
Draft NIST Special Publication 800-204C 1

 2

Implementation of DevSecOps for a 3

Microservices-based Application with 4

Service Mesh 5

 6

 7
 8

Ramaswamy Chandramouli 9
 10
 11
 12

This publication is available free of charge from: 13
https://doi.org/10.6028/NIST.SP.800-204C-draft14

 Draft NIST Special Publication 800-204C 15

 16

Implementation of DevSecOps for a 17

Microservices-based Application with 18

Service Mesh 19

 20

Ramaswamy Chandramouli 21
Computer Security Division 22

Information Technology Laboratory 23

 24
 25
 26
 27
 28
 29

This publication is available free of charge from: 30
https://doi.org/10.6028/NIST.SP.800-204C-draft 31

 32
 33

September 2021 34
 35

 36

 37
 38

U.S. Department of Commerce 39
Gina M. Raimondo, Secretary 40

 41
National Institute of Standards and Technology 42

James K. Olthoff, Performing the Non-Exclusive Functions and Duties of the Under Secretary of Commerce 43
for Standards and Technoogy & Director, National Institute of Standards and Technology 44

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

Authority 45

This publication has been developed by NIST in accordance with its statutory responsibilities under the 46
Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law 47
(P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, including 48
minimum requirements for federal information systems, but such standards and guidelines shall not apply 49
to national security systems without the express approval of appropriate federal officials exercising policy 50
authority over such systems. This guideline is consistent with the requirements of the Office of Management 51
and Budget (OMB) Circular A-130. 52

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and 53
binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these 54
guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce, 55
Director of the OMB, or any other federal official. This publication may be used by nongovernmental 56
organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would, 57
however, be appreciated by NIST. 58

National Institute of Standards and Technology Special Publication 800-204C 59
Natl. Inst. Stand. Technol. Spec. Publ. 800-204C, 40 pages (September 2021) 60

CODEN: NSPUE2 61

This publication is available free of charge from: 62
https://doi.org/10.6028/NIST.SP.800-204C-draft 63

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 64
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 65
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best 66
available for the purpose. 67

There may be references in this publication to other publications currently under development by NIST in accordance 68
with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, 69
may be used by federal agencies even before the completion of such companion publications. Thus, until each 70
publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For 71
planning and transition purposes, federal agencies may wish to closely follow the development of these new 72
publications by NIST. 73

Organizations are encouraged to review all draft publications during public comment periods and provide feedback to 74
NIST. All NIST Computer Security Division publications, other than the ones noted above, are available at 75
http://csrc.nist.gov/publications. 76

Public comment period: September 29, 2021 through November 1, 2021 77

National Institute of Standards and Technology 78
Attn: Computer Security Division, Information Technology Laboratory 79

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 80
Email: sp800-204c-comments@nist.gov 81

All comments are subject to release under the Freedom of Information Act (FOIA). 82
 83

https://doi.org/10.6028/NIST.SP.800-204C-draft
http://csrc.nist.gov/publications
mailto:sp800-204c-comments@nist.gov

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

ii

Reports on Computer Systems Technology 84

The Information Technology Laboratory (ITL) at the National Institute of Standards and 85
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 86
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 87
methods, reference data, proof of concept implementations, and technical analyses to advance the 88
development and productive use of information technology. ITL’s responsibilities include the 89
development of management, administrative, technical, and physical standards and guidelines for 90
the cost-effective security and privacy of other than national security-related information in federal 91
information systems. 92

Abstract 93

Cloud-native applications have evolved into a standardized architecture consisting of multiple 94
loosely coupled components called microservices (implemented as containers), supported by 95
code for providing application services called service mesh. Both of these components are hosted 96
on a container orchestration and resource management platform, which is called a reference 97
platform in this document. Due to security, business competitiveness, and its inherent structure 98
(loosely coupled application components), this class of applications needs a different application 99
development, deployment, and runtime paradigm. DevSecOps (consisting of three acronyms for 100
Development, Security, and Operations, respectively) has been found to be a facilitating 101
paradigm for these applications with primitives such as Continuous Integration, Continuous 102
Delivery, and Continuous Deployment (CI/CD) pipelines. These pipelines are workflows for 103
taking the developer’s source code through various stages, such as building, testing, packaging, 104
deployment, and operations supported by automated tools with feedback mechanisms. In 105
addition to the application code, and the code for application services (service mesh), the 106
architecture has functional elements for infrastructure (computing, networking, and storage 107
resources), runtime policies (authentication, authorization etc.) and continuous monitoring of the 108
health of the application (Observability), which can be deployed through declarative codes. 109
Thus, separate CI/CD pipelines can be created for all of the five code types. 110
The objective of this document is to provide guidance for the implementation of DevSecOps 111
primitives for a reference platform hosting a cloud-native application with the functional 112
elements described above. The benefits of this approach for high security assurance and for 113
enabling continuous authority to operate (C-ATO) are also discussed. 114
 115

Keywords 116

container orchestration and resource management platform; DevSecOps; CI/CD pipelines; 117
infrastructure as code; policy as code; observability as code; GitOps; workflow models; static 118
AST; dynamic AST; interactive AST; SCA. 119

120

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

iii

Acknowledgments 121

The author would like to express their first thanks to Mr. David Ferraiolo of NIST for initiating 122
this effort to provide a targeted guidance for the implementation of DevSecOps primitives for the 123
development, deployment, and monitoring of services in microservices-based applications with 124
service mesh infrastructure. Sincere thanks to Mr. Nicolas Chaillan, CSO US Air Force, for a 125
detailed and insightful review and feedback. Thanks are also due to Zack Butcher of Tetrate, Inc. 126
for suggesting the title for this document. The author also expresses thanks to Isabel Van Wyk of 127
NIST for her detailed editorial review. 128

Call for Patent Claims 129

This public review includes a call for information on essential patent claims (claims whose use 130
would be required for compliance with the guidance or requirements in this Information 131
Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may be 132
directly stated in this ITL Publication or by reference to another publication. This call also 133
includes disclosure, where known, of the existence of pending U.S. or foreign patent applications 134
relating to this ITL draft publication and of any relevant unexpired U.S. or foreign patents. 135

ITL may require from the patent holder, or a party authorized to make assurances on its behalf, 136
in written or electronic form, either: 137

a) assurance in the form of a general disclaimer to the effect that such party does not hold 138
and does not currently intend holding any essential patent claim(s); or 139

b) assurance that a license to such essential patent claim(s) will be made available to 140
applicants desiring to utilize the license for the purpose of complying with the guidance 141
or requirements in this ITL draft publication either: 142

i. under reasonable terms and conditions that are demonstrably free of any unfair 143
discrimination; or 144

ii. without compensation and under reasonable terms and conditions that are 145
demonstrably free of any unfair discrimination. 146

Such assurance shall indicate that the patent holder (or third party authorized to make assurances 147
on its behalf) will include in any documents transferring ownership of patents subject to the 148
assurance, provisions sufficient to ensure that the commitments in the assurance are binding on 149
the transferee, and that the transferee will similarly include appropriate provisions in the event of 150
future transfers with the goal of binding each successor-in-interest. 151

The assurance shall also indicate that it is intended to be binding on successors-in-interest 152
regardless of whether such provisions are included in the relevant transfer documents. 153

Such statements should be addressed to: sp800-204c-comments@nist.gov 154

 155

mailto:sp800-204c-comments@nist.gov

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

iv

Executive Summary 156

Cloud-native applications have evolved into a standardized architecture consisting of the 157
following components: 158

• Multiple loosely coupled components called microservices (implemented as containers) 159
• An application services infrastructure called Service Mesh (providing services such as 160

secure communication, authentication, and authorization for users, services, and devices) 161
 162
Due to security, business competitiveness, and its inherent structure (loosely coupled application 163
components), this class of applications needs a different application, deployment, and runtime 164
monitoring paradigm – collectively called the software life cycle paradigm. DevSecOps 165
(consisting of three acronyms for Development, Security, and Operations, respectively) is one of 166
the facilitating paradigms for the development, deployment, and operation of these applications 167
with primitives such as Continuous Integration, Continuous Delivery, and Continuous 168
Deployment (CI/CD) pipelines. 169
 170
CI/CD pipelines are workflows for taking the developer’s source code through various stages, 171
such as building, functional testing, security scanning for vulnerabilities, packaging, and 172
deployment supported by automated tools with feedback mechanisms. In addition to the 173
application code and the code for providing application services, this architecture may be made 174
up of functional elements for infrastructure, runtime policies (such as zero trust policy), and 175
continuous monitoring of the health of the application, the last three of which can be deployed 176
through declarative codes. Thus, separate CI/CD pipelines can be created for all five code types. 177
The runtime behavior of each of these code types is also described to highlight the roles that they 178
play in the overall execution of the application. 179
 180
Though cloud-native applications have a common architectural stack, the platform on which the 181
components of the stack run may vary. The platform is an abstraction layer over a physical (bare 182
metal) or virtualized (e.g., virtual machines, containers) infrastructure. In this document, the 183
chosen platform is a container orchestration and resource management platform (e.g., 184
Kubernetes). To unambiguously refer to this platform or application environment throughout this 185
document, it is called the Reference Platform for DevSecOps Primitives, or simply the reference 186
platform. 187
 188
The objective of this document is to provide guidance for the implementation of DevSecOps 189
primitives for the reference platform. The benefits of this implementation for high security 190
assurance and the use of the artifacts within the pipelines for providing continuous authority to 191
operate (C-ATO) using risk management tools and dashboard metrics are also described. 192
 193
 194
 195
 196
 197
 198

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

v

 199
Table of Contents 200

Executive Summary ... iv 201
1 Introduction .. 1 202

1.1 Scope .. 1 203
1.2 Related DevSecOps Initiatives ... 2 204
1.3 Target Audience.. 3 205
1.4 Relationship to Other NIST Guidance Documents .. 3 206
1.5 Organization of this document .. 4 207

2 Reference Platform for the Implementation of DevSecOps Primitives 5 208
2.1 Container Orchestration and Resource Management Platform 5 209

2.1.1 Security Limitations of Orchestration Platform 5 210
2.2 Service Mesh Software Architecture ... 6 211

2.2.1 Data Plane .. 6 212
2.2.2 Control Plane ... 7 213

3 DevSecOps – Organizational Preparedness, Key Primitives, and 214
Implementation .. 9 215

3.1 Organizational Preparedness for DevSecOps .. 9 216
3.2 Seamless Evolution from DevOps to DevSecOps .. 9 217
3.3 DevSecOps – Key Primitives and Implementation Tasks 10 218

3.3.1 Concept of Pipelines and the CI/CD pipeline 10 219
3.3.2 Building Blocks for CI/CD pipelines .. 12 220
3.3.3 Designing and Executing the CI/CD pipeline .. 13 221
3.3.4 Strategies for Automation ... 15 222
3.3.5 Requirements for Automation Tools in CI/CD Pipelines 16 223

4 Implementing DevSecOps Primitives for the Reference Platform 17 224
4.1 Code Types in Reference Platform and Associated CI/CD Pipelines 17 225
4.2 CI/CD Pipeline for Application Code and Application Services Code 19 226
4.3. CI/CD Pipeline for Infrastructure as Code .. 19 227

4.3.1 Comparison of Configuration and Infrastructure 20 228
4.4 CI/CD Pipeline for Policy as Code ... 20 229
4.5 CI/CD Pipeline for Observability as Code ... 21 230

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

vi

4.6 Securing the CI/CD Pipeline.. 21 231
4.7 Workflow Models in CI/CD Pipelines ... 22 232
4.7.1 GitsOps Workflow Model for CI/CD – A Pull-based Model 22 233
4.8 Security Testing – Common Requirement for CI/CD Pipelines for All Code 234
Types .. 23 235

4.8.1 Functional and Coverage Requirements for AST tools 24 236
4.9 Benefits of DevSecOps Primitives to Application Security in the Service Mesh237
 25 238
4.10 Leveraging DevSecOps for Continuous Authorization to Operate (c-ATO) ... 26 239

5 Summary and Conclusion ... 28 240
References ... 29 241
 242

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

1

1 Introduction 243

Cloud-native applications are made up of multiple loosely coupled components (called 244
microservices implemented as containers), operate in perimeter-less network environments 245
requiring zero trust concepts (on-premises or cloud), and are accessed by users from a diverse set 246
of locations (e.g., campus, home office, etc.). Cloud-native applications do not just refer to 247
applications that run in the cloud. They also refer to the class of applications with design and 248
runtime architectures, such as microservices, and a dedicated infrastructure for providing all 249
application services, such as security. The incorporation of zero trust principles into this class of 250
application provides techniques where access to all protected resources is enforced through 251
identity-based protection, as well as network-based protections (e.g., micro-segmentation) where 252
applicable. 253

