra-dense deployment topologies, and more challenging 
spectrum situations. 

The term AI-native is used to indicate that AI is incorporated 
into major functionality from the very beginning of the design 
and development cycle of a system (application, device, 
network). An AI-native 6G system leverages AI techniques 
(e.g., ML, deep learning, neural networks.) for the design, 
deployment, management, and operation of various network 
and device functions. 

Next G Alliance’s goal is to promote critical applications of 
AI in the next generation of wireless to advance the North 
American leadership in the field of wireless communications 
and fulfill market needs. AI-native networks need to be fully 
trusted by people, businesses, and governments to be resilient, 
secure, privacy preserving, safe, reliable, and available under 
all circumstances. Therefore, it closely relates to the trust and 
security audacious goal of the Next G Alliance. 

6G will build up its capabilities on distributed clouds, and 
a tight AI-native integration between communication and 
computing is the natural evolution. It is expected that 6G 
wireless standards need to be developed in an AI-native 
way, enabling a large set of applications that may rely on 
enhanced real-time capabilities. Overall, the application of AI/
ML to 6G will bring a shift in how networks are designed and 
implemented. The application of AI to 6G will come at multiple 
stages and different flavors [1]. AI/ML can be used to improve 
individual functions or modules, as well as in an end-to-end 
fashion, jointly optimizing multiple functions or modules. 
Initial applications of AI/ML are expected by 6G’s launch, with 
more advanced applications emerging by 2030 and beyond. 

Application of AI/ML is being developed in 5G and ongoing 
5G Advanced standardization, but with a focus on enhancing 
the existing air-interface and network modules and functions 
specified in more traditional ways. AI/ML in 6G will be an 
inherent enabler rather than an overlay, as shown in Figure 1. 

Figure 1: 5G AI/ML and 6G AI/ML [1]
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Therefore, it is necessary that AI/ML be entrenched in 
the design of radio layers with interfacing to AI and data-
collection frameworks. These interactions need to be enabled 
with a strong emphasis on security and privacy. Such an 
AI-native approach in 6G could be a foundation and may 
allow the wireless technology to evolve at a faster pace 
independent of standards cycles. 

It is our understanding that, when comparing the applications 
of AI/ML in 5G/5G Advanced, the applications of AI/ML in 6G 
should have the following features:

	> Although AI/ML applications for 5G are mostly 
operated in near-real-time fashions, many AI/ML 
applications for 6G will operate in the real-time manner.

	> The applications of AI/ML in 5G are limited, but its 
application in 6G will be comprehensive.

	> The design of 5G didn’t take AI/ML into account, 
whereas AI/ML will be blended into the design of 6G. 

	> Although data collection was not present in 5G, in 6G it 
will be at various layers and within the network. 

	> In 6G, the transceivers may be fully redesigned to be 
AI-native. It is also possible that AI/ML in 6G will be 
able to create/learn new signaling and procedures 
based on the environment it is working in.
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2DRIVING FORCES AND 
NORTH AMERICAN IMPERATIVES
Over multiple generations, the networks designed and 
deployed have become increasingly complex involving 
coexistence of radio access networks (RANs), multiple 
frequency bands, and with increasing variety of optimizations 
for different use cases and scenarios. These factors drive 
the need for automation using machine intelligence. Access 
to data from many components of wireless networks — user 
devices, network nodes, and sensors — along with improved 
centralized and distributed computing capabilities, are other 
drivers of AI-native wireless networks. Recent advances in 
AI/ML are enabling near-real-time applications of AI/ML to 
mobile networks. Using traditional methods, suboptimal 
solutions may be preferred because of the optimal solution’s 
complexity. The air interface has variable latency, reliability, 
and sensitivity to channel variations. In many cases, it is 
difficult to even analytically model the problem or scenario 
involved, and an optimal solution may be unknown. Networks 
have become significantly more complex, and performance 
has been improved incrementally using classical techniques 
for signal processing and receiver design. AI will be 
incorporated into major functionality from the very beginning 
of the system’s design and development cycle. AI-native 
wireless networks are expected to have a better performance-
complexity tradeoff by tackling the traditional mobile 
network problems in a completely new way using data-driven 
approaches instead of traditional algorithms. That may lead 
to new 6G use cases which have not been considered before. 

In 5G systems, it is already well known that there are 
thousands of parameters that have to configured. As a 
result, optimizing the system manually will not be an option 
in the future. Moreover, the optimal network configuration 
also depends on the surrounding environment, calling for 
fine-grained adjustments. With AI/ML-based techniques, 
the network may better adapt to users and applications 
seamlessly and automatically in real time, which means 
that the network achieves a larger portion of its theoretical 
capacity. With a fully AI-native 6G network, it could even be 
possible to improve the physical layer based on the prevailing 
channel conditions, allocated frequencies, etc. 

North America already excels in disruptive AI research 
and can therefore widen the gap with other competing 
nations. AI-native networks are a significant opportunity 
for North American operators and industry players develop 
new ways to optimize networks and device operations and 
to enhance customer experiences. A successful, broad 
application of AI/ML to 6G can have an economic impact 
on the telecommunications industry through automation of 
network operations, a shift in how networks are designed 
and implemented, eliminating the need for new hardware 
platforms, and improving network performance across areas 
like energy efficiency, computational efficiency, and spectral 
efficiency. 

