

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

 1

`

Date: September 2022

Author: Best Practices for Container Orchestration Special
Interest Group
PCI Security Standards Council

Information Supplement:
Guidance for Containers and
Container Orchestration Tools

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

 i

Document Changes

Date Document Version Description

September 2022 1.0 Initial release

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

 ii

Contents

Document Changes .. i
1 Introduction .. 1

1.1 Intended Audience ... 2
1.2 Terminology.. 2

2 Overview of Containers and Container Orchestration Tools .. 4
2.1 Containerization ... 4

2.1.1 What is a container? ... 4
2.1.2 Basic Container Architectures .. 5
2.1.3 Differences between containers and traditional hypervisors .. 6
2.1.4 Container Isolation ... 7

2.2 Container Orchestration Tools ... 8
2.2.1 Container Orchestration Tool Architecture ... 9
2.2.2 Common Features of Container Orchestration Tools .. 11
2.2.3 Advantages and Disadvantages of Using Container Orchestration Tools ... 13
2.2.4 When Containers and Container Orchestration Tools Should Not be Used 14

3 Use-case-based Container Orchestration Tools Threats and Best Practices .. 16
3.1 Threats and Best Practices .. 17
3.2 Example Use Cases ... 28

3.2.1 Baseline Use Case ... 28
3.2.2 Development and Management of Containerized Applications ... 30
3.2.3 Use of Containerized Services that Process/Transmit Payment Card Account Data 32
3.2.4 Use of Containerization for a Mix of Services with Different Security Levels 35

Appendix A: Other PCI SSC Reference Documents ... 37
Appendix B: Other Non-PCI SSC Reference Documents ... 38
Acknowledgments .. 39
About the PCI Security Standards Council .. 41

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

 1

1 Introduction

Organizations are increasingly adopting container technology to scale, secure, and rapidly deploy the
applications on which they rely. These lightweight software components bundle an application, its
dependencies, and its configuration in a single image, running in an isolated environment, allowing for highly
distributed application infrastructures. When implemented and managed properly, containerized environments
can enable swift deployment, increased scalability, portability, and security.

These advantages can be enhanced by the deployment of container orchestration tools that facilitate load-
balancing, resource allocation, and security enforcement by automating the deployment, management,
networking, and scaling of containers. However, container orchestration tools are not without security risk,
and their use within a payment environment should be conducted with due consideration of applicable
security best practices.

This document provides guidance for the secure use of containers and container orchestration tools in a
payment environment. To contextualize container orchestration tool specific threats and best practices in a
way that is meaningful to PCI stakeholders, this document presents best practice controls of common
container use cases. Through this approach, this guidance will benefit merchants, service providers, and
assessors in understanding how controls may be applied to securing various containerized environments.

The guidance in this document is structured in three parts:

1. A high-level description of containers and container orchestration tools.

2. A list of threats, and the best practice controls intended to address them, identified by common
container orchestration use cases.

3. Use case descriptions and example threats to illustrate the application of specific best practices.

This document provides supplemental guidance which does not add, extend, replace, or supersede
requirements in any PCI Security Standards Council (PCI SSC) standard. The PCI SSC is not responsible for
enforcing compliance with any of its standards. Entities and third-party service providers should work with
their acquirers and/or payment brands to understand any compliance validation and reporting responsibilities.

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

 2

1.1 Intended Audience

The information in this document is intended for entities responsible for developing, deploying, managing, or
assessing containerized environments, including:

 Merchants and Service Providers – Guidance on security considerations that apply to the use of
container orchestration tools in containerized payment environments.

 Assessors – Guidance on security considerations to help assessors better understand security issues
when assessing a payment environment that uses container orchestration tools.

1.2 Terminology

Some of the terms used in this document are defined in the Payment Card Industry (PCI) Data Security
Standard Glossary, Abbreviations, and Acronyms
(https://www.pcisecuritystandards.org/pci_security/glossary).

Term Definition

(Auto-) Scaling An (automatic) adjustment of the number of instances of running containers using the
same definition, to address service demands and the availability of resources.

Cluster A set of containers grouped together and running on nodes.

Container A software package that includes all elements (application and dependencies)
necessary to run on a container platform.

Container Engine An application that generates an instance of a container from a container image.

Container Host A physical or virtual device that hosts running container(s).

Container Image A read-only template from which containers are created by the container engine. Also
referred to as a Container Engine.

Container
Orchestration

A process that automates the deployment, management, scheduling, and scaling of
containers.

Container
Orchestration Tool

A set of software tools that provide container orchestration functions. Sometimes
referred to as a Container Orchestrator.

Container Runtime An application that generates an instance of a container from a container image. Also
referred to as a Container Engine.