Cloud-native applications require agile and secure updates and deployment techniques for 254
business reasons as well as the necessary resilience to respond to cybersecurity events. Hence, 255
they call for a different application development, deployment, and runtime monitoring paradigm 256
(collectively called the software life cycle paradigm) than the ones used for traditional monolithic 257
or multi-tier applications. DevSecOps (Development, Security, and Operations) is a facilitating 258
paradigm for this class of applications since it facilitates agile and secure development, delivery, 259
deployment, and operations through (a) primitives, such as Continuous Integration, Continuous 260
Delivery, and Continuous Deployment (CI/CD) pipelines (explained in section 3); (b) security 261
testing throughout the life cycle; and (c) continuous monitoring during runtime, all of which are 262
supported by automation tools. Thus, DevSecOps has the necessary primitives and other building 263
blocks to meet the design goals of cloud-native applications. 264

1.1 Scope 265

DevSecOps primitives can, in theory, be applied to many application architectures but are best 266
suited to microservices-based ones, which permit agile development paradigms due to the fact 267
that the application is made up of relatively small, loosely coupled modules called microservices. 268
Even within microservices-based architectures, the implementation of DevSecOps primitives can 269
take on different forms, depending on the platform. In this document, the chosen platform is a 270
container orchestration and resource management platform (e.g., Kubernetes). The platform is an 271
abstraction layer over a physical (bare metal) or virtualized (e.g., virtual machines, containers) 272
infrastructure. To unambiguously refer to this platform or application environment throughout 273
this document, it is called the Reference Platform for DevSecOps Primitives, or simply the 274
reference platform. 275
 276
Before describing the implementation of DevSecOps primitives for the reference platform, it is 277
assumed that the following due diligence is applied with respect to deployment of the service 278
mesh component [1]: 279

• Secure design patterns for deploying and managing service mesh-based components for 280
infrastructure (e.g., network routing), policy enforcement, and monitoring 281

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

2

• Tests to prove that these service mesh components work as intended in a variety of scenarios 282
for all aspects of the application, such as ingress, egress, and inside services. 283

The guidance provided for implementation of DevSecOps primitives for the reference platform is 284
agnostic to (a) the tools used in DevSecOps pipelines and (b) the service mesh software, which 285
provides application services, though examples from service mesh offerings, such as Istio, are 286
used to link them to real-world application artifacts (e.g., containers, policy enforcement 287
modules, etc.). 288

The reference platform, along with DevSecOps implementation components, can therefore be 289
looked upon as having the following functional elements or code types: 290

1. The application code, which contains the application logic for transactions and database 291
access 292

2. The service mesh code, which provides application services such as network routes, 293
network resiliency services (e.g., load balancing, retries etc.), and security services 294

3. Infrastructure (consisting of computing, networking, and storage resources) as code 295
4. Policy as code for generating rules and configuration parameters for realizing security 296

objectives, such as zero trust through security controls (e.g., authentication, 297
authorization) during runtime 298

5. Observability as code for (a) triggering software related to logging, tracing 299
(communication pathways involved in executing application request), and monitoring for 300
recording all transactions and for (b) keeping track of application states during runtime. 301

 302
This document covers the implementation of pipelines or workflows associated with all five code 303
types listed above. Out of them, the infrastructure as code, policy as code, and observability as 304
code belong to a special class called declarative code. A declarative code is written in a special 305
purpose language called declarative language that declares the requirements, and an associated 306
tool converts them into artifacts that make up a runtime instance. For example, in the case of 307
infrastructure as code (IaC), the declarative language models the infrastructure as a series of 308
resources. The associated configuration management tool pulls together these resources and 309
generates what are known as Manifests that define the final shape and state of the platform 310
(runtime instance) associated with the defined resources. These manifests are stored in servers 311
associated with a configuration management tool and are used by the tool to create compiled 312
configuration instructions for the runtime instance on the designated platform. Manifests are 313
generally encoded in platform-neutral representations (e.g., JSON) and fed to platform resource 314
provisioning agents through REST APIs. 315
 316
1.2 Related DevSecOps Initiatives 317

DoD Enterprise DevSecOps Initiative: The Department of Defense (DOD) Enterprise 318
DevSecOps initiative spans many open-source projects with many state-of-practice ingredients. 319
The artifacts developed under this initiative are used by 12 U.S. federal agencies, five nations, 320
and a substantial number of DoD contractors and vendors. The open-source projects under this 321
initiative include but are not limited to [2]: 322

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

3

• The Iron Bank, a repository of DOD-vetted hardened container images 323
• Platform One, the DevSecOps platform that the department created for software deployments 324

from jets to bombers to space to clouds; it is based on the concept of continuous authority to 325
operate (cATO), which updated the DOD’s authorization process to accommodate the speed 326
and frequency of modern continuous software deployments 327

 328
The DoD Enterprise DevSecOps initiative has the following state-of-practice ingredients: 329

1. Abstracted: To avoid drifts, be agnostic to the environment (e.g., cloud, on-premise, 330
classified, disconnected), and prevent lock-ins with cloud or platform layers, CNCF-331
compliant Kubernetes and OCI-compliant containers are leveraged – open-source stacks 332
with U.S. observation of code and continuous scanning. 333

2. GitOps/Infrastructure as Code (IaC): No drift, everything is code (including 334
configuration, networking etc.), and the entire stack is automatically instantiated. 335

3. Continuous Integration/Continuous Delivery pipeline (CI/CD): Fully containerized 336
and using Infrastructure as Code (IaC) 337

4. Hardened Containers: Hardened “Lego blocks” to bring options to development teams 338
(one size fits all lead to shadow IT) 339

5. Software Testing: Mandated high-test coverage 340
6. Baked-in Security: Mandated static/dynamic code analysis, container security, bill of 341

material (supply chain risk), etc. 342
7. Continuous Monitoring: 343

• Centralized logging and telemetry 344
• Automated alerting 345
• Zero trust, leveraging service mesh as sidecar (part of SCSS) down to the 346

container level 347
• Behavior detection (automated prevention leveraging AI/ML capabilities) 348
• CVE signatures scanning 349

8. Chaos engineering: Dynamically kills/restarts container with moving target defense 350

1.3 Target Audience 351
 352
Since DevSecOps primitives span development (build and test for security, package, delivery, 353
deployment, continuous monitoring) and ensure secure states during runtime, the target audience 354
for the recommendations in this document includes software development, operations, and 355
security teams. 356
 357
1.4 Relationship to Other NIST Guidance Documents 358

Since the Reference Platform is made up of container orchestration and resource management 359
platform and service mesh software, the following publications offer guidance for securing this 360
platform as well as background information for the contents of this document: 361

● Special Publication (SP) 800-204, Security Strategies for Microservices-based Application 362
Systems [3], discusses the characteristics of microservices-based applications and the overall 363

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

4

security requirements and strategies for addressing those requirements. 364
● SP 800-204A, Building Secure Microservices-based Applications Using Service-Mesh 365

Architecture [4], provides deployment guidance for various security services (e.g., 366
establishment of secure sessions, security monitoring, etc.) for a microservices-based 367
application using a dedicated infrastructure (i.e., a service mesh) that uses service proxies that 368
operate independent of the application code. 369

● SP 800-204B [5], Attribute-based Access Control for Microservices-based Applications 370
Using a Service Mesh, provides deployment guidance for building an authentication and 371
authorization framework within the service mesh that meets the security requirements, such 372
as (1) zero trust by enabling mutual authentication in communication between any pair of 373
services and (2) a robust access control mechanism based on an access control such as 374
attribute-based access control (ABAC) that can be used to express a wide set of policies and 375
is scalable in terms of user base, objects (resources), and deployment environment. 376

1.5 Organization of this document 377

The organization of the rest of the document is as follows: 378
● Chapter 2 gives a brief description of the reference platform for which guidance for 379

implementation of DevSecOps primitives is provided. 380
● Chapter 3 introduces the DevSecOps primitives (i.e., pipelines), the methodology for 381

designing and executing the pipelines, and the role that automation plays in the execution. 382
● Chapter 4 covers all facets of pipelines, including (a) Common issues to be addressed for 383

all pipelines, (b) descriptions of the pipelines for the four code types in the reference 384
platform that are listed in Section 1.1, and (c) the benefit of DevSecOps for security 385
assurance for the entire application environment (the reference platform with five code 386
types, thus carrying the DevSecOps implementation) during the entire life cycle, 387
including the “Continuous Authority to Operate (CAT).” 388

● Chapter 5 provides a summary and conclusion. 389

 390

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

5

2 Reference Platform for the Implementation of DevSecOps Primitives 391

As stated in Section 1.1, the reference platform is a container orchestration and management 392
platform. In modern application environments, the platform is an abstraction layer over a physical 393
(bare metal) or virtualized (e.g., virtual machines, containers) infrastructure. Before the 394
implementation of DevSecOps primitives, the platform simply contains the application code, 395
which contains the application logic and the service mesh code, which in turn provides 396
application services. This section will consider the following: 397

• A container orchestration and resource management platform that houses both the 398
application code and most of the service mesh code 399

• The service mesh software architecture 400
 401

2.1 Container Orchestration and Resource Management Platform 402

Since microservices are implemented as containers, a container orchestration and resource 403
management platform is used for deployment, operations, and upgrading services. Kubernetes is 404
one such open-source container orchestration and resource management platform that is widely in 405
use. 406

A typical orchestration and resource management platform consists of various logical (forming 407
the abstraction layer) and physical artifacts for the deployment of containers. For example, in 408
Kubernetes, containers run inside the smallest unit of deployment called a pod. A pod can 409
theoretically host a group of containers, though usually, only one container runs inside a pod. A 410
group of pods are defined inside what is known as a node, where a node can be either a physical 411
or virtual machine (VM). A group of nodes constitutes a cluster. Usually, multiple instances of a 412
single microservice are needed to distribute the workload to achieve the desired performance 413
level. A cluster is a pool of resources (nodes) that is used as a means to distribute the workload of 414
microservices. One of the techniques used is horizontal scaling, where microservices that are 415
accessed more frequently are allocated more instances or allocated to nodes with higher resources 416
(e.g., CPUs and/or memory). 417

2.1.1 Security Limitations of Orchestration Platform 418

Microservices-based applications require several application services, including security services 419
such as authentication and authorization, as well as the generation of metrics for individual pods 420
(monitoring), consolidated logging (to ascertain causes of failures of certain requests), tracing 421
(sequence of service requests within the application), traffic control, caching, secure ingress, 422
service-to-service (east/west traffic), and egress communication. 423

Taking the example of secure communications between Kubernetes containers, these are not 424
natively secure since there is no easy way to enforce TLS between pods as this would require in 425
maintaining hundreds of TLS certificates. Pods that communicate do not apply identity and 426
access management between themselves. Though there are tools that can be implemented to act 427
as a firewall between pods, such as the Kubernetes Network Policy, this is a layer 3 solution 428

https://medium.com/better-programming/how-to-secure-kubernetes-using-network-policies-bbb940909364
https://en.wikipedia.org/wiki/OSI_model

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

6

rather than a layer 7 solution, which is what most modern firewalls are. This means that while 429
one can know the source of traffic, one cannot peek into the data packets to understand what they 430
contain. Further, it does not allow for making vital metadata-driven decisions, such as routing on 431
a new version of a pod based on an HTTP header. There are Kubernetes ingress objects that 432
provide a reverse proxy based on layer 7, but they do not offer anything more than simple traffic 433
routing. Kubernetes does offer different ways of deploying pods that do some form of A/B 434
testing or canary deployments, but they are done at the connection level and provide no fine-435
grained control or fast failback. For example, if a developer wants to deploy a new version of a 436
microservice and pass 10 % of traffic through it, they will have to scale the containers to at least 437
10 – nine for the old version and one for the new version. Further, Kubernetes cannot split the 438
traffic intelligently and instead balances loads between pods in a round-robin fashion. Every 439
Kubernetes container within a pod has a separate log, and a custom solution over Kubernetes 440
must be implemented to capture and consolidate them. 441

Although the Kubernetes dashboard offers monitoring features on individual pods and their 442
states, it does not expose metrics that describe how application components interact with each 443
other or how much traffic flows through each of the pods. Consolidated logging is required to 444
determine error conditions that cause an application request or transaction to fail. Tracing is 445
required to trace the sequence of containers that are invoked as part of any application request 446
based on the application logic that underlies a transaction. Since traffic flow cannot be traced 447
through Kubernetes pods out of the box, it is unclear where on the chain the failure for the 448
request occurred. 449