Autonomous, energy-efficient, sustainable 
telecommunications networks will impact North American 
industry players, societies, and workforces. Enabling 
network automation through AI/ML-aided management 
and orchestration will reduce long-term costs. As for the 
workforce, the shifts in required skillsets can have a major 
impact on education and other training programs. It is 
important that society as a whole prepares for the impending 
changes for the next decade, with governments playing a 
significant role. North America needs to be at the forefront 
of such economic activity and pursue substantial research 
efforts across the various dimensions of the application of AI/
ML to communication systems. 
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3RESEARCH AND   
TECHNOLOGY DIRECTIONS
3.1	  
Options for Integrating AI/ML into  
Future Networks 
AI and ML offer many potential benefits and enhancements 
for the operation of 5G and 6G wireless networks and 
may also enable new capabilities and functions within the 
networks. Hence there are currently many technical options 
and approaches being considered, researched, and proposed 
for the application of AI/ML into wireless networks.

A first step that is already being studied in 3GPP for 
standardization, as well as being implemented in various 
proprietary solutions, is to add AI/ML to existing functions 
to enable improvements in those functions. This is normally 
implemented by using AI/ML to optimize the selection of 
parameters or variables to provide a more optimum set of 
operating parameters in the related function. The optimization 
may be selected for performance, speed, energy saving, or 
any other key parameter of the function. Note that the actual 
function is unchanged. Instead, AI/ML powers the selection of 
parameters within the function. For example, a radio resource 
scheduler can use AI/ML inference to select appropriate 
resources for an individual user. 

A second step is to replace an existing function within the 
network with an AI/ML-powered function, where the operation 
of the function has been designed for the use of AI/ML. This 
approach enables the operation of the function to be more 
specifically optimized for AI/ML and to benefit more directly 
from the AI/ML capabilities. This approach can be applied 
to virtual network functions (VNFs) in the 5G Core (5GC), 
where the function’s external inputs/outputs remain the same, 
but the actual operation of the function is powered by AI/
ML. The approach can also be applied to individual function 
blocks within the RAN and user equipment (UE) such that 
a specific function in the RAN or UE transmitter/receiver 
chain is now powered by AI/ML. An example here may be for 
beam management, which is currently being studied in 3GPP 
Release 18 with AI/ML approaches, utilizing either spatial or 
temporal domain patterns of the beams. In 6G, we expect 
functions like beam management will be further enhanced 
with the AI/ML approach.

Beyond the steps of function-level application for AI/ML, it is 
also considered that joint learning/inference can be deployed 
across multiple network functions. This is expected to enable 
further improvements in the related functions because the 
AI/ML can take a wider set of inputs and provide inference 
with a wider context. An example here is load balancing 
between cells in a network, where the scheduling and 
admission/mobility control across multiple cells can use AI/
ML inference to determine optimum mobility and scheduling 
actions across the multiple cells. Although this load-balancing 
capability is already able to use ML in 5G networks to improve 

performance, we could see the 6G implementation having 
enhancement of interface APIs to enable joint inference 
across multiple network components. This would enable 
more advanced schemes to be implemented. 

As a further step in the application of AI/ML, significant new 
concepts may be introduced via AI/ML, such as a redesign 
of key functionality including radio resource management. 
Furthermore, AI can be extended over service chains 
of multiple network functions to provide a system-level 
approach to improving performance. An example of this 
might be to use AI inference to manage mobility and cell 
configuration based on the real-time geographical movement 
of users in the cell, applications and services currently being 
used in the cell, together with the load in the cell. The load and 
configuration of a group of cells located at a sports stadium, 
traffic intersection, or airport terminal can have dynamically 
changing load requirements. AI/ML can create better ways of 
managing and configuring those cells. 

RF sensing is another candidate for AI/ML utilization in 6G. 
AI/ML is already demonstrated for object recognition in video, 
lidar, and radar applications, so there can be an application 
for using AI/ML inference to power both the RF sensing 
waveform selection and the object detection/classification/
recognition functions.

3.2	  
Applying AI/ML Learning Algorithms  
and Models
It is arguable that the entire gamut of AI/ML concepts 
and algorithms — such as deep learning, reinforcement 
learning, regression, decision tree, K-means clustering, and 
federated learning — are applicable to wireless network 
evolution, as well. The deployment of these algorithms 
within multiple layers of the network will be governed by 
resource intensity, latency requirements, power requirements 
at end user devices, and several other considerations. The 
choice between real-time and non-real-time tuning of these 
algorithms should also be made based on the considerations 
of cost and performance.

3.3	  
Computing Architecture for AI/ML
Current AI and ML methods are considered to be power 
intensive due to a high load of compute operations that are 
required, typically measured as Tera Operations Per Second 
(TOPS). In addition, the compute complexity of AI and ML 
can be considered to increase significantly when the number 
of input parameters is extended. These factors lead to the 
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requirement for careful consideration of compute architecture 
with AI/ML-powered functions to ensure the required level of 
TOPS processing power is available. 

The training functions for AI are normally performed in a 
central location, prior to the models being deployed into use 
in the inference engines. This normally leads to the offline 
learning and model training being located on a central 
compute platform where a high level of compute resources 
is available. With federated learning, some of this learning 
task may be passed down to the end device, with the model 
updates from each user then being shared back to a central 
location for a federated update to all users. In 6G we may 
consider a revised compute architecture using standardized 
interfaces and APIs to define the transfer of data for this 
purpose. This type of data transfer between different network 
entities (such as between UE and core network operator) may 
also require suitable business arrangements between the 
different entities to agree on permission for the data transfer.