Control Plane A set of services within the network that perform traffic management functions,
including security, routing, load balancing, and analysis.

https://www.pcisecuritystandards.org/pci_security/glossary

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

 3

Term Definition

Image Registry A collection of container images from which containers may be accessed by the
container engine.

Master Node A node that acts as a controller, acting as a front end to the cluster of one or more
worker nodes, providing scheduling, scaling, implementing updates, and maintaining
the state of the cluster.

Node A physical or virtual machine that hosts a container and that may be defined as a
worker node, manager, or master node.

OCI The Open Container Initiative (OCI) is an open governance structure for creating open
industry standards around container formats and runtimes.

Pod A collection of one or more Kubernetes-coupled containers.

Registry Server A file server storing container images.

Worker Node A node that executes the container(s) and applications, often as clusters.

Workload An application running on or managed by the container orchestration system. A
workload can be a single component or several that work together.

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

 4

2 Overview of Containers and Container Orchestration Tools

2.1 Containerization

Containerization allows the deployment of applications without concerns about on which specific machine(s)
the application needs to run. Applications are packaged as “containers” that decouple them from any
individual host, and this decoupling or abstraction is known as “containerization”.

While containerization has been available since Unix version 7’s chroot, implementation of containerization
technologies has gained increasing popularity as the technology has developed. To understand how to
secure containers and container orchestration tools, it is useful to understand where these technologies
operate within the technology stack and compare them to other related technologies, such as hypervisor-
based virtualization.

Traditional hardware-based infrastructures consist of individual, interconnected servers that contain their
distinct CPU, memory, and storage, such as interconnected email servers, database servers, and web
servers. Separate networking devices connect these systems in the working environment. This approach
requires a large investment in equipment, physical space, and physical management of the separate devices
and has limited ability to scale resources based on resource demand.

With the introduction of hypervisor-based virtualization, it became possible to make more efficient use of
hardware investments by consolidating CPU, memory, and storage of multiple servers onto a single shared
host. Further developments in network virtualization allowed for the abstraction of network resources through
a decoupling of network services from networking hardware, to provide complete virtual networks through
software-defined networking technologies.

Using container and container orchestration technologies is a natural evolution of the physical-to-virtual
transition many IT organizations have already experienced. These technologies provide increased portability
of applications, greater efficiency in deployment, and streamline the development of applications through the
support of agile development methodologies. Pre-packaged containers exist for many popular software
components, including web servers, database servers, application servers, network management tools, and
system logging services.

2.1.1 What is a container?

A container is a unit of software that bundles an application and all its dependencies together and
abstracts or separates it from the underlying operating systems, enabling containerized applications to
run consistently across multiple platforms. Using containerized applications allows developers and system
administrators to:

 Package applications with the confidence that they will operate in a production environment in the
same way as they operate in the development environment.

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

 5

 Both run the container application on different platforms and move containers between different
platforms without making any changes to the container.

 Reduce system resource requirements by leveraging the container host’s operating system,
libraries, and other resources.

 Rapidly scale container instances to meet the production requirements.

 Quickly patch, update, and redeploy applications through centralized container image management.

Containers are often packaged as images that use a standards-based Open Container Initiative (OCI)
archive format. Container images are commonly based on optimized versions of operating systems such
as Linux, OS X, and Windows.

Container images become containers at runtime when run on a container engine. The container engine
runs on the host platform and provides the basis of functionality for the container, including:

 Handling user input,

 Connecting to the orchestrator,

 Accessing the container image from the registry server, and

 Preparing the image prior to calling the container runtime.

The container engine is also responsible for isolating each container’s compute, network, and storage
resources from other containers and from the containerized host. Additionally, containerized platforms
can isolate users, time, hostname, and other types of resources using namespace isolation (limiting the
process view of resources) provided by the container host’s operating system.

2.1.2 Basic Container Architectures

Each phase of a container’s lifecycle might exist as a part of an entirely self-managed system or as part
of a third-party-provided service. The containers may run on hardware, on virtual machines in an on-
premises data center, or in a cloud or multi-cloud environment. Understanding these architectures is
important in determining who owns, and is therefore responsible for, the security of each component in a
container system. The following descriptions are not exhaustive of all container architectures but will
provide some context in understanding how containers can be securely implemented and, by extension,
container orchestration.

Self-Managed

Whether on-premises or in the cloud, a self-managed container environment is one in which the hosts,
images, and running containers are controlled by an organization for its own use. This approach is
especially common for the development and testing of software and containers themselves. Typically, in a
self-managed environment, container hosts are provisioned like any other server, and the container

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

 6

engine and orchestration software are installed for use by the system owners using or developing the
containers.