This is where the service mesh software can provide the needed application services and much 450
more. 451

2.2 Service Mesh Software Architecture 452

Having looked at the various application services required by microservices-based applications, 453
consider the architecture of service mesh software that provides those services. The service mesh 454
software consists of two main components: the data plane and the control plane. 455
 456
2.2.1 Data Plane 457

The data plane component performs three different functions: 458

1. Secure networking functions 459
2. Policy enforcement functions 460
3. Observability functions 461

The primary component of the data plane that performs all three functions listed above is called 462
the sidecar proxy. This layer 7 (L7) proxy runs in the same network namespace (which, in this 463
platform, is the same pod) as the microservice for which it performs proxy functions. There is a 464
proxy for every microservice to ensure that a request from a microservice does not bypass its 465
associated proxy and that each proxy is run as a container in the same pod as the application 466
microservice. Both containers have the same IP address and share the same IP Table rules. That 467

https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/A/B_testing
https://en.wikipedia.org/wiki/A/B_testing

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

7

makes the proxy take complete control over the pod and handle all traffic that passes through it 468
[6,7]. 469

The first category of functions (secure networking) includes all functions related to the actual 470
routing or communication of messages between microservices. The functions that come under 471
this category are service discovery, establishing a secure (TLS) session, establishing network 472
paths and routing rules for each microservice and its associated requests, authenticating each 473
request (from a service or user), and authorizing the request. 474

With the example of establishing a mutual TLS session, the proxy that initiates the 475
communication session will interact with the module in the control plane of the service mesh to 476
check whether it needs to encrypt traffic through the chain and establish mutual TLS with the 477
backend or target pod. Enabling this functionality using mutual TLS requires every pod to have a 478
certificate (i.e., a valid credential). Since a good-sized microservice application (consisting of 479
many microservices) may require hundreds of pods (even without horizontal scaling of individual 480
microservices through multiple instances), this may involve managing hundreds of short-lived 481
certificates. This, in turn, requires each microservice to have a robust identity and the service 482
mesh to have an access manager, a certificate store, and certificate validation capability. In 483
addition, mechanisms for identifying and authenticating the two communicating pods are 484
required for supporting authentication policies. 485

Other kinds of proxies include ingress proxies [8] that intercept the client calls into the first entry 486
point of application (first microservice that is invoked) and egress proxies that handle a 487
microservice’s request to application modules residing outside of the platform cluster. 488

The second category of functions that the data plane performs is enforcement of the policies 489
defined in the control plane through configuration parameters in the proxies (policy enforcement 490
service). 491

The third category of functions that service proxies perform sometimes in collaboration with 492
application service containers are to gather telemetry data, which helps to monitor the health and 493
state of the services, transfer logs associated with a service to the log aggregation module in the 494
control plane, and append necessary data to application request headers to facilitate the tracing of 495
all requests associated with a given application transaction. The application response is conveyed 496
by proxies back to its associated calling service in the form of return codes, a description of 497
response, or the retrieved data. 498

2.2.2 Control Plane 499

The control plane has several components. While the data plane of the service mesh mainly 500
consists of proxies running as containers within the same pod as application containers, the 501
control plane components run in their own pods, nodes, and associated clusters. The following 502
are the various functions of the control plane [7] (components in the Istio service mesh that 503
perform these functions are given in parentheses): 504

1. Service discovery and configuration of the Envoy sidecar proxies (Pilot) 505

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

8

2. Automated key and certificate management (Citadel) 506
3. API for policy definition and the gathering of telemetry data (Mixer) 507
4. Configuration ingestion for service mesh components (Galley) 508
5. Management of an inbound connection to the service mesh (Ingress Gateway) 509
6. Management of an outbound connection from the service mesh (Egress Gateway) 510
7. Inject sidecar proxies into those pods, nodes, or namespaces where application 511

microservice containers are hosted (Sidecar Injector) 512

Overall, the control plane helps the administrator populate the data plane component with the 513
configuration data that is generated from the policies resident in the control plane. The policies 514
for function 3 above may include network routing policies, load balancing policies, policies for 515
blue-green deployments, canary rollouts, timeout, retry, and circuit-breaking capabilities. These 516
last three are collectively called by the special name of resiliency capabilities of the networking 517
infrastructure services. Last but not the least are security-related policies (e.g., authentication and 518
authorization policies, TLS establishment policies, etc.). These policy rules are parsed by a 519
module that converts them into configuration parameters for use by executables in data plane 520
proxies that enforce those policies. 521

The service mesh is container orchestration platform-aware, interacts with the API server that 522
provides a window into application services installed in various platform artifacts (e.g., pods, 523
nodes, namespaces), monitors it for new microservices, and automatically injects sidecar 524
containers into the pods containing these new microservices. Once the service mesh inserts the 525
sidecar proxy containers, operations and security teams can enforce policies on the traffic and 526
help secure and operate the application. These teams can also configure the monitoring of 527
microservices applications without interfering with the functioning of the applications. 528

The provisioning of infrastructure, policy generation, and observability services can be automated 529
using declarative code that is part of DevSecOps pipelines. The development team can 530
concentrate their efforts on efficient development paradigms, such as code modularity and 531
structuring, without worrying about the security and management details of their implementation. 532

 533

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

9

3 DevSecOps – Organizational Preparedness, Key Primitives, and 534
Implementation 535

DevSecOps incorporates security into the software engineering process early on. It integrates and 536
automates security processes and tooling into all of the development workflow (or pipeline as later 537
explained) in DevOps so that it is seamless and continuous. In other words, it can be looked upon 538
as a combination of the three processes: Development + Security + Operations [9]. 539

This section discusses the following aspects of DevSecOps: 540

• Organizational preparedness for DevSecOps 541
• Seamless evolution from DevOps to DevSecOps (for organizations that already have a 542

DevOps team in place) 543
• Fundamental building blocks or key primitives for DevSecOps 544
 545

3.1 Organizational Preparedness for DevSecOps 546

DevSecOps is a software development, deployment, and life cycle management methodology that 547
involves a shift from one large release for an entire application or platform to the Continuous 548
Integration, Continuous Delivery, and Continuous Deployment (CI/CD) approach. This shift, in 549
turn, requires changes in the structure of a company’s IT department and its workflow. The most 550
pronounced change involves organizing a DevSecOps group that consists of software developers, 551
security specialists, and IT operations experts for each portion of the application (i.e., the 552
microservice). This smaller team not only promotes efficiency and effectiveness in initial agile 553
development and deployment but also in subsequent life cycle management activities, such as 554
monitoring behavior, developing patches, fixing bugs, or scaling the application. This cross-555
functional team with expertise in three areas forms a critical success factor for introducing 556
DevSecOps in an organization. 557

3.2 Seamless Evolution from DevOps to DevSecOps 558
 559
DevOps is an agile, automated development and deployment process that uses primitives called 560
CI/CD pipelines aided by automated tools to take the software from the build phase to 561
deployment phase. These pipelines are nothing but workflows that take the developer’s source 562
code through various stages, such as building, testing, packaging, and deployment supported by 563
automated tools with feedback mechanisms. DevOps is primarily a development/deployment 564
pipeline where security assurance is provided through the use of some basic static application 565
security tools (SAST), dynamic security testing tools (DAST), and software composition analysis 566
(SCA) tools. Thus, a DevOps platform only runs during the build and deployment phases of the 567
software life cycle. 568

In a DevSecOps platform, security assurance is provided through built-in design features, such as 569
zero trust, during the build and deployment phases in addition to the use of a comprehensive set 570
of security testing tools, such as DAST and SCA tools. Security assurance is also provided during 571
the runtime/operations phase by continuous behavior detection/prevention tools that use 572

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

10

sophisticated techniques, such as artificial intelligence (AI) and machine learning (ML). 573
Therefore, a DevSecOps platform not only runs during build and deployment phases but also 574
during runtime/operations phase. DevSecOps pipelines also run in a production environment as 575
opposed to DevOps, which runs in a separate environment for testing/staging since workflows 576
associated with the latter terminate in the deployment phase. 577

Another distinguishing characteristic of a DevSecOps platform is that the security tools (e.g., 578
SAST, DAST, and SCAs) are so tightly integrated with IDEs and other DevOps tools that they 579
perform application security analysis, such as identifying vulnerabilities and bugs through 580
efficient scanning in the background. This is often invisible to developers without making them 581
call separate APIs for running these tools [10]. 582

In summary, DevSecOps has the following distinguishing features as compared to DevOps: 583

• Security testing and the robust incorporation of security controls are integral to all 584
pipelines instead of being relegated to a separate task or phase. 585

• The DevSecOps platform operates during runtime (in production), providing real-time 586
assurance of security through correction mechanisms and enabling the certification of 587
continuous authority to operate (C-ATO). 588

 589
3.3 DevSecOps – Key Primitives and Implementation Tasks 590
 591
The key primitives and implementation tasks involved are: 592

• Concept of pipelines and the CI/CD pipeline 593
• Building blocks for the CI/CD pipeline 594
• Designing and executing the CI/CD pipeline 595
• Strategies for automation 596
• Requirements for automation tools in the CI/CD pipeline 597

 598

3.3.1 Concept of Pipelines and the CI/CD pipeline 599

DevSecOps is a methodology or framework for agile application development, deployment, and 600
operations for cloud-native applications [11] and is made up of stages just like any other 601
methodology. The sequence and flow of information through the stages is called workflow, 602
where some stages can be executed in parallel while some others have to follow a sequence. Each 603
stage may require the invocation of a unique job to execute the activities in that stage. 604

A unique concept that DevSecOps introduces in the process workflow is the concept of 605
“pipelines” [12]. With pipelines, there is no need to individually write jobs for each stage of the 606
process. Instead, there is only one job that starts from the initial stage, automatically triggers the 607
activities pertaining to other stages (both sequential and parallel), and creates an error-free smart 608
workflow. 609

The pipeline in DevSecOps is called the CI/CD pipeline based on the overall tasks it 610

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

11

accomplishes and the two individual stages it contains. CI stands for the continuous integration 611
stage. CD can denote either the continuous delivery or continuous deployment stage. Depending 612
on this latter stage, CI/CD can involve the following tasks: 613

• Build, Test, Secure, and Deliver (the tested modified code is delivered to the staging area) 614
• Build, Test, Secure, Deliver, and Deploy (the code in the stage area is automatically 615

deployed) 616
 617
In the former, automation ends at the delivery stage, and the next task of deployment of the 618
modified application in the hosting platform infrastructure is performed manually. In the latter, 619
the deployment is also automated. Automation of any stage in the pipeline is enabled by tools that 620
express the pipeline stage as code. 621

The workflow process for a CI/CD pipeline is depicted in Figure 1 below: 622

 623

Figure 1: CI/CD pipeline workflow [13] 624

Figure 3.1. CI/CD pipeline workflow [13] 625

The unit and integration tests shown in the diagram use SAST, DAST, and SCA tools described 626
in Section 3.2. These tests and associated tools are common to DevOps and DevSecOps. 627

Continuous integration involves developers frequently merging code changes into a central 628
repository where automated builds and tests run. Build is the process of converting the source 629
code to executable code for the platform on which it is intended to run. In the CI/CD pipeline 630
software, the developer’s changes are validated by creating a build and running automated tests 631
against the build. This process avoids the integration challenges that can happen when waiting for 632
release day to merge changes into the release branch [14]. 633

Continuous delivery is the next stage after continuous integration where code changes are 634
deployed to a testing and/or staging environment after the build stage. Continuous delivery to a 635
production environment involves the designation of a release frequency – daily, weekly, 636
fortnightly, or some other period – based on the nature of the software or the market in which the 637
organization operates. This means that on top of automated testing, there is a scheduled release 638
process, though the application can be deployed at any time by clicking a button. The deployment 639
process in continuous delivery is characterized as manual, but tasks such as the migration of code 640

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

12

to a production server, the establishment of networking parameters, and the specification of 641
runtime configuration data may be performed by automated scripts. 642

Continuous deployment is similar to continuous delivery except that releases happen 643
automatically [14], and changes to code are available to customers immediately after they are 644
made. The distinction between continuous delivery and continuous deployment is shown in 645
Figure 2 below. 646

 647

Figure 2 - Distinction between Continous Delivery and Continous Deployment [14] 648

3.3.2 Building Blocks for CI/CD pipelines 649

The primary software for defining CI/CD pipeline resources, building the pipelines, and 650
executing those pipelines is the CI/CD pipeline software. There may be slight variations in the 651
architecture of this class of software depending on the particular offering. The following is an 652
overview of the landscape in which CI/CD tools (pipeline software) operate: 653