Inference at a central compute platform is attractive because 
it enables the inference engine to receive input with many 
parameters and enables the use of high-performance compute 
platforms to perform complex AI inference tasks. However, this 
architecture puts a high load on the communications network 
that connects the end device to the inference engine because 
all the raw data from the device must be transferred across the 
network. Moving the inference function out to the end device 
will remove the need to transfer data across the network but 
requires costly high compute power (and related size, weight, 
and power requirements) in the end device. So, a combination 
of edge compute (on device or in a local compute facility close 
to the network connection point of the end device), distributed 
compute (resources placed in the region to provide larger scale 
compute without transferring data to a distant location), and 
central compute (to provide hyperscale compute power for 
highest performance) is designed into the architecture of the 
AI/ML function. 

An example of this architecture can be seen in surveillance 
camera recognition, where an on-device or edge compute AI 
function can be used to recognize and classify certain objects 
in an image (e.g., vehicle license plate, a human face). This 
object class can then be extracted from the image and only 
this sub-portion of the available data is transmitted to the 
central compute, where full classification will take place (e.g., 
optical character recognition of the license plate, or facial 
feature extraction and profile matching for a human face). 

In this example, a relatively simple AI task (with low compute 
power requirements) is performed at the edge and reduces 
the volume of data needing to be sent across the network 
to central compute resources. Then the more complex and 
resource-intensive operations still take place in a central 
compute location, where suitable resources are available. 
This split of inference and compute load (across the 
network from device/edge, to distributed location, to central 
location) is becoming more flexible as more flexible cloud 
compute resources become available. The availability of 
virtualized compute resources, within a standardized platform 
architecture, offers the ability of distributed cloud systems 
to meet the requirements for optimizing the load of AI/ML 
compute resources.

In addition to the volume of data load put onto a network 
when AI/ML is performed in a central location, the centralized 
location of the compute resource can also create significant 
latency in the response time of an AI/ML function. Where an 
AI/ML function is related to a latency-critical task, then the 
transmission time latency of the communications network 
should also be considered. This may lead to the requirement 
for low-latency tasks to be located at the edge of the network 
(e.g., a 1 ms latency connection must be within 300 km, 
providing a round-trip response time of 2-3 ms). So the design 
of the compute architecture for AI/ML must also consider 
transmission latency when allocating inference workloads 
between different distributed compute elements. 

As noted above, AI/ML learning and inference of complex 
functions using a complex data set is relatively intensive for 
compute resources and compute operations. In addition, 
the transfer of large volumes of data sets from an edge 
device to central compute locations consumes significant 
communications network resources. Both of these require 
significant energy resources to power them, and so the 
widespread deployment of AI/ML can be seen as contributing 
to increasing energy consumption of 5G and 6G networks and 
services. This requires that significant work and progress in 
reducing the power consumption to ensure that the carbon 
footprint is reduced and that environmental sustainability of 
6G networks is achieved. Research directions are including 
the design of more efficient and low-power AI/ML inference 
methods, more efficient model training and learning methods, 
and the design/optimization of compute resources to spread 
compute load in the most power- and cost-efficient manner. 

Finally, it can be noted that AI/ML offers the capability to 
improve the management of power consumption within a 
network. An example is using AI/ML inference to activate/
deactivate a radio cell and reduce the energy consumption of 
the entire RAN. If the expected traffic volume is below a fixed 
threshold, AI/ML can turn off the cell and offload terminal 
communication to another cell. From the data collected by 
the RAN network, AI/ML is used to predict energy efficiency 
and load status, and cell activation/deactivation is performed 
to save energy. As the telecom industry moves to focus more 
activities into reducing power consumption and minimizing 
carbon footprint, 6G specifications can be expected to provide 
a framework for a compute architecture where such AI/
ML functions can be implemented and operated with better 
power efficiency.

3.4	  
Performance 
AI/ML performance is key for its successful adoption and 
use in applications or functionalities intended to overcome 
the shortcomings of current 5G AI/ML enhancements and to 
evolve toward a truly AI-native RAN. Remarkable performance 
milestones have been achieved in the broader field of AI/ML, 
from smart end user devices or applications to unmanned 
and/or autonomous vehicles and robots. AI/ML methods 
are steadily replacing conventional algorithms with AI/ML 
models and structures, such as in speech/image recognition 
and video processing, to name only a few examples. Notably, 
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one open-source application of so-called “generative AI” is 
chatGPT (by OpenAI), with applications ranging from writing 
and debugging code in select programming languages to 
writing and composing music, lyrics, or scripts to language 
translation — albeit not without controversy or disruption.

Despite such remarkable progress in the broader field of AI/
ML, its application to AI-native wireless communications is 
still — ad literam — nascent. Certain enablers will be required 
for the latter to mature, such as hardware acceleration 
tailored to ML operations, minimum performance 
guarantees, and consistency of performance for the end-to-
end AI-native system.

Complexity of implementation and cost efficiency will also 
be factors in the selection of the type of AI/ML employed 
by AI-native wireless communications. While complexity is 
inherently related to performance, the latter may choose to 
focus on either success rate, cost efficiency, or accuracy. 
This reflects the dichotomy between AI and ML inasmuch 
as the former (very much in infancy at the time of this white 
paper) aims to achieve intelligence (“success rate”) via 
decision-making. Meanwhile, the latter seeks algorithms that 
allow systems to learn from data (and past experience; thus 
“accuracy”) via, for example, supervised, unsupervised, or 
reinforcement learning (cf. above). 