Containers as a Service (CaaS)

CaaS solutions are similar to older virtualization-as-a-service solutions. Container hosts are provided as a
managed service and can run images and containers which are internally developed, built, or specified by
an organization. Underlying management of the hosts, including networking and storage, is usually
owned by the service provider. Typically, it is up to the service customer in these cases to ensure that
redundancy and adequate scaling for their workloads are provided. In some cases, CaaS providers may
provide the options to run containers on hosts in different geographic regions and may provide different
classes of container hosts, offering customers various combinations or quantities of resources like
memory, CPU cores, network interfaces, storage media, etc.

Managed Container Services

Managed Container Services often include orchestration as part of the managed solution, called
Orchestration-as-a-Service, or may be named after the specific orchestration platform provided. Typically,
customers of Managed Container Services supply or specify the containers to run, often in the format
needed by the orchestration platform. In turn, the service provider guarantees the availability and
performance of the running containers, moving or scaling containers as needed.

Containers as a Platform

Some service providers take customer-provided container or application source code and automatically
build, deploy, and orchestrate the containers. Often referred to as one form of “serverless” computing,
these solutions handle all the underlying components of the infrastructure and container platform,
allowing customers to focus on writing their unique application code.

2.1.3 Differences between containers and traditional hypervisors

Containerization technologies share some similarities with more “traditional” hypervisor-based
virtualization technologies, as well as some key differences. For example:

 Both technologies abstract or separate system resources from the underlying hardware to provide
more efficient use of resources across multiple workloads. Hypervisors abstract these resources to
provide virtual machines that consist of a full, general-purpose operating system, whereas
containerization software provides these resources to applications that run a minimalized operating
system, relying on the underlying host operating system for basic services.

 Creating a new instance of a hypervisor-based virtual machine frequently may take minutes while
the operating system is loaded from block storage. In comparison, initializing a new container to
respond to increased demand is usually much faster, possibly taking only seconds.

 Because containers rely on the underlying container host operating system for basic services, there
exists a tighter bond between the two. For example, Linux-based container hosts can run Linux-

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

 7

based containers but cannot run Windows-based images. In contrast, hypervisors provide
abstracted resources such that they are independent of the virtual machine’s operating system.

 Individual containers are at greater risk of impacting other containers on a single host than
hypervisor-based virtual machines because of the availability and use of shared resources to
containers, where the risk extends to impacting the container host itself.

The following diagram illustrates the architectural differences between traditional application
deployments, hypervisor-based virtualized deployments, and containerized deployments.

Figure 1: Architectural Differences between Traditional, Virtualized, and Containerized Deployment

2.1.4 Container Isolation

Application, communication, and resource isolation are fundamental security controls. It is important to
understand how container runtimes provide isolation. The following lists some common approaches and
their security properties, as provided in Figure 2, “Process, Sandbox, and Hypervisor-Based Isolation.”

 Process based – (for example, Docker, ContainerD, CRI-O, Windows Server Container) This
approach provides isolation using operating system featuresfor example, on Linux, cgroups and
namespacesand limits access using operating system security primitives. While providing a level
of isolation, this approach is not a specifically designed security sandbox and is not suitable for
higher risk applications.

 Sandbox based – (for example, gVisor) This approach builds a dedicated security sandbox on a
host to isolate the contained process. It provides a reduced attack surface compared with process-
based isolation; however, should a sandbox escape occur, access to a shared underlying host may
still be possible.

 Hypervisor based – (for example, AWS Firecracker, KataContainers, Hyper-V) This approach runs
the contained process in a dedicated virtual machine instance. A hypervisor will typically use

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

 8

optimized operating systems to improve performance when used with containers. This approach has
some similarities to traditional virtual-machine environments but uses container style workflows and
a specialized hypervisor to allow for integration with container orchestration tooling.

Figure 2: Process, Sandbox, and Hypervisor Based Isolation

2.2 Container Orchestration Tools

As the scale of containerized workloads grows beyond a small number of container hosts, managing the
container environment becomes increasingly difficult. Container orchestration addresses this problem by
bringing together several critical capabilities necessary to efficiently operate and manage a secure, container-
based application delivery model at scale. These capabilities include:

 Providing a centrally managed repository of container images.

 Providing cluster management capabilities to pool container host nodes and distribute computer,
storage, and network resources between the nodes.

 Assigning workload requests to container host nodes based on available resource capacity.

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

 9

 Providing automation through:

 “Infrastructure as code” configuration management, where the infrastructure is defined through
definition files.

 Use of a build/release pipeline tool to streamline the application release management process.

 Conducting instrumentation and monitoring of the performance, security, and overall health of the
container hosts, containers, and container orchestration platform.

 Securing services by defining permitted interactions within and between services, and between
containers and the container host.