• Some CI/CD tools natively operate on the platform on which the application and the 654
associated resources needed are hosted (i.e., container orchestration and resource 655
management platform, such as Kubernetes), while others need to be integrated into the 656
application hosting platform through its API. An example of a former class of tool is 657
Tekton, and examples for the latter class include Jenkins, Travis, Bamboo, and CircleCI. 658
Some advantages of using the CI/CD tools that are native to the application hosting 659
platform are: 660

(a) It makes it easier to deploy, maintain, and manage the CI/CD tool itself. 661
(b) Every pipeline defined by the CI/CD tool becomes another platform-native 662

resource and is managed the same way. In fact, all entities required for executing 663
pipelines, such as Tasks and Pipelines (which then act as blueprints for other 664
entities, such as TaskRuns and PipelineRuns, respectively), can be created as 665

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

13

CustomResourceDefinitions (CRDs) built on top of resources native to the platform 666
[15]. Software with this type of architecture may be used by other CI/CD pipeline 667
software offerings to facilitate faster defining of pipelines. 668

• Some CI/CD tool offerings (e.g., GitLab, Jenkins X) integrate with a Git Repository – one 669
for each application and for each environment (staging/production). All changes in 670
application modules, infrastructure, or configuration are made and stored in these Git 671
repositories. The CI/CD pipeline software is connected to the Git repositories through Git 672
webhooks and gets activated on commits (push workflow model) or pull requests in these 673
repositories. 674

• Some CI/CD tools perform CD functions alone for the native platform (e.g., Jenkins X for 675
Kubernetes platform) or for multiple technology stacks (e.g., Spinnaker for multi-cloud 676
deployment). The difficulty with some in this class of tools is that they may lack native 677
tools for completing the CI functions (e.g., tools to test code, build application images, or 678
push them to registry). 679

3.3.3 Designing and Executing the CI/CD pipeline 680

The purpose of creating the CI/CD pipeline is to enable frequent updates to source code, rebuilds, 681
and the automatic deployment of updated modules into the production environment. The key 682
tasks involved are [16]: 683

• Setting up the source code repository: Set up a repository (e.g., GitHub or GitLab) for 684
storing application source code with proper version control. 685

• Build process: Configure and execute the build process for generating the executables (for 686
those portions of the code that need to be updated) using an automated code build tool. 687

• Securing the process: Ensure that the build is free of static and dynamic vulnerabilities 688
through unit testing with SAST and DAST tools. 689

• Creating the deployment environment: Create the environment to deploy the application 690
using an automated deployment tool. 691

• Creating the delivery pipeline: Create a pipeline that will automatically build and deploy 692
the application using an automated pipeline tool. 693

• Test the code and execute the pipeline: Test the code in the pipeline using an automated 694
testing tool, and execute the pipeline to complete the deployment of updated code. 695

To reiterate, the three primary stages of the CI/CD process are build/test, ship/package, and 696
deploy. The following features transform this into a pipeline: 697

• When an update is made to the source code for a service, the code changes pushed to the 698
source code repository trigger the code building tool. 699

• The code building tool, which is usually an IDE, is often integrated with security testing 700
tools (e.g., static vulnerability analysis tool) to facilitate the generation of secure compiled 701
code artifacts, thus integrating security into the CI pipeline. 702

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

14

• The generation of compiled code artifacts in code building tools triggers the 703
shipping/package tool, which may be integrated with its own set of tools (e.g., dynamic 704
vulnerability analysis or dynamic penetration testing tools, software composition analysis 705
tools for identifying vulnerabilities in the attached libraries) and also creates the 706
configuration parameters relevant to the deployment environment. 707

• The output of the shipping/packaging tool is then automatically fed to the CD tool, which 708
then deploys the package into the desired environment (e.g., staging, production etc.) [17]. 709

The workflow of the CI/CD pipeline should not create the impression that there is no human 710
element involved. The following teams provide input into the CI/CD pipeline [18]: 711

• Development team incorporates new features into the application 712
• Build or integration team creates new CI pipelines and introduces new CI tools and testing 713

tools 714
• Security team conducts audits and patching 715
• Infrastructure team creates, maintains, and upgrades the infrastructure 716
• QA team develops integration test cases 717
• Deployment team/release team creates pipelines and packages for various environments 718

(UAT/PreProd/Prod) and performs configuration and provisioning appropriate for these 719
environments 720

Some of the many activities performed by these teams include the customization, update, and 721
enhancement of the tools employed in the CI/CD pipeline (e.g., updating the static vulnerability 722
analysis tool with the latest database of known vulnerabilities etc.). Caution should be exercised 723
during manual operations so that they do not block pipelines. Targets for mean time to production 724
should be set up while also mitigating risks, such as insider threats, through the use of “merge 725
requests” and multiple approvers in merge requests. 726

 727

Figure 2 - Examples of Tools involved in CI/CD Pipeline Tasks 728

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

15

This pipeline is designed, maintained, and executed by the post-release team who – in addition to 729
monitoring functions – performs other processes, such as compliance management, backup 730
processes, and asset tracking [19]. 731
 732
3.3.4 Strategies for Automation 733

Compared to other models of software development, which involve a linear progression from 734
coding to release, DevOps uses a forward process with a delivery pipeline (i.e., build/secure, 735
ship/package, and release) and a reverse process with a feedback loop (i.e., plan and monitor) that 736
form a recursive workflow. The role of automation in these activities is to improve this workflow. 737
Continuous integration emphasizes testing automation to ensure that the application is not broken 738
whenever new commits are integrated into the main branch. Automation results in the following 739
benefits: 740

• Generation of data regarding software static and runtime flows 741
• Reduction of development and deployment times 742
• Better utilization of the team’s expertise by assigning routine tasks to the tools 743

The following strategies are recommended [22] for automation so as to facilitate better utilization 744
of organizational resources and derive the greatest benefit in terms of an efficient, secure 745
application environment. 746

Choice of Activities to Automate: For example, the following are productive candidates for the 747
automation of testing activities. 748

• Testing of modules whose functions are subject to regulatory compliance (e.g., PCI-DSS, 749
HIPAA, Sarbanes-Oxley) 750

• Tasks that are repetitive with moderate to high frequency 751
• Testing of modules that perform time-sequenced operations, such as message publishers 752

and message subscribers 753
• Testing of workflows (e.g., request tracing) involving transactions that span multiple 754

services 755
• Testing of services that are resource-intensive and likely to constrict operations 756

After choosing the candidates for automation based on the above criteria, the usual risk analysis 757
must be applied to choose a subset that provides an optimum return on investment and maximizes 758
desirable security metrics (e.g., defense in depth). Some recommended strategies include: 759

• Using the cost-benefit ratio in hours saved per year to prioritize which processes to 760
automate [22] 761

• Using key performance indicators (KPI) (e.g., mean time to identify faults or problems, 762
rectify, or recover) as markers to refine the DevSecOps processes [22] 763

• Based on the application, applying different weights to infrastructure services (e.g., 764
authorization and other policies enforcement, monitoring of system states to ensure secure 765
runtime states, network resilience in terms of system availability, latency, etc.) to 766
determine the allocation of resources to DevSecOps processes 767

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

16

3.3.5 Requirements for Automation Tools in CI/CD Pipelines 768

The main utility of a performance testing tool is to identify the root cause of an issue, such as 769
application response time or a bottleneck operation. The desirable features of this class of tool 770
are: 771

• Easy integration into developers’ CI/CD pipelines, which enables this class of tools to be 772
an integral part of the DevSecOps process rather than one managed by a central platform 773
engineering or site reliability engineering team that could become hamper deployments 774

• An accessible interface that can be used by all participants involved in the software 775
release workflow and have features that analysts/engineers can use to perform insightful 776
analyses into specific datasets 777

• Coverage for a wide variety of back-end infrastructure components in multiple clouds as 778
well as on premises; this abstraction feature is now natively present in container 779
orchestration and resource management platforms (e.g., Kubernetes) or through stacks 780
(e.g., vSphere or OpenStack) 781

The security automation tools for various functions (e.g., static vulnerability analysis, dynamic 782
vulnerability analysis, software composition analysis) used in CI/CD pipelines need to have 783
different interface and alerting/reporting requirements since they have to operate seamlessly 784
depending on the pipeline stage (e.g., build, package, release) at which they are used. These 785
requirements are: 786

• Security automation tools should work with integrated development environment (IDE) 787
tools and help developers prioritize and remediate static vulnerabilities. These capabilities 788
are needed to facilitate developer adoption and improve productivity. 789

• Security automation tools should be flexible to support specific workflows and provide 790
scaling capabilities for security services. 791

• Tools that perform static vulnerability checks at the build phase ensure safe data flows, 792
and those that perform dynamic vulnerability checks ensure safe application states during 793
runtime. 794

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

17

4 Implementing DevSecOps Primitives for the Reference Platform 795

Various CI/CD pipelines are involved in the reference platform (i.e., microservices-based 796
application with service mesh that provides infrastructure services). Though the reference 797
application is a microservices-based application, the DevSecOps primitives can be applied to 798
monolithic applications as well as applications that are both on-premises and cloud-based (hybrid 799
cloud, single public cloud, and multi-cloud). 800
 801
The application architecture consists of other functional elements (in addition to elements for 802
housing executable application code and providing application services) such as for infrastructure 803
resources, runtime policies, and continuous monitoring of the health of the application, which can 804
all be deployed through declarative codes. Hence, separate CI/CD pipelines can be created for all 805
of these code types as well. These five code types will first be considered in the context of the 806
reference platform followed by separate sections that will describe the associated CI/CD 807
pipelines. 808

1. Code types in the reference platform and associated CI/CD pipelines (Section 4.1) 809
2. CI/CD pipeline for application code and application services code (Section 4.2) 810
3. CI/CD pipeline for infrastructure as code (IaC) (Section 4.3) 811
4. CI/CD pipeline for policy as code (Section 4.4) 812
5. CI/CD pipeline for observability as code (Section 4.5) 813

 814
Implementation issues for all CI/CD pipelines irrespective of code types will be addressed in the 815
following sections: 816

• Securing the CI/CD pipelines (Section 4.6) 817
• Workflow models in the CI/CD pipelines (Section 4.7) 818
• Security testing in the CI/CD pipelines (Section 4.8) 819

 820
This section will also consider the overall benefits of DevSecOps with a subsection on specific 821
advantages in the context of the reference platform and the ability to leverage DevSecOps for 822
continuous authorization to operate (C-ATO) in Sections 4.9 and 4.10, respectively. 823

4.1 Code Types in Reference Platform and Associated CI/CD Pipelines 824

The constituent components of the code types in the reference platform are: 825
1. Microservices-based application component (implemented as a series of containers), 826

which contains the application logic (e.g., interacting with data, performing transactions 827
etc.) and the application code 828

2. Infrastructure component (containing computer, networking, and storage resources) 829
whose constituents can be provisioned using infrastructure as code 830

3. Service mesh component (implemented through a combination of control plane modules 831
and service proxies), which provides application services, enforces policies (e.g., 832
authentication and authorization), and contains application services code and policy as 833
code 834

4. Monitoring component (modules involved in ascertaining the parameters that indicate the 835
health of the application), which performs functions (e.g., log aggregation, the generation 836

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

18

of metrics, the generation of displays for dashboard, etc.) and contains observability as 837
code 838

The DevSecOps methodology for developing, testing, delivering, and deploying these five types 839
of codes (i.e., application, application services, infrastructure, policy, and monitoring) requires 840
the corresponding pipelines: 841

• CI/CD pipelines for application code and application services code – the former contains 842
the data and application logic for a specific set of business transactions while the latter 843
contains code for all services such as network connections, load balancing, network 844
resilience etc. 845

• CI/CD pipeline for infrastructure as code (IaC) – The process of writing the code for 846
provisioning and configuring the steps of infrastructure resources to automate application 847
deployment in a repeatable and consistent manner [23]. This code is written in a 848
declarative language and – when executed – provisions, de-provisions, and configures the 849
infrastructure for the application that is being deployed. This type of code is like any other 850
code found in an application’s microservice except that it provides an infrastructure 851
service (e.g., provisioning a server) rather than a transaction service (e.g., payment 852
processing for an online retail application). 853

• CI/CD pipeline for policy as code – Describes many policies, including security policies, 854
as executable modules [24]. One example is the authorization policy, the code for which 855
contains verbs or artifacts specific to the policy (e.g., allow, deny etc.) and to the domain 856
where it applies (e.g., REST API with verbs such as method [GET, PUT, etc.], path, etc.). 857
This code can be written in a special-purpose policy language, such as Rego or WASM, 858
or languages used in regular applications, such as Go. This code may have some overlap 859
with the configuration code of IaC. However, for implementing policies associated with 860
critical security services that are specific to the application domain, a separate policy as 861
code that resides in the policy enforcement points (PEPs) of the reference platform is 862
required. 863