While ML is a subset of AI, a further sub-class of ML 
is, in turn, deep learning (DL), which currently involves 
Deep Neural Networks (DNNs) in one of the following 
configurations: pretrained but unsupervised, recurrent 
(chain) or recursive (tree), and convolutional NNs. DNNs are 
expected to achieve superior accuracy (over ML per se) by 
exploiting and leveraging large amounts of data (datasets) 
along with higher model complexity. In one aspect, AI-native 
problems with a smaller dimensionality will likely lend 
themselves to plain ML algorithms having lower complexity. 
Meanwhile, a large number of dimensions and parameters 
(vs. hyperparameters) and/or a higher nonlinearity will 
require DL and implementations that can handle increased 
complexity — either algorithmically or by using dedicated 
acceleration hardware.

DL and DNNs have seen a remarkable revival and 
advancement since the early 2000s. Their superior 
performance (in terms of accuracy), while coming at a 
complexity cost, relies on more than one hidden layer. This 
enables them to extract high-level features present in the 
input space by using statistical learning along with large 
datasets to obtain an efficient representation of the input. 
Here, efficiency refers, for example, to dimensionality and 
noise reduction by efficiently projecting the input onto 
subspaces while preserving information and optimizing the 
(information) statistic for subsequent processing. In principle 
— from a performance-improvement perspective based on 
architectural refinements — multiple and fully connected 
layers along with multiple, nonlinear activation functions 
allow AI/ML structures to model high-dimensional spaces 
along with nonlinearities. This, in turn, can help bridge the gap 
between linear yet sub-optimal algorithms to optimal nonlinear 
statistical signal processing. 

The architecture of DNNs can be — at a very high level — 
conceptualized by three basic structure types: Multilayer 

Perceptron (MLP), Convolutional Neural Networks (CNNs), 
and Recurrent Neural Networks (RNNs). The MLP and CNNs 
are feedforward (FF) types of NNs. They rely on stochastic 
backpropagation algorithms — during model training without 
affecting the FF nature, with variations such as gradient 
descent with momentum — in order to learn the weights 
and biases that interconnect the hidden layers. Moreover, 
CNNs are not necessarily “fully connected” and use spatial 
filtering in order to extract features from the input of the 
DNNs (images). Information travels only forward — during 
the inference step of AI/ML — and such DNNs are generally 
suitable for nonlinear classification and prediction problems. 
On the other hand, sequential data, and the implicit memory 
(or “correlation”) embedded in a sequence, require RNNs, 
which have loops and states and are configured to memorize 
parts of the input and to make local predictions. 

In one fundamental aspect, RNNs suffer from the problem of 
so-called vanishing gradient (during backpropagation, which 
can be solved by variations like Long-Short-Term Memory 
(LSTM), bi-directional LSTM, and Gated Recurrent Unit (GRU) 
RNNs. A possible further refinement of RNN (with promising 
potential) involves the mechanism of “attention,” whereby 
every unit of a GRU is allowed to look at a larger pool of 
information than that of the immediate past state. A related 
flavor of DL is the autoencoder, suitable for compression 
(as in source coding, cf. below). Not only does this have 
promising potential, but the transformer architecture is used 
in GPT-3 and powers ChatGPT.

To date, performance in many applications of AI/ML 
predominantly relies on the user’s judgment or perception. 
For both success rate and accuracy, the introduction of 
AI-native in wireless communications will require more 
indirect and abstract measures of performance, with less 
human subjectivity — even while preserving some of the cost 
functions for training the model(s).

AI/ML performance will be ultimately influenced by the speed 
and quality of model(s) training, the availability and quality of 
the datasets, and by model lifecycle management. Training is 
the process whereby an AI/ML system learns to perform its 
task(s) by optimizing the values of its parameters (weights and 
biases in a DNN). During model inference, the learned model 
is used to perform the designed task. Hardware acceleration 
will be key — as will allocation of the computational burden 
across RAN, cloud, and user devices. AI-native wireless 
communications still face a need to research, refine, and 
specify data collection procedures for model training. 
Considerations for user data privacy, along with specifications 
for data collection enhancements and associated signaling, 
will be essential in 6G. In addition, a balance between model 
generalizability and specificity will influence performance. 
General models might have lower accuracy but are simpler 
to deploy. Specific models may perform better, but managing 
many models might become difficult. 

AI/ML model training latency is a fundamental performance 
aspect with several components. Model transfer between 
network nodes can further add latency. Communication 
latency depends on downlink (DL) and uplink (UL) data 
rates for model distribution and respectively for trained 
model updating. Computational latency depends on the 
computation/memory resources available on training devices. 



11

Overall latency is determined by the larger among the two. To 
reduce the training latency, more efficient compute engines 
tailored for ML operations are often used, such as graphics 
processing units (GPUs) and network processing units 
(NPUs). Although model inference is less computationally 
demanding, its complexity, including the pre- and post-
processing of data, needs to be considered (e.g., FLOPs). 
Model complexity, such as the number of parameters (or 
size), will affect storage requirements and the overall latency. 
At the time of the release of this white paper, the state-of-
the-art in GPUs for AI is NVIDIA’s H100, which will replace the 
current A100 GPU. The H100 is up to 9X faster than A100, at 
least with regard to training, and is expected to be released in 
1Q23. Although the price point may need to ameliorate, it is 
expected to significantly accelerate AI-native algorithms for 
wireless communications in the cloud, or at nodes like gNBs, 
perhaps even leveraging Open Radio Access Network (ORAN) 
architectures. 