2.2.1 Container Orchestration Tool Architecture

Container orchestration tool architecture is that of a containerized application providing automated
services to other containers. As with all containers, a container orchestration tool server runs on a
platform comprised of hardware, operating system, and container runtime. As with other containerized
applications, the container orchestration tool can be implemented through various architecture models
including Self-Managed, Container as a Service, Managed Container Services, or Container as a
Platform.

Figure 3: Container Orchestration Tool Architecture

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

 10

Container orchestration tools generally support a hierarchical architecture consisting of controller or
manager nodes and worker nodes.

Controller nodes (for example, Swarm manager in Docker)provide managing services such as:

 Workload scheduling,

 Receiving API requests from administrators,

 Configuration and state storage,

 Administrative interfaces, and

 Controller management for groups of worker nodes.

Worker nodes are small components responsible for receiving and executing orders from the controller,
as well as managing containers (for example, “kubelet” and “kube-proxy” in Kubernetes. These nodes are
installed and configured on a host platform.

Image registries are private or public storage locations containing static container images which can be
pulled by a worker node to be run as a container by the container engine.

The connection between these elements is illustrated in Figure 4, “High-Level Master Node-Worker Node
Architecture,” which shows a single Master Node providing services to multiple Worker Nodes which
receive the container images from the Image Registry.

Figure 4: High-Level Master Node-Worker Node Architecture

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

 11

2.2.2 Common Features of Container Orchestration Tools

While there are many available implementations of container orchestration tools, providing their own
distinct approach to container management and often tailored to a vendor-specific managed environment,
typically the solutions provide a set of common features and similar functionality. Some of these common
features include:

Scaling

Based on demand, container orchestration tools can facilitate automatic scaling up or down by mounting
or terminating container instances, resulting in increased resilience to additional loads. Scaling can occur
at the application horizontally, by adapting the number of workload replicas, vertically, by adapting
resource requirements for groups of workloads, such as pods, or at the container cluster itself, by
changing the number of cluster nodes or containers. Scaling requirements are determined through
monitoring of resource availability and performance, using built-in health checks or probe operations such
as HTTP checks, which monitor the response to a service request.

Security

Controls that address security requirements are configured through the container orchestration tools
features and functions, including:

 Approved and auditable software defined networking and segmentation

 Hardened images

 Simplified image updates and rollbacks

 Centralized logging

 Inventory management

 Infrastructure authentication (usually via x509 client certificates − a digital certificate that binds an
identity to a public key using a digital signature)

 Vulnerability scanning of container images

 Prebuilt deployment templates and image validation

 Protection of code in images

 Removal of development tools in images

 Protection of sensitive data and proprietary software

 Improved security isolation between containers and OS

 Integration with secret managers

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

 12

Functionality

Container orchestration tools are used to automate any of the following within the container environment,
including applications and infrastructure:

 Scheduling

 Deployment

 Networking

 Resource management

 Capacity management (scaling)

 Health checks

Orchestration tools abstract and automate the activities and overhead required by system administrators
to keep the containerized infrastructure running at scale, in good health, and with adequate capacity in
response to demand based on predefined configuration parameters and triggers.

Operation

Container orchestration tools can be utilized in any environment where containers are used. They utilize a
predefined container configuration file (typically, YAML or JSON) to automate the management of
containerized applications/infrastructure. The configuration file specifies many properties of a
containerized application including:

 Source − location of the container images, how to setup networking and connectivity

 Scheduling − conditions under which to launch a container or dispose of a container

 Resource management − compute, storage, etc.

 Service Management − availability, capacity, etc.

 Security − permissions, access control, auditing, communications, monitoring etc.

 Others − user-defined metadata

Defining these properties ensures that orchestration tools can consistently deploy pre-defined and
standardized containerized applications across many environments and platforms without the need to re-
design the applications.

External integrations

Container orchestration tools typically support integration with other tools to support other processes for:

 Continuous integration and delivery (CI/CD) integrations

 Image registry compatibility for image inventory management

 Secret management via secret servers, key management systems, and encryption servers/services

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

 13

Some container orchestration tools go beyond managing containers to manage:

 Advanced networking and storage features

 Cloud load-balancers
 Virtual machines

 Other cloud services

 Via custom integrationsfor example, Custom Resource Definitions (CRDs) in Kubernetes
 Custom logicfor example, operators in Kubernetes

2.2.3 Advantages and Disadvantages of Using Container Orchestration Tools

Common Advantages

The primary benefit of using container orchestration tools is the effective and efficient management of
large-scale deployments of containers and microservices.

Specific benefits include:

 Security: Container orchestration tools make it easy to automatically scale security configurations
such as permissions, access control, auditing, and monitoring. This provides a single configuration
and seamless deployment across many workloads.