• CI/CD pipeline for observability as code – The ability to infer a system’s internal state 864
and provide actionable insights into when and, more importantly, why errors occur within 865
a system. It is a full-stack observability that includes monitoring and analytics, as well as 866
offers key insights into the overall performance of applications and the systems hosting 867
them. In the context of the reference platform, observability as code is the portion of the 868
code that creates agencies in proxies and creates functionality for gathering three types of 869
data (i.e., logs, traces, and telemetry) from microservices applications [25]. This type of 870
code also supplies or transfers data to the external tools (e.g., log aggregation tool that 871
aggregates log data from individual microservices, provides analysis of tracing data for 872
bottleneck services, generates metrics that reflect the application health from telemetry 873
data, etc.). Brief descriptions of the three functions enabled by observability as code are: 874

1. Logging captures detailed error messages, as well as debugs logs and stack 875
traces for troubleshooting. 876

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

19

2. Tracing follows application requests as they wind through multiple 877
microservices to complete a transaction in order to identify an issue or 878
performance bottleneck in a distributed or microservices-based ecosystem. 879

3. Monitoring, or metrics, gathers telemetry data from applications and 880
services. 881

The policy and observability code types span the following components of the service mesh. 882

• Proxies (ingress, sidecar, and egress): These house encoding policies related to session 883
establishment, routing, authentication, and authorization functions. 884

• Control plane of the service mesh: This houses code for relaying telemetry information 885
from services captured and sent by proxies to specialized monitoring tools, authentication 886
certificate generation and maintenance, updating policies in the proxies, monitoring 887
overall configuration in the service orchestration platform for generating new proxies, and 888
deleting obsolete proxies associated with discontinued microservices. 889

• External modules: These house modules that perform specialized functions at the 890
application and enterprise levels (e.g., such as the centralized authorization or entitlement 891
server, the centralized logger, monitoring/alerting server status through dashboards, etc.) 892
and build a comprehensive view of the application status. These modules are called by 893
code from the proxies or the control plane. 894

4.2 CI/CD Pipeline for Application Code and Application Services Code 895

Application code and application services code reside in the container orchestration and resource 896
management platform, and the CI/CD software that implements the workflows associated with it 897
usually reside in the same platform. This pipeline should be protected using the steps outlined in 898
Section 4.6, and the application code under the control of this pipeline should be subject to the 899
security testing described in Section 4.8. Additionally, the orchestration platform on which the 900
application resides should itself be protected using a runtime security tool (e.g., Falco) [32] that 901
can read OS kernel logs, container logs, and platform logs in real-time and process them against a 902
threat detection rules engine to alert users of malicious behavior (e.g., creation of a privileged 903
container, reading of a sensitive file by an unauthorized user, etc.). They usually come with a set 904
of default (predefined) rules over which custom rules can be added. Installing them on the 905
platform spins up agents for each node in the cluster, which can monitor the containers running in 906
the various pods of that node. The advantage of this type of tool is that it complements the existing 907
platform’s native security measures, such as access control models and pod security policies, that 908
prevent violations of security by actually detecting them when they occur [32]. 909

4.3. CI/CD Pipeline for Infrastructure as Code 910

Infrastructure as code (IaC) involves codifying all software deployment tasks (allocation of type 911
of servers, such as bare metal, VMs or containers, resource content of servers) and the 912
configuration of these servers and their networks. The software containing this code type is also 913
called a resource manager or deployment manager. In other words, IaC software automates 914
management of the whole IT infrastructure life cycle (provisioning and de-provisioning of 915
resources) and enables a programmable infrastructure. The integration of this software as part of 916

https://whatis.techtarget.com/definition/telemetry

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

20

the CI/CD pipeline not only results in agile deployment and maintenance but also in a robust 917
application platform that is secure and meets performance needs. 918
 919
The conventional approach to allocating infrastructure for applications consists of initially 920
provisioning compute and networking resources with configuration parameters and ongoing tasks 921
such as patch management (e.g., OS and libraries), establishing conformity to compliance 922
regulations (e.g., data privacy), and making drift correction (where the current configuration no 923
longer provides the intended operational state). 924
 925
Infrastructure as code (IaC) is a declarative style of code that encodes computer instructions that 926
encapsulate the parameters necessary to deploy virtual infrastructure on a public cloud service or 927
private data center via a service’s management APIs [33]. Depending on the particular IaC tool, 928
this language can either be a scripting language (e.g., Go, JavaScript, Python, TypeScript, etc.) or 929
a proprietary configuration language (e.g., HCL) that may or may not be compatible with 930
standardized languages (e.g., JSON). The basic unit of these instructions is called “configuration” 931
and tells the system how to provision and manage infrastructure (whether that is an individual 932
compute instance or a complete server, such as physical servers or virtual machines), containers, 933
storage, network connections, connection topology, and load balancers. [34]. In some cases, the 934
infrastructure may be short-lived or ephemeral, and the lifespan of the infrastructure (whether 935
immutable or mutable) does not warrant continued configuration management. Provisioning 936
could be tied to individual commits of application code using tools that can connect application 937
code and infrastructure code in way that is logical, expressive, and familiar to development and 938
operations teams, where application code increasingly defines the infrastructure resource 939
requirements for a cloud application [35]. 940
 941
4.3.1 Comparison of Configuration and Infrastructure 942
 943
Infrastructure is often confused with configuration [34], which maintains computer systems, 944
software, dependencies, and settings in a desired, consistent state. For example, putting a newly 945
purchased server onto a rack and connecting it to the switches so that it is connected to the existing 946
networks (or launching a new virtual machine and assigning network interfaces to it) belongs to 947
the definition of “infrastructure.” In contrast, after the server is launched, installing an HTTP 948
server and configuring it belongs to configuration management. In physical data centers, specific 949
teams purchase servers, install servers, and connect networking cables with the underlying 950
infrastructure in mind. 951
 952
4.4 CI/CD Pipeline for Policy as Code 953

Policy as code involves codifying all policies and running them as part of the CI/CD pipeline so 954
that they become an integral part of the application runtime. Examples of policy categories 955
include authorization policies, networking policies, and implementation artifact policies (e.g., 956
container policies). Policy management capabilities in a typical “policy as code software” may 957
come with a set of predefined policy categories and policies and also support the definition of 958
new policy categories and associated policies by providing policy templates [36]. 959

Some examples of policy categories and associated policies are given in 960

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

21

Table 1 below. 961

Table 1: Policy Categories and Example Policies 962

 963

Policy Category Example Policies

Networking policies and zero trust policies • Blocking designated ports
• Designating ingress host names

Implementation artifact policies (e.g.,
container policies)

• Ensuring that containers do not run as root
• Blocking privilege escalation for

containers
Storage policies • Set persistent volume sizes

• Set persistent volume reclaim policies
Access control policies • Ensure that policies cover all data objects

• Ensure that there are no policy conflicts
Supply chain policies • Allow only approved container registries

• Allow only certified libraries

The policies defined in the “policy as code software” may translate into the following in the 964
application infrastructure: 965

• Runtime configuration parameters 966
• Policy-enforcing executable (e.g., WASM in service proxies) 967
• Triggers for calling an external policy decision module (e.g., calling an external 968

authorization server for an allow/deny decision based on the evaluation of access control 969
policies relevant to the current access request) 970

4.5 CI/CD Pipeline for Observability as Code 971

Observability as code deploys a monitoring agent in each of the application’s service components 972
to collect the three types of data (described in Section 4.1), send them to specialized tools that 973
correlate them, perform analysis, and display the analyzed consolidated data on dashboards to 974
present an overall application-level picture [20]. An example of such consolidated data are log 975
patterns, which provide a view of log data that is presented after the log data are filtered using 976
some criterion (e.g., a service or an event). The data are grouped into clusters based on common 977
patterns (e.g., based on timestamp or range of IP addresses) for easy interpretation. Unusual 978
occurrences are identified, and those findings can then be used to steer and accelerate further 979
investigation [21]. 980

4.6 Securing the CI/CD Pipeline 981

There are some common implementation issues to be addressed for CI/CD pipelines irrespective 982
of code type. The first – security – involves securing the artifacts, including hardening the servers 983

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

22

and nodes used for generating the build and establishing the authenticity of the build components. 984
Securing the processes involves the assignment of roles for operating the build tasks. Automation 985
tools (e.g., Git Secrets) are available for this purpose. The following security tasks should be 986
performed when securing the CI pipeline [26]: 987

● Authentication and validation in code and build repositories 988
● Logging all activities associated with code and build updates 989
● Sending build reports to developers and stopping everything if a build fails 990
● Sending build reports to security and stopping everything if the audit or validation fails 991

Securing the CD pipeline involves the following: 992

• Multi-party signing with TUF and in-toto to sign each CD pipeline phase 993
• Signing the final artifacts with multiple phase keys to ensure that no one bypasses the 994

pipeline 995

4.7 Workflow Models in CI/CD Pipelines 996

The next common issue involves workflow models. All CI/CD pipelines can have two types of 997
workflow models, which depend on the automated tools that are deployed as part of the pipeline. 998

1. Push-based model 999
2. Pull-based model 1000

 1001
In the CI/CD tools that support the push-based model, changes made in one stage or phase of the 1002
pipeline trigger changes in the subsequent stages and phases. For example, through a series of 1003
encoded scripts, the new builds in the CI system trigger changes to the CD portion of the pipeline 1004
and thus change the deployment infrastructure (e.g., Kubernetes cluster). The security downside 1005
of using the CI system as the basis for change in deployments is the possibility of exposing 1006
credentials outside of the deployment environment in spite of best efforts to secure the CI scripts, 1007
which operate outside of the trusted domain of the deployment infrastructure. Since CD tools 1008
have the keys to production systems, push-based models are rendered insecure. A pull-based 1009
model, which typically uses a GitOps repository for storing the source code and builds, is 1010
therefore highly recommended. 1011

In a pull-based workflow model, an operator that pertains to the deployment environment (e.g., 1012
Kubernetes Operator, Flux, ArgoCD) pulls new images from inside of the environment as soon as 1013
the operator observes that a new image has been pushed to the registry. The new image is pulled 1014
from the registry, the deployment manifest is automatically updated, and the new image is 1015
deployed in the environment (e.g., cluster). Thus, the convergence of the actual deployment 1016
infrastructure state with the state declaratively described in the Git deployment repository is 1017
achieved. Additionally, the deployment environment credentials (e.g., cluster credentials) are not 1018
exposed outside of the production environment. 1019

4.7.1 GitsOps Workflow Model for CI/CD – A Pull-based Model 1020

The GitOps workflow model is an improvement on the CI/CD pipeline (for the delivery portion 1021
of the pipeline), which uses a pull-based workflow model instead of the push-based model 1022

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

23

supported by many CI/CD tools. In this model, the CI portion of the pipeline is unchanged since 1023
the CI engine (e.g., Jenkins, GitLab CI) is still used for creating builds for the changed code, 1024
regression testing, and integrating/merging with the main source code in the relevant repositories, 1025
though it is not used to trigger continuous delivery (push updates directly) in the pipeline. 1026
Instead, a separate GitOps operator manages the deployment based on updates to the main (trunk) 1027
code. 1028

An operator (eg. Flux, ArgoCD) is an actor managed by an orchestration platform and can 1029
inherit the cluster’s configuration, security, and availability. The use of this actor improves 1030
security because an agent that lives inside of the cluster listens for updates to all code and image 1031
repositories that it is allowed to access and pulls images and configuration updates into the 1032
cluster. The pull approach used by the agent has the following security features: 1033

• ONLY carry out operations permitted by authorization policies defined in the 1034
orchestration platform; trust is shared with the cluster and not managed separately 1035

• Bind natively to all orchestration platform objects, and know whether operations have 1036
completed or need to be retried 1037

4.8 Security Testing – Common Requirement for CI/CD Pipelines for All Code Types 1038

The last common issue is security testing. Whatever the code type is, the CI/CD pipelines of 1039
DevSecOps for microservices-based infrastructure with service mesh should include application 1040
security testing (AST) enabled by either automated tools or offered as a service. These tools 1041
analyze and test applications for security vulnerabilities. According to Gartner, there are four 1042
main AST technologies [27]: 1043