Nevertheless, AI-native solutions at the end-user terminals 
will be more sensitive to complexity aspects because the 
availability of hardware acceleration will likely see a delay due 
to affordability and/or power consumption. In another aspect, 
the tight coupling between training and inference will render 
model monitoring and updating more stringent. Consistency 
of performance and minimum performance guarantee will 
require appropriate lifecycle management (LCM) procedures, 
including initial model training, model deployment, model 
transfer, model monitoring, and model updating/selecting.

AI/ML techniques can reduce the over-the-air overhead, 
such as the reference signals (RS) for beam management or 
positioning, or the overhead associated with CSI feedback. 
This reduction will be countered by new types of overhead 
due to data collection, information exchange, model delivery 
and transfer, or other AI/ML-related signaling. The overall 
dynamic needs to be studied and understood.

According to NGA’s vision for 6G (cf. elsewhere in this 
document, including the discussion about datasets and 
security aspects), AI-native wireless communications is 
expected to continue and build on the performance of current 
5G AI/ML enhancements by addressing their shortcomings 
and expanding their scope. As for continuity and precedent, 
the entry point for AI-native 6G networks will reflect the status 
of 5G AI/ML enhancements, as briefly reviewed below.

5G networks have become increasingly complex and 
capable of generating huge amounts of data. This enables 
data-driven AI/ML techniques throughout AI-native wireless 
networks. Further leveraging AI/ML techniques beyond 5G 
requires industry alignment through global research and 
standardization efforts. A variety of AI-related activities have 
emerged in many standardization bodies, including 3GPP 
and the O-RAN Alliance, among others. In Release 17, 3GPP 
initiated a study on AI-enabled NG-RAN covering high-level 
principles, functional framework, potential use cases, and 
associated solutions for AI-enabled RAN intelligence. 3GPP 
Release 18 aims to specify data collection enhancements 
and signaling support for a selected set of AI-based use 
cases, including network energy savings, load balancing, and 
mobility optimization.

An AI-native 5G NR air interface is being studied in 3GPP 
Release 18 with the goal of enhancing performance, including 
the reduction of complexity/overhead. The study is expected 
to set a common foundation for a scalable AI/ML framework 
for the air interface, identify areas where AI/ML can 
improve air interface functions, investigate the description, 
characterization and management of AI/ML models/
lifecycle, assess AI/ML techniques to understand their gains 
and complexity, and assess standardization impacts. To 
gain traction towards these objectives, 3GPP Release 18 is 
focused on an initial set of selective use cases, specifically 
CSI feedback, beam management, and positioning. 

At the network level, general principles for AI-native RAN, an 
AI/ML functional framework, and potential use cases were 
reviewed in a 3GPP Release 17 study item (SI), with identified 
potential solutions (cf. below). A subsequent Release18 work 
item (WI), in progress at the time of this white paper, aims to 
specify data collection enhancements and signaling support 
within existing NG-RAN interfaces and architecture (both split 
and non-split architectures). AI/ML will attempt to leverage 
the collection of RAN data in order to: 

	> Optimize network energy saving (NES) by predicting 
energy efficiency and traffic load in subsequent states 
and enabling proactive, adaptive actions of traffic 
offloading, coverage modification, and cell  
(de)activation.

	> Build datasets with measurements and feedback from 
network nodes and UEs in order to predict load and 
improve network performance and user experience.

	> Improve handover performance, predict UE location 
and performance, and steer the traffic to achieve 
quality network performance.

3GPP Release 18 will mark the first attempt at standardizing 
AI/ML in a wireless air interface by examining potential 
performance enhancements in three initial use cases: 

	> Channel state information (CSI) feedback: An auto-
encoder aims to capture spatial, angular, frequency- 
and time-domain correlations in the channel matrix, for 
which CNNs or a type of RNNs are strong candidates. 
Initial evaluations indicate significant CSI feedback 
overhead reduction (even up to 60%, depending on 
traffic load) versus Release 16/17 Type II codebooks.

	> Beam management (BM): Data-driven AI/ML methods 
can exploit the historical information in the training 
dataset to construct a mapping function from sparse 
beam sweeping measurements to a best beam pairing. 
Spatial domain beam prediction with AI/ML (and 64-
DFT codebook) can outperform the legacy approach 
in most cases with regard to beam selection accuracy. 
For example, AI/ML-based top-5 beam prediction 
can reach 94.95% prediction accuracy while further 
reducing overhead by 67.17% versus 55.3% with a 
legacy approach (for the same overhead reduction). 
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	> Positioning accuracy: AI/ML-based methods promise 
solutions for positioning in the more demanding 
NLoS scenarios by learning, in essence, an 
acceptable mapping function from measurements to 
UE positions. Both Direct ML/AI and ML/AI-assisted 
methods show significant improvement in positioning 
accuracy even in heavy NLoS environments. RF 
fingerprinting (RFFP) shows promise when used 
on the same site where training occurred. Further 
improvements and generalizations down to tens of 
centimeters are being pursued. 