 Scalability: Application autoscaling is managed by the container orchestration’s scheduler, adding
or removing replicas based on service needs.

 Configuration consistency: Using predefined configuration files, container orchestration tools can
automatically scale applications consistently (as specified in the configuration files) without
errors/mistakes.

 Policy-driven configurations: By using policy tooling, such as Open Policy Agent (OPA), layered on
top of orchestration tools, configurations can be constrained by policies which align with common
control frameworks. Additionally, this tooling can be integrated with Open Security Controls
Assessment Language (OSCAL).

Common Disadvantages

Using container orchestration tools can also introduce some disadvantages, including:

 Complexity: As with the implementation of any integrated application, orchestration tools can be
complex to deploy and may result in the insecure implementation of the tool.

 Possible knowledge gaps: Compared to traditional infrastructure deployments, container
orchestration is still a relatively new field, and as such, there may be a knowledge gap that could
result in security failures.

 Misconfiguration of the tool: The use of container orchestration tools to automatically scale
infrastructure based on pre-configured parameters may lead to more widespread security failures
where the tools are misconfigured.

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

 14

2.2.4 When Containers and Container Orchestration Tools Should Not be Used

In addition to applying best practices whenever employing containers and container orchestration tools, it
is important to consider situations or conditions that may lead to a decision not to use them in certain
environments. While the use of containers and container orchestration tools can be beneficial in terms of
cost, performance, manageability, and security, their use can introduce additional risk if applied under the
wrong conditions. For example:

 Containers and container orchestration tools should not be used to resolve security, developer
experience, or operational resilience deficiencies. Containers bring their own level of complexity
and threats that need to be assessed. Consider whether the issues at hand are cultural or technical
before moving away from tools that are working.

 Containers and container orchestration tools should not be used in environments that may have
known or unknown platform compatibility issues, where the container may not have been tested on
a particular platformfor example, a mainframe computer.

 Containers and container orchestration tools should not be used if there is a knowledge gap for
individuals involved with the installation, operation, maintenance, internal functioning, and trouble-
shooting of either the containers or the container orchestration tools. Invest time and money to
learn how to use, scale, and operate containers before adopting this technology for running
business-critical workloads.

 Container orchestration tools should not be used without a thorough understanding of their
operation. It is important to treat the adoption of container orchestration tools as a paradigm shift,
where several basic assumptions are either questioned or need to be reworked. Some examples
include static vs. dynamic IP allocation, hypervisor vs. namespace-level isolation, repair vs.
replacement of computer servers, and persistence of state in apps vs. immutability of containers.

 Container orchestration tools should not be used when application configuration is not centralized.
Because of the ephemeral nature of containers, if an application exits inside a container all its
configuration could be lost. Similarly, a manual workflow to fix configuration errors one at a time
breaks down when multiple instances of containers share copies of the same configuration. This
concern also applies in the case of password refreshes or cryptographic key and certificate
renewals.

 Container orchestration tools should not be used for applications that do not need to run at a large
scale or for which the traffic is predictable. Running a social network backend used by millions of
users on container orchestration tooling may make more sense than running a static website with
limited numbers of page requests.

 Container orchestration tools should not be used to avoid the maintenance and management of
underlying infrastructure. Container orchestration tools help better manage the infrastructure by
providing a higher-level abstraction, but the users of these tools are still responsible for managing
and maintaining the underlying infrastructure for example, hardware or disk failures, server

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

 15

operating system upgrades, network card failures, data corruption or loss, and routing failures are
problems that will not be resolved solely with the adoption of container orchestration tools.

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

 16

3 Use-case-based Container Orchestration Tools Threats and Best
Practices

Employing container orchestration tools for developing, deploying, and managing containerized environments
can provide increased convenience, reliability, and security where these tools are applied using industry best
practices. Conversely, where such best practices are not applied, the use of containers and container
orchestration tools can adversely impact the security of an environment, where exploitation of the tool leads to
the exploitation of some or all of the containers. The correct application of industry best practices is critical for
addressing plausible threats to the containers and container orchestration tools.

How and where containers and container orchestration tools are implemented may vary according to their
purpose as well as the availability of both technical and physical resources. The implementation of some best
practices is dependent on the applicability of the associated threats to a use case, and not all best practices
apply to all use cases.

The most common use cases applicable in a payment environment include:

 A baseline case characterized by the generalized use of container orchestration tools. For the
remainder of this document this use case is identified as “Baseline Case.”

 The use of container orchestration tools in a development and testing environment. For the remainder
of this document this use case is identified as “Development and Management of Containerized
Applications.”

 The use of containerized tools for services that transmit or process payment card account data. For the
remainder of this document this use case is identified as “Containerized Services that Transmit or
Process Account Data.”