1. Static AST (SAST) tools – analyze an application’s source, bytecode, or binary code for 1044
security vulnerabilities, typically at the programming and/or testing software life cycle 1045
(SLC) phases. Specifically, this technology involves techniques that look through the 1046
application in a commit and analyze its dependencies [28]. If any dependencies contain 1047
issues or known security vulnerabilities, a commit will be marked as insecure and will not 1048
be allowed to proceed to deployment. 1049

2. Dynamic AST (DAST) tools – analyze applications in their dynamic, running state during 1050
testing or operational phases. They simulate attacks against an application (typically web-1051
enabled applications, services, and APIs), analyze the application’s reactions, and 1052
determine whether it is vulnerable. In particular, DAST tools go one step further than 1053
SAST and spin up a copy of the production environment inside the CI job in order to scan 1054
the resulting containers and executables [28]. The dynamic aspect helps the system catch 1055
dependencies that are being loaded at launch time, such as those would not be caught by 1056
SAST. 1057

3. Interactive AST (IAST) tools – combine elements of DAST with the instrumentation of 1058
the application under test. They are typically implemented as an agent within the test 1059
runtime environment (e.g., instrumenting the Java Virtual Machine [JVM] or .NET CLR) 1060
that observes operations or identifies and attacks vulnerabilities. 1061

https://coreos.com/operators/

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

24

4. Software composition analysis (SCA) tools – are used to identify open-source and third-1062
party components in use in an application, their known security vulnerabilities, and 1063
typically adversarial license restrictions. 1064

4.8.1 Functional and Coverage Requirements for AST tools 1065

In general, the overall metrics that testing tools (including the specific class of AST tools) should 1066
satisfy are [29]: 1067

• Increase the quality of application releases 1068
• Integrate with the tools that developers are already using 1069
• Be as few test tools as possible but provide the necessary coverage risk 1070
• Lower-level unit tests at the API and microservices level should have sufficient visibility 1071

to determine coverage 1072
• Higher-level UI/UX and system tests 1073
• Have deep code analysis capabilities to detect runtime flaws 1074
• Increase the speed at which the releases can be done 1075
• Be cost-efficient 1076

The functional requirements for AST tools in particular are that perform the following types of 1077
scans [30]: 1078

• Vulnerability scans: Probe applications for security weaknesses that could expose them 1079
to attacks 1080

• Container image scans: Analyze the contents and build process of a container image in 1081
order to detect security issues, vulnerabilities, or deficient practices 1082

• Regulatory/compliance scans: Assess adherence to specific compliance requirements 1083

The vulnerability scans are to be performed whenever the code in GitHub is revised to ensure that 1084
the current revision does not contain any vulnerable dependencies [31]. 1085

The desirable features of AST tools and/or services, along with techniques for behavioral 1086
analysis, are [27]: 1087

• Analyze source, byte, or binary code 1088
• Observe the behavior of apps to identify coding, design, packaging, deployment, and 1089

runtime conditions that introduce security vulnerabilities 1090

Scanning application code for security vulnerabilities and misconfiguration as part of CI/CD 1091
pipeline tasks should involve the following artifacts: 1092

• Container images should be scanned for vulnerabilities. 1093
• Filesystems should be scanned for both vulnerabilities and misconfigurations. 1094
• Git repositories should be scanned for both vulnerabilities and misconfigurations. 1095

Container images include OS packages (e.g., Alpine, UBI, RHEL, CentOS, etc.) and language-1096
specific packages (e.g., Bundler, Composer, npm, yarn, etc.) 1097

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

25

Scanning Infrastructure-as-code for security vulnerabilities reduces the operations workload by 1098
preventing those vulnerabilities from making it to production, although it cannot replace runtime 1099
security since there will always be the risk of drift. The infrastructure-as-code files can be found 1100
in the following: 1101

• In the container orchestration platform itself to facilitate deployments (e.g., Kubernetes 1102
YAML infrastructure-as-code files) 1103

• In the dedicated infrastructure-as-code files found as part of CI/CD pipeline software 1104
(e.g., HashiCorp Terraform infrastructure-as-code files, AWS CloudFormation 1105
infrastructure-as-code files) 1106

Both application services code, policy-as-code, and observability-as-code files can be found in 1107
the data plane and control plane components of the dedicated application services component 1108
(e.g., service mesh) and should be scanned for both security vulnerabilities (e.g., information 1109
leakage in authorization policies) and misconfiguration. 1110

4.9 Benefits of DevSecOps Primitives to Application Security in the Service Mesh 1111

The benefits of DevSecOps include [37]: 1112

• Streamlined software delivery and deployment processes 1113
• Reduction of the number of silos between IT groups 1114
• Reduction of attack surfaces by implementing zero trust down to the container level 1115
• Introduction of moving target defenses by threating containers as cattle versus pet and 1116

going back to an immutable state 1117
• Reduction of lateral movement capabilities by leveraging zero trust and continuous 1118

monitoring with modern behavior prevention capabilities 1119
• Increased communications between team members and other stakeholders 1120
• Faster incorporation of feedback, resulting in quicker software improvements 1121
• Automation of repetitive, manual tasks, leading to increased efficiency 1122
• Less downtime and faster time to market 1123
• Infrastructure for continuous software development and delivery (as well as admission 1124

controller and the use of OPA to add guard rails to the runtime) 1125

As already stated, the primary goal of DevSecOps is to have a platform that ensures runtime 1126
security of microservices-based applications. Runtime security is assured through the following: 1127

(a) Validation of every request: Every request from a user or client application (service) is 1128
authenticated and authorized (using mechanisms such as Open Policy Agent [OPA] or any 1129
external authorization engine), and admission controllers that are integral parts of the 1130
platform. While authorization engines provide application domain-specific policy 1131
enforcement, admission controllers provide platform-specific policy relating to end-point 1132
objects of a specific platform (e.g., pods, deployment, namespaces). Specifically, 1133
admission controllers mutate and validate. Mutating admission controllers parse each 1134
request and make changes to the request (mutate) before forwarding it down the chain. An 1135
example is setting default values for specifications that are not set by a user in the request 1136
so as to ensure that workloads running on the cluster are uniform and follow a particular 1137

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

26

standard defined by the cluster administrator. Another example is adding a specific 1138
resource limit for the pod (if the resource limits are not set for that pod) and then 1139
forwarding it down the chain (mutate the request by adding this field if it is not present in 1140
the request). By doing so, all of the pods in the cluster will always have a resource limit set 1141
according to a specification unless explicitly stated. Validating admission controllers reject 1142
requests that do not follow a particular specification. For example, none of the pod requests 1143
can have security context set to run as root user [38]. 1144

(b) Feedback mechanisms: 1145
• Provide feedback loops to the application hosting platform (e.g., a notification to kill a 1146

pod that contains a malicious container) 1147
• Provide proactive dynamic security by monitoring application configuration (e.g., 1148

monitoring new pods/containers introduced into the application and generating and 1149
injecting proxies to take care of their secure communication needs) 1150

• Enable several security assertions regarding the application: non-bypassable (policies 1151
always enforced under all usage scenarios), trusted and untrusted portions of the 1152
overall application code, absence of credential and privilege leaks, trusted 1153
communication paths, and secure state transitions 1154

• Enable assertions regarding performance parameters (e.g., network resilience 1155
parameters, such as continued operation under failures, redundancy and recoverability 1156
features) 1157

4.10 Leveraging DevSecOps for Continuous Authorization to Operate (c-ATO) 1158

In the reference platform, the runtime status or execution state of the entire application system is 1159
due to a combination of executions of infrastructure code (e.g., networking routes for inter-1160
service communication, resources provisioning code), policy code (e.g., code that specifies 1161
authentication and authorization policies), and session management code (e.g., code that 1162
establishes an mTLS session, code that generates JWT tokens) as revealed by the execution of 1163
observability as code. The observability as code of the service mesh relays the output from the 1164
execution of infrastructure, policy, and session management codes during runtime to various 1165
monitoring tools that generate applicable metrics and log aggregation tools and tracing tools, 1166
which in turn relay their output to a centralized dashboard. The analytics that are integral to the 1167
output of these tools enable system administrators to obtain a comprehensive global view of the 1168
runtime status of the entire application system. It is the runtime performance of a DevSecOps 1169
platform enabled through continuous monitoring with zero trust design features that provides all 1170
of the necessary security assurance for cloud-native applications. 1171

The activities within the DevSecOps pipelines within the service mesh context that enable 1172
continuous ATO are: 1173

• Checking for compliant code: Checking whether the updated infrastructure, policy, 1174
session management, and observability codes are compliant with the chosen risk 1175
management framework (e.g., NIST Risk Management Framework) for the enterprise. 1176
This will involve tools with risk assessment features, such as the capability to generate 1177

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

27

actionable tasks, specify code-level guidance, and test plans for verifying compliance 1178
[31]. 1179

• Generating a dashboard that displays the runtime status: Using the runtime output of 1180
observability code for generating the dashboard that displays the runtime status of the 1181
overall application 1182

Risk assessment tools should provide complete traceability for all of the artifacts displayed in the 1183
dashboard, as well as the reporting capabilities needed for continuous ATO. 1184

Dashboard generation tools should enable system administrators to analyze macro-level features, 1185
as well as dynamically change the composition of the artifacts to be displayed based on the 1186
evolving system and consumer needs of the environment in which the application operates. 1187

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

28

5 Summary and Conclusion 1188

This document provides a comprehensive guidance for the implementation of DevSecOps 1189
primitives for a reference platform hosting a cloud-native application. It includes an overview of 1190
the reference platform and describes the basic DevSecOps primitives (i.e., CI/CD pipelines), its 1191
building blocks, the design and execution of the pipelines, and the role of automation in the 1192
efficient execution of workflows in CI/CD pipelines. 1193
 1194
The architecture of the reference platform, in addition to the application code and the code for 1195
providing application services, consists of functional elements for infrastructure, runtime policies, 1196
and continuous monitoring of the health of the application, the last three of which can be 1197
deployed through declarative codes with separate CI/CD pipelines types. The runtime behaviors 1198
of these codes, the benefits of the implementation for high-assurance security, and the use of the 1199
artifacts within the pipelines for providing a continuous authority to operate (c-ATO) using risk 1200
management tools and dashboard metrics are also described. 1201
 1202

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

29

References 1203

[1] Garrison J, Nova K (2017) Cloud Native Infrastructure (oreilly.com). Available at 1204
https://www.oreilly.com/library/view/cloud-native-infrastructure/9781491984291/ 1205

 1206
[2] Chaillan NM (2020) DoD Enterprise DevSecOps Initiative and Platform One. Available 1207

at https://software.af.mil/dsop/documents 1208

[3] Chandramouli R (2019) Security Strategies for Microservices-based Application Systems. 1209
(National Institute of Standards and Technology, Gaithersburg, MD), NIST Special 1210
Publication (SP) 800-204. https://doi.org/10.6028/NIST.SP.800-204 1211

 1212
[4] Chandramouli R, Butcher Z (2020) Building Secure Microservices-based Applications 1213

Using Service-Mesh Architecture. (National Institute of Standards and Technology, 1214
Gaithersburg, MD), NIST Special Publication (SP) 800-204A. 1215
https://doi.org/10.6028/NIST.SP.800-204A 1216

 1217
[5] Chandramouli R, Butcher Z, Aradhna C (2021) (National Institute of Standards and 1218

Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-204B. 1219
https://doi.org/10.6028/NIST.SP.800-204B 1220

 1221
[6] Agarwal G (2020) How to Manage Microservices on Kubernetes With Istio. Available at 1222

https://medium.com/better-programming/how-to-manage-microservices-on-kubernetes-1223
with-istio-c25e97a60a59 1224

 1225
[7] Kubernetes Advocate (2021) Managing Microservices With Istio Service Mesh in 1226

Kubernetes. Available at https://medium.com/avmconsulting-blog/managing-1227
microservices-with-istio-service-mesh-in-kubernetes-36e1fda81757 1228

 1229
[8] Ramakani A (2020) Kong API Gateway – From Zero to Production. Available at 1230

https://medium.com/swlh/kong-api-gateway-zero-to-production-5b8431495ee 1231
 1232
[9] Srinath K (2020) DevSecOps – Baking Security into Development Process. Available at 1233

https://medium.com/faun/devsecops-baking-security-into-development-process-1234
9579418ad9a7 1235

 1236
[10] Rubinstein D (2020) AppSec vs. DevSecOps, and what that means for developers. 1237

Available at https://sdtimes.com/security/appsec-vs-devsecops-and-what-that-means-for-1238
developers/ 1239