3.5	  
Datasets  
Training and retraining are essential aspects of the ML 
workflow. The models generated by the AI engine are only 
as good as the training datasets, which must satisfy some 
essential conditions. The training dataset must have a 
statistical similarity to the operational data of the system 
in deployment. It must provide sufficient coverage for all 
possible deployment conditions and outcomes envisioned for 
the specific deployment model, including outlier scenarios. 
The industry as a whole must tackle the scarcity of such 
datasets in the public domain, which hampers innovation. One 
possibility is to create a commonly available pool of datasets 
pertaining to each of the use cases being considered for AI/
ML-based optimization. 

However, there are oncerns about security, privacy, and bias in 
this area that must be tackled. This may be a domain where 
a North America-specific solution may be explored. The use 
of synthetic data based on realistic emulations in digital twins 
is also a legitimate alternative, as long as questions about 
their similarity to real-world data are sufficiently answered. On 
the one hand, we discuss the lack of data, but on the other, 
in a counter-intuitive fashion, where there is data (such as 
within the operators’ domain), there is an abundance of it. 
The thousands of possible measurements and performance 
metrics amount to a glut of data that must be adequately 
harnessed. Proper labeling and classification of data, 
and the removal extraneous or redundant streams, are all 
prerequisites to creating viable training datasets. 

Datasets from mobile network operators are highly 
proprietary and are likely to remain so. As a result, access to 
the data requires a business relationship between the model 
developers and mobile network operators. 

3.6	  
Security   
AI/ML has been adopted in current 5G network, such as 
O-RAN’s Radio Intelligent Controllers (rApps and xApps), 
and the core network’s NWDAF for core NFs optimization. 
In 5G beyond and 6G, native AI and cross-domain AI are 
the research focus across network management and 
composition, signal processing and physical layer, service-
based communication, and data mining. 

Data poisoning is a security attack of tampering with ML 
training data to produce undesirable outcomes from the AI/
ML serving model/algorithm. Typically, a data poisoning 
attack either targets availability by injecting or manipulating 
data into the data store to render a total ineffective and/or 
inaccurate ML algorithm, or targets integrity by leaving an 
unnoticeable backdoor into the data set controlled by the 
attacker to deal a fatal blow at certain time to a seemingly 
working ML model. There are four steps to protect against 
such data poisoning attacks: 

	> Implement tight security controls to protect the 
data store(s) access wherever it resides (central or 
distributed). 

	> Data extraction/validation/preparation for generating 
training data set from the data store(s) to support 
capabilities to detect and filter out outliner/bad data.

	> Wireless device or network element endpoint 
protection ensures that the individual raw data or logs 
are secured from tempering or manipulation.

	> Data (raw or training) in transition should be secured 
with encryption. 

Finally, continuous testing/validation of the security 
countermeasures listed here will keep AI/ML secured from 
the data poisoning attack. Adversarial threat simulation and 
verification of network response has to be a continuous 
process in order to ensure service assurance. The security 
threat surface is constantly evolving, so the network response 
also must evolve.

3.7	  
New Opportunities    
Joint optimization of network and device operations 
may potentially be expanded in scope. In AI/ML-based 
CSI feedback, compression and decompression are 
performed jointly in an autoencoder DNN, yielding enhanced 
performance. There exist many scenarios where joint 
optimization of network and device operations can improve 
the overall performance, and neural networks are natural 
candidates. Similarly, cloud-based training requires that 
enormous amounts of training data be moved from devices 
to the cloud, facing prohibitive communication overhead (and 
data privacy issues). 

Alternatively, AI/ML model training can be performed jointly 
among multiple network nodes. Distributed Learning and 
Federated Learning are two such examples. In Distributed 
Learning, each computing node trains its own local model 
using local data, thus preserving privacy. Network nodes will 
communicate with one another to exchange the local model 
updates and build a global DNN model. In Federated Learning 
mode, a cloud server trains a global model by aggregating 
local models partially trained by individual end devices. Within 
each training iteration, a UE performs the training based on 
the model downloaded from the AI server, but it uses local 
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training data. Then the UE reports the interim training results 
(e.g., gradients) to the cloud server via 5G UL channels. The 
server aggregates the gradients from the UEs and updates 
the global model. The updated global model is distributed, via 
5G DL channels, to UEs, which can perform the training for 
the next iteration.

In fast-changing environments, AI/ML models running on 
devices or on the network side must be continuously adapted 
to new environment to keep the desired performance. One 
solution is to perform online model updating, which requires 
retraining the model with new training data. However, 
online model updating might be computationally expensive, 
especially for UE devices. A solution to this challenge is to 

adaptively select the model for inference from a set of trained 
models as shown in figure below, known as continual and 
dynamic adaptation of network and device operations. 

Perhaps the most obvious candidate for AI-native RAN is 
the Self-Organizing Network (SON) functionality (introduced 
in 3GPP Release 8). A SON self-adjusts and fine-tunes a 
range of parameters. By 2030, 5G SON will transition from 
a rule base to predictive AI/ML implementation of objective 
optimization. The difference between 5G and 6G is the tighter 
integration of AI/ML with 6G. SON is somewhat limited by the 
data collection interval, whereas in 6G, AI/ML improvements 
will bring it closer to real-time—up to constraints caused by 
moving data or updating models across interfaces.