 The use of containerized tools for services in a mixed scope environment. For the remainder of this
document this use case is identified as “Containerization in a Mixed Scope Environment.”

Section 3.1, “Threats and Best Practices” presents a table of common threats to environments employing
container orchestration tools applied to each use case, and possible best practices for addressing these
threats.

Section 3.2, “Use Cases” provides a description of each use case, a sample scenario of a potential threat,
and the best practices to employ in addressing the threat.

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

17

3.1 Threats and Best Practices

This section provides a list of common threats to containerized environments and possible security best practices to address each threat. Many of
these best practices may be applicable outside of a containerized environment as provided in the best practices recommendations and may be
required in some PCI SSC standards. Refer to applicable PCI SSC standards for more details.

The applicability of each best practice for a particular use case is identified under the heading “Applicable to Use Case.”

 Applicable to Use Case

Threat Best Practice Baseline
Case

Development and
Management of
Containerized
Applications

Containerized
Services that

Transmit or Process
Account Data

Containerization
in a Mixed

Scope
Environment

1. Authentication

1.1 Unauthenticated access to APIs is
provided by the container orchestration
tool, allowing unauthorized modification of
workloads.

a. All access to orchestration tools
components and supporting servicesfor
example, monitoringfrom users or other
services should be configured to require
authentication and individual accountability.

x

1.2 Generic administrator accounts are in
place for container orchestration tool
management. The use of these accounts
would prevent the non-repudiation of
individuals with administrator account
access.

a. All user credentials used to authenticate to
the orchestration should be tied to specific
individuals. Generic credentials should not be
used.
When a default account is present and
cannot be deleted, changing the default
password to a strong unique password and
then disabling the account will prevent a
malicious individual from re-enabling the
account and gaining access with the default
password.

x

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

18

 Applicable to Use Case

Threat Best Practice Baseline
Case

Development and
Management of
Containerized
Applications

Containerized
Services that

Transmit or Process
Account Data

Containerization
in a Mixed

Scope
Environment

1.3 Credentials, such as client certificates,
do not provide for revocation. Lost
credentials present a risk of unauthorized
access to cluster APIs.

a. All credentials used by the orchestration
system should be revokable. x

1.4 Credentials used to access
administrative accounts for either
containers or container orchestration tools
are stored insecurely, leading to
unauthorized access to containers or
sensitive data.

a. Authentication mechanisms used by the
orchestration system should store credentials
in a properly secured datastore. x

1.5 Availability of automatic credentials for
any workloads running in the cluster.
These credentials are susceptible to
abuse, particularly if given excessive
rights.

a. Credentials for the orchestration system
should only be provided to services running
in the cluster where explicitly required.

x

b. Service accounts should be configured for
least privilege. The level of rights they will
have is dependent on how the cluster RBAC
is configured.

x

1.6 Static credentialsi.e.,
passwordsused by administrators or
service accounts are susceptible to
credential stuffing, phishing, keystroke
logging, local discovery, extortion,
password spray, and brute force attacks.

a. Interactive users accessing container
orchestration APIs should use multi-factor
authentication (MFA). x

2. Authorization

2.1 Excessive access rights to the
container orchestration API could allow
users to modify workloads without
authorization.

a. Access granted to orchestration systems
for users or services should be on a least
privilege basis. Blanket administrative access
should not be used.

x x

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

19

 Applicable to Use Case

Threat Best Practice Baseline
Case

Development and
Management of
Containerized
Applications

Containerized
Services that

Transmit or Process
Account Data

Containerization
in a Mixed

Scope
Environment

2.2 Excessive access rights to the
container orchestration tools may be
provided through the use of hard-coded
access groups.

a. All access granted to the orchestration tool
should be capable of modification. x x

b. Access groups should not be hard-coded. x
2.3 Accounts may accumulate
permissions without documented
approvals.

a. Use manual and automated means to
regularly audit implemented permissions. x

3. Workload Security

3.1 Access to shared resources on the
underlying host permits container
breakouts to occur, compromising the
security of shared resources.

a. Workloads running in the orchestration
system should be configured to prevent
access to the underlying cluster nodes by
default. Where granted, any access to
resources provided by the nodes should be
provided on a least privilege basis, and the
use of “privileged” mode containers should be
specifically avoided.

x x

3.2 The use of non-specific versions of
container images could facilitate a supply
chain attack where a malicious version of
the image is pushed to a registry by an
attacker.

a. Workload definitions/manifests should
target specific known versions of any
container images. This should be done via a
reliable mechanism checking the
cryptographic signatures of images. If
signatures are not available, message-
digests should be used.