 1240
[11] Red Hat (2021) What is DevSecOps? Available at 1241

https://www.redhat.com/en/topics/devops/what-is-devsecops 1242
 1243
[12] Red Hat (2021) What is CI/CD? Available at 1244

https://www.oreilly.com/library/view/cloud-native-infrastructure/9781491984291/
https://software.af.mil/dsop/documents
https://doi.org/10.6028/NIST.SP.800-204
https://doi.org/10.6028/NIST.SP.800-204A
https://doi.org/10.6028/NIST.SP.800-204B
https://medium.com/better-programming/how-to-manage-microservices-on-kubernetes-with-istio-c25e97a60a59
https://medium.com/better-programming/how-to-manage-microservices-on-kubernetes-with-istio-c25e97a60a59
https://medium.com/avmconsulting-blog/managing-microservices-with-istio-service-mesh-in-kubernetes-36e1fda81757
https://medium.com/avmconsulting-blog/managing-microservices-with-istio-service-mesh-in-kubernetes-36e1fda81757
https://medium.com/swlh/kong-api-gateway-zero-to-production-5b8431495ee
https://medium.com/faun/devsecops-baking-security-into-development-process-9579418ad9a7
https://medium.com/faun/devsecops-baking-security-into-development-process-9579418ad9a7
https://sdtimes.com/security/appsec-vs-devsecops-and-what-that-means-for-developers/
https://sdtimes.com/security/appsec-vs-devsecops-and-what-that-means-for-developers/
https://www.redhat.com/en/topics/devops/what-is-devsecops

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

30

https://www.redhat.com/en/topics/devops/what-is-ci-1245
cd#:~:text=CI%2FCD%20is%20a%20method,continuous%20delivery%2C%20and%20c1246
ontinuous%20deployment 1247

 1248
[13] Ali M (2018) Continuous Release Practices are evolving, Here is our story. Available at 1249

https://medium.com/the-telegraph-engineering/continuous-release-practices-are-evolving-1250
here-is-our-story-2a4d164e9cac 1251

 1252
[14] Pittet S (2021) Continuous integration vs. continuous delivery vs. continuous deployment. 1253

Available at https://www.atlassian.com/continuous-delivery/principles/continuous-1254
integration-vs-delivery-vs-deployment 1255

 1256
[15] Wuestkamp K (2020) K8s–native Jenkins-X and Tekton Pipelines. Available at 1257

https://itnext.io/k8s-native-jenkins-x-and-tekton-pipelines-e2b5a61a1d22 1258
 1259
[16] aws.amazon.com (2021) Create Continuous Delivery Pipeline. Available at 1260

https://aws.amazon.com/getting-started/hands-on/create-continuous-delivery-1261
pipeline/?trk=gs_card 1262

 1263
[17] aws.amazon.com (2021) Setting up a CI/CD pipeline by integrating Jenkins with AWS 1264

CodeBuild and AWS CodeDeploy. https://aws.amazon.com/blogs/devops/setting-up-a-ci-1265
cd-pipeline-by-integrating-jenkins-with-aws-codebuild-and-aws-codedeploy/ 1266

[18] mylocaldevstack.pl (2019) The future of DevOps – Assembly Lines. Available at 1267
https://medium.com/@mylocaldevstack/the-future-of-devops-assembly-lines-1268
40227546d750 1269

[19] Socher R (2020) Best Terraform Tutorial Guides: An Overview. Available at 1270
https://faun.pub/best-terraform-tutorial-guides-an-overview-65a6fcee0a24 1271

[20] Pariseau B (2020) Mendix dumps cluttered DevOps monitoring tools for Datadog. 1272
Available at https://searchitoperations.techtarget.com/news/252497697/Mendix-dumps-1273
cluttered-DevOps-monitoring-tools-for-Datadog?track=NL-1274
1841&ad=938089&asrc=EM_NLN_151848158&utm_medium=EM&utm_source=NLN1275
&utm_campaign=20210315_Kong+Mesh%27s+built-1276
in+Open+Policy+Agent+simplifies+IT+security+management 1277

[21] Boutet R (2018) Log Patterns: Automatically cluster your logs for faster investigation 1278
(datadoghq.com). Available at https://www.datadoghq.com/blog/log-patterns/ 1279

[22] Soni A (2020) GitOps: The Next Big Thing for DevOps and Automation! Available at 1280
https://medium.com/searce/gitops-the-next-big-thing-for-devops-and-automation-1281
2a9597e51559 1282

[23] Fallon A (2020) Understand the role of infrastructure as code in DevOps 1283
(TechTarget.com). Available at 1284

https://www.redhat.com/en/topics/devops/what-is-ci-cd#:%7E:text=CI%2FCD%20is%20a%20method,continuous%20delivery%2C%20and%20continuous%20deployment
https://www.redhat.com/en/topics/devops/what-is-ci-cd#:%7E:text=CI%2FCD%20is%20a%20method,continuous%20delivery%2C%20and%20continuous%20deployment
https://www.redhat.com/en/topics/devops/what-is-ci-cd#:%7E:text=CI%2FCD%20is%20a%20method,continuous%20delivery%2C%20and%20continuous%20deployment
https://medium.com/the-telegraph-engineering/continuous-release-practices-are-evolving-here-is-our-story-2a4d164e9cac
https://medium.com/the-telegraph-engineering/continuous-release-practices-are-evolving-here-is-our-story-2a4d164e9cac
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://itnext.io/k8s-native-jenkins-x-and-tekton-pipelines-e2b5a61a1d22
https://aws.amazon.com/getting-started/hands-on/create-continuous-delivery-pipeline/?trk=gs_card
https://aws.amazon.com/getting-started/hands-on/create-continuous-delivery-pipeline/?trk=gs_card
https://aws.amazon.com/blogs/devops/setting-up-a-ci-cd-pipeline-by-integrating-jenkins-with-aws-codebuild-and-aws-codedeploy/
https://aws.amazon.com/blogs/devops/setting-up-a-ci-cd-pipeline-by-integrating-jenkins-with-aws-codebuild-and-aws-codedeploy/
https://aws.amazon.com/blogs/devops/setting-up-a-ci-cd-pipeline-by-integrating-jenkins-with-aws-codebuild-and-aws-codedeploy/
https://medium.com/@mylocaldevstack/the-future-of-devops-assembly-lines-40227546d750
https://medium.com/@mylocaldevstack/the-future-of-devops-assembly-lines-40227546d750
https://faun.pub/best-terraform-tutorial-guides-an-overview-65a6fcee0a24
https://searchitoperations.techtarget.com/news/252497697/Mendix-dumps-cluttered-DevOps-monitoring-tools-for-Datadog?track=NL-1841&ad=938089&asrc=EM_NLN_151848158&utm_medium=EM&utm_source=NLN&utm_campaign=20210315_Kong+Mesh%27s+built-in+Open+Policy+Agent+simplifies+IT+security+management
https://searchitoperations.techtarget.com/news/252497697/Mendix-dumps-cluttered-DevOps-monitoring-tools-for-Datadog?track=NL-1841&ad=938089&asrc=EM_NLN_151848158&utm_medium=EM&utm_source=NLN&utm_campaign=20210315_Kong+Mesh%27s+built-in+Open+Policy+Agent+simplifies+IT+security+management
https://searchitoperations.techtarget.com/news/252497697/Mendix-dumps-cluttered-DevOps-monitoring-tools-for-Datadog?track=NL-1841&ad=938089&asrc=EM_NLN_151848158&utm_medium=EM&utm_source=NLN&utm_campaign=20210315_Kong+Mesh%27s+built-in+Open+Policy+Agent+simplifies+IT+security+management
https://searchitoperations.techtarget.com/news/252497697/Mendix-dumps-cluttered-DevOps-monitoring-tools-for-Datadog?track=NL-1841&ad=938089&asrc=EM_NLN_151848158&utm_medium=EM&utm_source=NLN&utm_campaign=20210315_Kong+Mesh%27s+built-in+Open+Policy+Agent+simplifies+IT+security+management
https://searchitoperations.techtarget.com/news/252497697/Mendix-dumps-cluttered-DevOps-monitoring-tools-for-Datadog?track=NL-1841&ad=938089&asrc=EM_NLN_151848158&utm_medium=EM&utm_source=NLN&utm_campaign=20210315_Kong+Mesh%27s+built-in+Open+Policy+Agent+simplifies+IT+security+management
https://www.datadoghq.com/blog/log-patterns/
https://medium.com/searce/gitops-the-next-big-thing-for-devops-and-automation-2a9597e51559
https://medium.com/searce/gitops-the-next-big-thing-for-devops-and-automation-2a9597e51559

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

31

https://searchitoperations.techtarget.com/feature/Understand-the-role-of-infrastructure-as-1285
code-in-1286
DevOps?utm_campaign=20210809_The+next+DevSecOps+challenge%3A+People&utm_1287
medium=EM&utm_source=NLN&track=NL-1288
1841&ad=939963&asrc=EM_NLN_174809933 1289

[24] Ahmed M (2020) Introducing Policy As Code: The Open Policy Agent (OPA). Available 1290
at https://www.magalix.com/blog/introducing-policy-as-code-the-open-policy-agent-opa 1291

[25] Singh P (2021) Tackle Kubernetes observability with the right metrics. Available at 1292
https://searchitoperations.techtarget.com/tip/Tackle-Kubernetes-observability-with-the-1293
right-metrics?track=NL-1294
1841&ad=938191&asrc=EM_NLN_153034984&utm_medium=EM&utm_source=NLN1295
&utm_campaign=20210322_DevSecOps+leaves+Excel+in+the+dust 1296

 1297
[26] Devopscurry (2021) Securing your CI/CD pipelines with DevSecOps in 2021. Available at 1298

https://medium.com/devopscurry/securing-your-ci-cd-pipelines-with-devsecops-in-2021-1299
1a6a6e34f2e7 1300

[27] Gartner (2021) Gardner D, Horvath M, Zumerle D Magic Quadrant for Application 1301
Security Testing. Available at https://www.gartner.com/doc/reprints?id=1-1302
262TXQZV&ct=210518&st=sb 1303

[28] Lewkowicz J (2021) A guide to automated testing providers. Available at 1304
https://sdtimes.com/test/a-guide-to-automated-testing-providers/ 1305

[29] Lewkowicz J (2021) Automated testing is a must in CI/CE pipelines. Available at 1306
https://sdtimes.com/test/automated-testing-is-a-must-in-ci-cd-pipelines/ 1307

 1308
[30] Angel R (2020) How to be a CI/CD Engineer. Available at https://circleci.com/blog/how-1309

to-be-a-cicd-engineer/ 1310
 1311
[31] Alexey K (2020) Ultimate guide to CI/CD security and DevSecOps. Available at 1312

https://circleci.com/blog/security-best-practices-for-ci-cd/ 1313

[32] Agarwal G (2020) Kubernetes Security With Falco. Available at 1314
https://betterprogramming.pub/kubernetes-security-with-falco-2eb060d3ae7d 1315