Technology Direction Summary

Integration of AI/ML 
into networks

	> Improve existing function

	> Replace existing function

	> Joint learning/inference across multiple functions

	> Incremental improvement over 5G networks

	> Need to enable AI/ML models that are optimized for a wide range of applications

	> Need to move from near-real-time AI/ML to real-time AI/ML

Computing 
architecture
for AI/ML

	> Transition from large central compute platforms to distributed/edge/local compute

	> Flexible ML function split across the above

	> Workload management to optimize inference latency

	> In-built energy management

Datasets 	> Essential conditions to be met by training datasets

	> Need to tackle industry-wide scarcity of datasets

	> Curation/labeling/classification of data and extraction of relevant streams from large datasets

Security 	> Security vulnerabilities make an AI/ML-based system susceptible to data poisoning

	> Security should be enforced at all key data repositories and interfaces

	> Continuous, adversarial threat analysis is needed to tackle evolving threat surface

Table 1: Summary of Research and Technology Directions
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In recent years, AI has been widely used in many industries 
(e.g., image and speech recognition, automatic driving), and 
has also made great achievements. Yet its application in the 
field of wireless communication is still in its infancy. In order 
for AI to achieve comprehensive and in-depth application in 
the field of wireless communication, the following two major 
obstacles must be overcome. 

The first is the difficulty of obtaining real data from 
wireless networks for model training, validation, testing, 
and performance monitoring, as detailed in Section 3.5. A 
fundamental rule about AI/ML is that the performance of an 
AI model depends greatly on the quality of the training data it 
is fed with. However, in the field of wireless communications, 
it is very difficult to obtain operating data from real networks. 
The biggest issue, among others, is the privacy of customers. 
Mobile data is more or less related to the user confidentiality 
and privacy, as well as business intelligence of operators. 
Therefore, operators are generally extremely cautious when 
sharing training data, which is also very understandable. 
Another source for real data about wireless networks would 
be universities and research institutes in the US. Some have 
their own wireless network platforms, which generate mobile 
network data in real operating environments. Therefore, to 
address this lack-of-data issue, universities and research 
institutes could play a big role by sharing data obtained from 
their private or experimental mobile networks. The Next 
G Alliance also plans to release a mobile network dataset 
description guideline so that people can have a clearer 
description of the dataset when sharing. 

The second obstacle would be the impact of the 
application of AI on existing communication standards 
and communication systems, such as the uncertainty of 
performance. Simple AI applications in wireless networks 
do not need to affect communication standards. But if we 
want to fundamentally apply AI to wireless communication 
networks, it is bound to affect the formulation of existing 
communication standards. Such applications, especially 
in the early stages of AI applications, will encounter many 
problems. The following is just a partial list of questions 
related to the issue.

	> Does such an application require changes to existing 
communication standards? Is it necessary to increase 
signaling exchange and data transmission at the 
control and data planes? 

	> Will the application of AI itself place more burden 
on wireless communication networks? For example, 
model training may require a large amount of 
sometimes real-time network data. Transmitting this 
data itself has the potential to place a greater burden 
on an already congested channel. In addition, it is 
clear that the application of AI itself will consume both 
system resources and energy. 

	> How can AI systems be seamlessly integrated 
into existing communication systems and existing 
communication standards? Do we need to define any 
interfaces? Is it necessary to roll back to the traditional 
approaches when the AI model cannot meet the 
performance requirements? 

In summary, if we want AI to be widely used in wireless 
communication systems, the most impactful way would be 
to introduce it into wireless communication standards (e.g., 
3GPP and ITU-R standards). This requires shifting more of our 
research and efforts to the application of AI when developing 
the next generation of wireless communication standards. 
To do this, we will need to rely on the appropriate allocation 
of resources and the development of interdisciplinary talents 
mentioned earlier. Close cooperation across the industry is 
also crucial, especially the sharing of training data.

4PATH TO REALIZATION
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5CONCLUSION
As one of the six audacious goals identified by the Next 
G Alliance, AI-native wireless networks are expected to 
increase the robustness, performance, and efficiencies of 
wireless and cloud technologies against more diverse traffic 
types, ultra-dense deployment topologies, increasing energy 
consumption, and more challenging spectrum situations. 
The Next G Alliance’s goal is to promote critical applications 
of AI in the next generation of wireless to advance the North 
American leadership in the field of wireless communications 
and fulfill market needs. 

Over multiple generations, the networks designed and 
deployed have become increasingly complex and are in need 
of automation for performance optimization and network 
configuration/management. However, the application of AI/
ML to the wireless industry faces many unique challenges 
unseen in other industries, both technical and non-technical. 

On the non-technical side, the largest challenge would be the 
difficulty of obtaining training data from wireless networks 
and, at the same time, protect user privacy and the carriers’ 
core business secrete. On the technical side, major challenges 
include, but are not limited to: 

	> Non-deterministic model performance (a fullback 
mechanism is needed, doubling the network 
complexity).

	> The layered communication architecture of the existing 
networks (requiring different levels of integration 
inside the existing network; in general, AI/ML favors a 
layerless architecture).

	> Limited resources with mostly battery-powered 
UEs (e.g., limited capability for model training and 
inference). 

These challenges would not prevent North America from 
excelling in disruptive AI research in all fronts and widening 
the gap with other competing nations. Given that the US is 
the leading country in the research and application of AI, and 
houses world-renown research universities and companies 
in the industry of wireless communications, there is no doubt 
that it will lead again in this AI/ML era. The NGA is thrilled to 
be the leader and promoter for this revolutionary use of AI/ML 
for the wireless industry.