x x

3.3 Containers retrieved from untrusted
sources may contain malware or
exploitable vulnerabilities.

a. All container images running in the cluster
should come from trusted sources. x

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

20

 Applicable to Use Case

Threat Best Practice Baseline
Case

Development and
Management of
Containerized
Applications

Containerized
Services that

Transmit or Process
Account Data

Containerization
in a Mixed

Scope
Environment

4. Network Security

4.1 Container technologies with container
networks that do not support network
segmentation or restriction allow
unauthorized network access between
containers.

a. Container orchestration tool networks
should be configured on a default deny basis,
with access explicitly required only for the
operation of the applications being allowed.

x x

4.2 Access from the container or other
networks to the orchestration component
and administrative APIs could allow
privilege escalation attacks.

a. Access to orchestration system
components and other administrative APIs
should be restricted using an explicit allow-list
of IP addresses.

x x

4.3 Unencrypted traffic with management
APIs is allowed as a default setting,
allowing packet sniffing or spoofing
attacks.

a. All traffic with orchestration system
components APIs should be over encrypted
connections, ensuring encryption key rotation
meets PCI key and secret requirements.

x x

5. PKI

5.1 Inability of some container
orchestration tool products to support
revocation of certificates may lead to
misuse of a stolen or lost certificate by
attackers.

a. Where revocation of certificates is not
supported, certificate-based authentication
should not be used.

x

b. Rotate certificates as required by PCI or
customer policies or if any containers are
compromised.

x

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

21

 Applicable to Use Case

Threat Best Practice Baseline
Case

Development and
Management of
Containerized
Applications

Containerized
Services that

Transmit or Process
Account Data

Containerization
in a Mixed

Scope
Environment

5.2 PKI and Certificate Authority services
integrated within container orchestration
tools may not provide sufficient security
outside of the container orchestration tool
environment, which could lead to
exploitation of other services that attempt
to use this chain of trust.

a. The certificates issued by orchestration
tools should not be trusted outside of the
container orchestrator environment, as the
container orchestrator’s Certificate Authority
private key can have weaker protection than
other enterprise PKI trust chains.

x

6. Secrets Management

6.1 Inappropriately stored secrets,
including credentials, provided through
the container orchestration tool, could be
leaked to unauthorized users or attackers
with some level of access to the
environment.

a. All secrets needed for the operation of
applications hosted on the orchestration
platform should be held in encrypted
dedicated secrets management systems. x

6.2 Secrets stored without version control
could lead to an outage if a compromise
occurs and there is a requirement to
rotate them quickly.

a. Apply version control for secrets, so it is
easy to refresh or revoke it in case of a
compromise. x

7. Container Orchestration Tool Auditing

7.1 Existing inventory management and
logging solutions may not suffice due to
the ephemeral nature of containers and
container orchestration tools integration.

a. Access to the orchestration system API(s)
should be audited and monitored for
indications of unauthorized access. Audit logs
should be securely stored on a centralized
system.

x x

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

22

 Applicable to Use Case

Threat Best Practice Baseline
Case

Development and
Management of
Containerized
Applications

Containerized
Services that

Transmit or Process
Account Data

Containerization
in a Mixed

Scope
Environment

8. Container Monitoring

8.1 Local logging solutions will not allow
for appropriate correlation of security
events where containers are regularly
destroyed.

a. Centralized logging of container activity
should be implemented and allow for
correlation of events across instances of the
same container.

x x

8.2 Without appropriate detection
facilities, the ephemeral nature of
containers may allow attackers to execute
attacks unnoticed.

a. Controls should be implemented to detect
the adding and execution of new binaries and
unauthorized modification of container files to
running containers.

x x

9. Container Runtime Security

9.1 The default security posture of Linux
process-based containers provides a
large attack surface using a shared Linux
kernel. Without hardening, it may be
susceptible to exploits that allow for
container escape.

a. Where high-risk workloads are identified,
consideration should be given to using either
container runtimes that provide hypervisor-
level isolation for the workload or dedicated
security sandboxes.

 x

9.2 Windows process-based containers
do not provide a security barrier (per
Microsoft’s guidance) allowing for
possible container break-out.

a. Where Windows containers are used to
run application containers, Hyper-V isolation
should be deployed in-line with Microsoft’s
security guidance.

 x x

10. Patching

10.1 Outdated container orchestration tool
components can be vulnerable to exploits
that allow for the compromise of the
installed cluster or workloads.

a. All container orchestration tools should be
supported and receive regular security
patches, either from the core project or back-
ported by the orchestration system vendor.

x

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

23

 Applicable to Use Case

Threat Best Practice Baseline
Case

Development and
Management of
Containerized
Applications

Containerized
Services that

Transmit or Process
Account Data

Containerization
in a Mixed

Scope
Environment

10.2 Vulnerabilities present on container
orchestration tool hosts (commonly Linux
VMs) will allow for compromise of
container orchestration tools and other
components.