[33] Marko K (2021) Terraform cheat sheet: Notable commands, HCL and more. Available at 1316
https://searchitoperations.techtarget.com/tip/Terraform-cheat-sheet-Notable-commands-1317
HCL-and-1318
more?utm_campaign=20210726_Infrastructure+as+code+still+a+big+security+buzz&utm1319
_medium=EM&utm_source=NLN&track=NL-1320
1841&ad=939808&asrc=EM_NLN_172629823 1321

https://searchitoperations.techtarget.com/feature/Understand-the-role-of-infrastructure-as-code-in-DevOps?utm_campaign=20210809_The+next+DevSecOps+challenge%3A+People&utm_medium=EM&utm_source=NLN&track=NL-1841&ad=939963&asrc=EM_NLN_174809933
https://searchitoperations.techtarget.com/feature/Understand-the-role-of-infrastructure-as-code-in-DevOps?utm_campaign=20210809_The+next+DevSecOps+challenge%3A+People&utm_medium=EM&utm_source=NLN&track=NL-1841&ad=939963&asrc=EM_NLN_174809933
https://searchitoperations.techtarget.com/feature/Understand-the-role-of-infrastructure-as-code-in-DevOps?utm_campaign=20210809_The+next+DevSecOps+challenge%3A+People&utm_medium=EM&utm_source=NLN&track=NL-1841&ad=939963&asrc=EM_NLN_174809933
https://searchitoperations.techtarget.com/feature/Understand-the-role-of-infrastructure-as-code-in-DevOps?utm_campaign=20210809_The+next+DevSecOps+challenge%3A+People&utm_medium=EM&utm_source=NLN&track=NL-1841&ad=939963&asrc=EM_NLN_174809933
https://searchitoperations.techtarget.com/feature/Understand-the-role-of-infrastructure-as-code-in-DevOps?utm_campaign=20210809_The+next+DevSecOps+challenge%3A+People&utm_medium=EM&utm_source=NLN&track=NL-1841&ad=939963&asrc=EM_NLN_174809933
https://www.magalix.com/blog/introducing-policy-as-code-the-open-policy-agent-opa
https://searchitoperations.techtarget.com/tip/Tackle-Kubernetes-observability-with-the-right-metrics?track=NL-1841&ad=938191&asrc=EM_NLN_153034984&utm_medium=EM&utm_source=NLN&utm_campaign=20210322_DevSecOps+leaves+Excel+in+the+dust
https://searchitoperations.techtarget.com/tip/Tackle-Kubernetes-observability-with-the-right-metrics?track=NL-1841&ad=938191&asrc=EM_NLN_153034984&utm_medium=EM&utm_source=NLN&utm_campaign=20210322_DevSecOps+leaves+Excel+in+the+dust
https://searchitoperations.techtarget.com/tip/Tackle-Kubernetes-observability-with-the-right-metrics?track=NL-1841&ad=938191&asrc=EM_NLN_153034984&utm_medium=EM&utm_source=NLN&utm_campaign=20210322_DevSecOps+leaves+Excel+in+the+dust
https://searchitoperations.techtarget.com/tip/Tackle-Kubernetes-observability-with-the-right-metrics?track=NL-1841&ad=938191&asrc=EM_NLN_153034984&utm_medium=EM&utm_source=NLN&utm_campaign=20210322_DevSecOps+leaves+Excel+in+the+dust
https://medium.com/devopscurry/securing-your-ci-cd-pipelines-with-devsecops-in-2021-1a6a6e34f2e7
https://medium.com/devopscurry/securing-your-ci-cd-pipelines-with-devsecops-in-2021-1a6a6e34f2e7
https://www.gartner.com/doc/reprints?id=1-262TXQZV&ct=210518&st=sb
https://www.gartner.com/doc/reprints?id=1-262TXQZV&ct=210518&st=sb
https://sdtimes.com/test/a-guide-to-automated-testing-providers/
https://sdtimes.com/test/automated-testing-is-a-must-in-ci-cd-pipelines/
https://circleci.com/blog/how-to-be-a-cicd-engineer/
https://circleci.com/blog/how-to-be-a-cicd-engineer/
https://circleci.com/blog/security-best-practices-for-ci-cd/
https://betterprogramming.pub/kubernetes-security-with-falco-2eb060d3ae7d
https://searchitoperations.techtarget.com/tip/Terraform-cheat-sheet-Notable-commands-HCL-and-more?utm_campaign=20210726_Infrastructure+as+code+still+a+big+security+buzz&utm_medium=EM&utm_source=NLN&track=NL-1841&ad=939808&asrc=EM_NLN_172629823
https://searchitoperations.techtarget.com/tip/Terraform-cheat-sheet-Notable-commands-HCL-and-more?utm_campaign=20210726_Infrastructure+as+code+still+a+big+security+buzz&utm_medium=EM&utm_source=NLN&track=NL-1841&ad=939808&asrc=EM_NLN_172629823
https://searchitoperations.techtarget.com/tip/Terraform-cheat-sheet-Notable-commands-HCL-and-more?utm_campaign=20210726_Infrastructure+as+code+still+a+big+security+buzz&utm_medium=EM&utm_source=NLN&track=NL-1841&ad=939808&asrc=EM_NLN_172629823
https://searchitoperations.techtarget.com/tip/Terraform-cheat-sheet-Notable-commands-HCL-and-more?utm_campaign=20210726_Infrastructure+as+code+still+a+big+security+buzz&utm_medium=EM&utm_source=NLN&track=NL-1841&ad=939808&asrc=EM_NLN_172629823
https://searchitoperations.techtarget.com/tip/Terraform-cheat-sheet-Notable-commands-HCL-and-more?utm_campaign=20210726_Infrastructure+as+code+still+a+big+security+buzz&utm_medium=EM&utm_source=NLN&track=NL-1841&ad=939808&asrc=EM_NLN_172629823

NIST SP 800-204C (DRAFT) DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

32

[34] Guo T (2021) On DevOps 8: Infrastructure as Code: Introduction, Best Practices and 1322
How to choose the Right tool. Available at https://medium.com/4th-coffee/on-devops-8-1323
infrastructure-as-code-introduction-best-practices-and-choosing-the-right-tool-1324
2c8f46d1f34 1325

[35] Pulumi.com (2020) Delivering Cloud Native Infrastructure as Code. Available at 1326
https://cdn2.hubspot.net/hubfs/4429525/Content/Pulumi-Delivering-CNI-as-Code.pdf 1327

 1328
[36] Chong T (2021) Product In-Depth: Instantly Secure your Cloud Infrastructure with Policy-as-1329

Code. Available at https://www.magalix.com/blog/instantly-secure-your-cloud-1330
infrastructure-with-policy-as-1331
code?utm_medium=email&_hsmi=123795689&_hsenc=p2ANqtz-1332
HbHGaLCOrCV_WXjrKE-JgWUWUX9Tg1s9ot5HSox2Ts1rgAhwquoZkBKqZYo-1333
OcHJmlUHG8eFhC5Tfu7MW_Dn3i-1334
g3Ng&utm_content=123795689&utm_source=hs_email 1335

[37] Sheldon R (2021) Top 30 DevOps interview questions and answers for 2021. Available at 1336
https://whatis.techtarget.com/feature/Top-30-DevOps-interview-questions-and-1337
answers?utm_campaign=20210712_New+Kubernetes+use+case%253A+Hacking&utm_1338
medium=EM&utm_source=NLN&track=NL-1339
1841&ad=939635&asrc=EM_NLN_170130891 1340

[38] Prasad A (2020) Kubernetes Admission Controllers: Request Interceptors. Available at 1341
https://medium.com/cloudlego/kubernetes-admission-controllers-request-interceptors-1342
47a9b12c5303 1343

https://medium.com/4th-coffee/on-devops-8-infrastructure-as-code-introduction-best-practices-and-choosing-the-right-tool-2c8f46d1f34
https://medium.com/4th-coffee/on-devops-8-infrastructure-as-code-introduction-best-practices-and-choosing-the-right-tool-2c8f46d1f34
https://medium.com/4th-coffee/on-devops-8-infrastructure-as-code-introduction-best-practices-and-choosing-the-right-tool-2c8f46d1f34
https://cdn2.hubspot.net/hubfs/4429525/Content/Pulumi-Delivering-CNI-as-Code.pdf
https://www.magalix.com/blog/instantly-secure-your-cloud-infrastructure-with-policy-as-code?utm_medium=email&_hsmi=123795689&_hsenc=p2ANqtz-HbHGaLCOrCV_WXjrKE-JgWUWUX9Tg1s9ot5HSox2Ts1rgAhwquoZkBKqZYo-OcHJmlUHG8eFhC5Tfu7MW_Dn3i-g3Ng&utm_content=123795689&utm_source=hs_email
https://www.magalix.com/blog/instantly-secure-your-cloud-infrastructure-with-policy-as-code?utm_medium=email&_hsmi=123795689&_hsenc=p2ANqtz-HbHGaLCOrCV_WXjrKE-JgWUWUX9Tg1s9ot5HSox2Ts1rgAhwquoZkBKqZYo-OcHJmlUHG8eFhC5Tfu7MW_Dn3i-g3Ng&utm_content=123795689&utm_source=hs_email
https://www.magalix.com/blog/instantly-secure-your-cloud-infrastructure-with-policy-as-code?utm_medium=email&_hsmi=123795689&_hsenc=p2ANqtz-HbHGaLCOrCV_WXjrKE-JgWUWUX9Tg1s9ot5HSox2Ts1rgAhwquoZkBKqZYo-OcHJmlUHG8eFhC5Tfu7MW_Dn3i-g3Ng&utm_content=123795689&utm_source=hs_email
https://www.magalix.com/blog/instantly-secure-your-cloud-infrastructure-with-policy-as-code?utm_medium=email&_hsmi=123795689&_hsenc=p2ANqtz-HbHGaLCOrCV_WXjrKE-JgWUWUX9Tg1s9ot5HSox2Ts1rgAhwquoZkBKqZYo-OcHJmlUHG8eFhC5Tfu7MW_Dn3i-g3Ng&utm_content=123795689&utm_source=hs_email
https://www.magalix.com/blog/instantly-secure-your-cloud-infrastructure-with-policy-as-code?utm_medium=email&_hsmi=123795689&_hsenc=p2ANqtz-HbHGaLCOrCV_WXjrKE-JgWUWUX9Tg1s9ot5HSox2Ts1rgAhwquoZkBKqZYo-OcHJmlUHG8eFhC5Tfu7MW_Dn3i-g3Ng&utm_content=123795689&utm_source=hs_email
https://www.magalix.com/blog/instantly-secure-your-cloud-infrastructure-with-policy-as-code?utm_medium=email&_hsmi=123795689&_hsenc=p2ANqtz-HbHGaLCOrCV_WXjrKE-JgWUWUX9Tg1s9ot5HSox2Ts1rgAhwquoZkBKqZYo-OcHJmlUHG8eFhC5Tfu7MW_Dn3i-g3Ng&utm_content=123795689&utm_source=hs_email
https://whatis.techtarget.com/feature/Top-30-DevOps-interview-questions-and-answers?utm_campaign=20210712_New+Kubernetes+use+case%253A+Hacking&utm_medium=EM&utm_source=NLN&track=NL-1841&ad=939635&asrc=EM_NLN_170130891
https://whatis.techtarget.com/feature/Top-30-DevOps-interview-questions-and-answers?utm_campaign=20210712_New+Kubernetes+use+case%253A+Hacking&utm_medium=EM&utm_source=NLN&track=NL-1841&ad=939635&asrc=EM_NLN_170130891
https://whatis.techtarget.com/feature/Top-30-DevOps-interview-questions-and-answers?utm_campaign=20210712_New+Kubernetes+use+case%253A+Hacking&utm_medium=EM&utm_source=NLN&track=NL-1841&ad=939635&asrc=EM_NLN_170130891
https://whatis.techtarget.com/feature/Top-30-DevOps-interview-questions-and-answers?utm_campaign=20210712_New+Kubernetes+use+case%253A+Hacking&utm_medium=EM&utm_source=NLN&track=NL-1841&ad=939635&asrc=EM_NLN_170130891
https://medium.com/cloudlego/kubernetes-admission-controllers-request-interceptors-47a9b12c5303
https://medium.com/cloudlego/kubernetes-admission-controllers-request-interceptors-47a9b12c5303

	Executive Summary
	1 Introduction
	1.1 Scope
	1.2 Related DevSecOps Initiatives
	1.3 Target Audience
	1.4 Relationship to Other NIST Guidance Documents
	1.5 Organization of this document

	2 Reference Platform for the Implementation of DevSecOps Primitives
	2.1 Container Orchestration and Resource Management Platform
	2.1.1 Security Limitations of Orchestration Platform

	2.2 Service Mesh Software Architecture
	2.2.1 Data Plane
	2.2.2 Control Plane

	3 DevSecOps – Organizational Preparedness, Key Primitives, and Implementation
	3.1 Organizational Preparedness for DevSecOps
	3.2 Seamless Evolution from DevOps to DevSecOps
	3.3 DevSecOps – Key Primitives and Implementation Tasks
	3.3.1 Concept of Pipelines and the CI/CD pipeline
	3.3.2 Building Blocks for CI/CD pipelines
	3.3.3 Designing and Executing the CI/CD pipeline
	3.3.4 Strategies for Automation
	3.3.5 Requirements for Automation Tools in CI/CD Pipelines

	4 Implementing DevSecOps Primitives for the Reference Platform
	4.1 Code Types in Reference Platform and Associated CI/CD Pipelines
	4.2 CI/CD Pipeline for Application Code and Application Services Code
	4.3. CI/CD Pipeline for Infrastructure as Code
	4.3.1 Comparison of Configuration and Infrastructure

	4.4 CI/CD Pipeline for Policy as Code
	4.5 CI/CD Pipeline for Observability as Code
	4.6 Securing the CI/CD Pipeline
	4.7 Workflow Models in CI/CD Pipelines
	4.7.1 GitsOps Workflow Model for CI/CD – A Pull-based Model
	4.8 Security Testing – Common Requirement for CI/CD Pipelines for All Code Types
	4.8.1 Functional and Coverage Requirements for AST tools

	4.9 Benefits of DevSecOps Primitives to Application Security in the Service Mesh
	4.10 Leveraging DevSecOps for Continuous Authorization to Operate (c-ATO)

	5 Summary and Conclusion
	References