16

6REFERENCES

1.	 J. Hoydis, F. Aoudia, A. Valcarce, H. Viswanathan. Toward a 6G AI-Native Air Interface. IEEE. April 2021.  
https://arxiv.org/pdf/2012.08285.pdf 

2.	 3GPP TR 38.843: Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR air interface. 3GPP. July 2022.  
https://www.3gpp.org/dynareport/38843.htm  

https://arxiv.org/pdf/2012.08285.pdf
https://www.3gpp.org/dynareport/38843.htm


17

Published April 2023

Copyright © 2023 by Alliance for Telecommunications Industry Solutions

All rights reserved.

Alliance for Telecommunications Industry Solutions 
1200 G Street, NW, Suite 500 
Washington, DC 20005

No part of this publication may be reproduced in any form, in an electronic retrieval system or 
otherwise, without the prior written permission of the publisher. For information, contact ATIS 
at (202) 628-6380. ATIS is online at http://www.atis.org. 

The information provided in this document is directed solely to professionals who have the 
appropriate degree of experience to understand and interpret its contents in accordance with 
generally accepted engineering or other professional standards and applicable regulations. No 
recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY 
ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE, GOVERNMENTAL RULE OR 
REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT 
OF INTELLECTUAL PROPERTY RIGHTS. ATIS SHALL NOT BE LIABLE, BEYOND THE AMOUNT 
OF ANY SUM RECEIVED IN PAYMENT BY ATIS FOR THIS DOCUMENT, AND IN NO EVENT 
SHALL ATIS BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR CONSEQUENTIAL 
DAMAGES. ATIS EXPRESSLY ADVISES THAT ANY AND ALL USE OF OR RELIANCE UPON THE 
INFORMATION PROVIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.

COPYRIGHT 
AND 

DISCLAIMER



18

NEXT G 
ALLIANCE 
REPORTS

A L L I A N C E
An ATIS Initiative

Next G Alliance Report:   
6G Technologies

Component 
Technologies

Radio  
Technologies

System and Network 
Architecture

Network OA&M and 
Service Enablement

Trustworthiness – 
Security, Reliability, 

Privacy, & Resilience

June 2022

 6G Technologies

A L L I A N C E
An ATIS Initiative

    EVERYDAY LIVIN
G

EXPERIENCE

CRITICAL ROLES

SOCIETAL GOALS

Next G Alliance Report:   
6G Applications and Use Cases

6G Applications  
and Use Cases

Next G Alliance Report:
Roadmap to 6G

February 2022

Roadmap to 6G Green G: The Path 
Toward Sustainable 6G

6G Distributed Cloud 
and Communications 
System

Trust, Security, and 
Resilience for 6G 
Systems

Digital World 
Experiences

Cost-Efficient Solutions

Sustainable 6G 
Connectivity — A 
Powerful Means of 
Doing Good

Next G Alliance Report:  
AI-Native Wireless 
Networks

Next G Alliance Report:   
6G Sustainability 
KPI Assessment 
Introduction and Gap 
Analysis

Next G Alliance Report:   
Multi-Sensory Extended 
Reality (XR) in 6G

6G Market Development 
A North American Perspective

The Next G Alliance (NGA) is a bold 
new initiative to advance North 

American mobile technology leadership 
over the next decade through private 

sector-led efforts. 

With a strong emphasis on technology 
commercialization, NGA’s scope of 

activities encompasses the full lifecycle of 
research and development, manufacturing, 

standardization, and market readiness. 

NGA’s growing membership reflects support 
from stakeholders in academia, government, 

and industry. 

This Perspective outlines the strategic 
importance of 6G and the imperatives that 

will shape North America’s competitiveness, 
economy, and global leadership. 

A L L I A N C E
An ATIS Initiative

6G Market 
Development: A North 
American Perspective

Next G Alliance Report:  
Terminology for 
Frequency Ranges

https://www.nextgalliance.org/white_papers/6g-technologies/
https://www.nextgalliance.org/white_papers/6g-applications-and-use-cases/
https://www.nextgalliance.org/white_papers/roadmap-to-6g/
https://www.nextgalliance.org/white_papers/green-g-the-path-towards-sustainable-6g/
https://www.nextgalliance.org/white_papers/6g-distributedcloud-andcommunicationssystems/
https://www.nextgalliance.org/white_papers/trust-security-and-resilience-for-6g-systems/
https://www.nextgalliance.org/white_papers/digital-world-experiences/
https://www.nextgalliance.org/white_papers/cost-efficientsolutions/
https://www.nextgalliance.org/white_papers/sustainable6GConnectivity
https://www.nextgalliance.org/white_papers/terminology-for-frequency-ranges/
https://www.nextgalliance.org/6g-library/
https://www.nextgalliance.org/white_papers/multi-sensory-extended-reality-xr-in-6g/
https://nextgalliance.org/download/2852/
https://www.nextgalliance.org/white_papers/terminology-for-frequency-ranges/


Building the foundation for  
North American leadership in  

6G and beyond.

nextgalliance.org
A L L I A N C E

An ATIS Initiative

Audacious
Goals

Trust, Security, 
and 

Resilience

Distributed Cloud 
and 

Communications 
Systems

Digital World
ExperiencesSustainability

AI-Native Wireless
Solutions

Cost-Efficient
Solutions