a. Host operating system of all the nodes that
are part of a cluster controlled by a container
orchestration tool should be patched and kept
up to date. With the ability to reschedule
workloads dynamically, each node can be
patched one at a time, without a maintenance
window.

x

10.3 As container orchestration tools
commonly run as containers in the
clusters, any container with vulnerabilities
may allow compromise of container
orchestration tools.

a. All container images used for applications
running in the cluster should be regularly
scanned for vulnerabilities, patches should be
regularly applied, and the patched images
redeployed to the cluster.

x x

11. Resource Management

11.1 A compromised container could
disrupt the operation of applications due
to excessive use of shared resources.

a. All workloads running via a container
orchestration system should have defined
resource limits to reduce the risk of “noisy
neighbors” causing availability issues with
workloads in the same cluster.

 x

12. Container Image Building

12.1 Container base images downloaded
from untrusted sources, or which contain
unnecessary packages, increase the risk
of supply chain attacks.

a. Application container images should be
built from trusted, up-to-date minimal base
images. x

12.2 Base images downloaded from
external container image registries can
introduce malware, backdoors, and
vulnerabilities.

a. A set of common base container images
should be maintained in a container registry
that is under the entity’s control. x

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

24

 Applicable to Use Case

Threat Best Practice Baseline
Case

Development and
Management of
Containerized
Applications

Containerized
Services that

Transmit or Process
Account Data

Containerization
in a Mixed

Scope
Environment

12.3 The default position of Linux
containers, which is to run as root, could
increase the risk of a container breakout.

a. Container images should be built to run as
a standard (non-root) user. x

12.4 Application secretsi.e., cloud API
credentialsembedded in container
images can facilitate unauthorized
access.

a. Secrets should never be included in
application images. Where secrets are
required during the building of an image (for
example to provide credentials for accessing
source codethis process should leverage
container builder techniques to ensure that
the secret will not be present in the final
image.

 x

13. Registry

13.1 Unauthorized modification of an
organization’s container images could
allow an attacker to place malicious
software into the production container
environment.

a. Access to container registries managed by
the organization should be controlled. x x

b. Rights to modify or replace images should
be limited to authorized individuals. x x

13.2 A lack of segregation between
production and non-production container
registries may result in insecure images
deployed to the production environment.

a. Consider using two registries, one for
production or business-critical workloads and
one for development/test purposes, to assist
in preventing image sprawl and the
opportunity for an unmaintained or vulnerable
image being accidentally pulled into a
production cluster.

 x

13.3 Vulnerabilities can be present in
base images, regardless of the source of
the images, via misconfiguration and
other methods.

a. If available, registries should regularly scan
images and prevent vulnerable images from
being deployed to container runtime
environments.

x x

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

25

 Applicable to Use Case

Threat Best Practice Baseline
Case

Development and
Management of
Containerized
Applications

Containerized
Services that

Transmit or Process
Account Data

Containerization
in a Mixed

Scope
Environment

13.4 Known good images can be
maliciously or inadvertently substituted or
modified and deployed to container
runtime environments.

a. Registries should be configured to
integrate with the image build processes such
that only signed images from authorized build
pipelines are available for deployment to
container runtime environments.

x x x

14. Version Management

14.1 Without proper control and
versioning of container orchestration
configuration files, it may be possible for
an attacker to make an unauthorized
modification to an environment’s setup.

a. Version control should be used to manage
all non-secret configuration files. x

b. Related objects should be grouped into a
single file. x

c. Labels should be used to semantically
identify objects. x

15. Configuration Management

15.1 Container orchestration tools may be
misconfigured and introduce security
vulnerabilities.

a. All configurations and container images
should be tested in a production-like
environment prior to deployment.

 x x

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

26

 Applicable to Use Case

Threat Best Practice Baseline
Case

Development and
Management of
Containerized
Applications

Containerized
Services that

Transmit or Process
Account Data

Containerization
in a Mixed

Scope
Environment

b. Configuration standards that address all
known security vulnerabilities and are
consistent with industry-accepted hardening
standards and vendor security guidance
should be developed for all system
components, including container
orchestration tools.
i. Address all known security

vulnerabilities.
ii. Be consistent with industry-accepted

system hardening standards or vendor
hardening recommendations.

iii. Be updated as new vulnerability issues
are identified.

x

16. Segmentation

16.1 Unless an orchestration system is
specifically designed for secure multi-
tenancy, a shared mixed-security
environment may allow attackers to move
from a low-security to a high-security
environment.

a. Where practical, higher security
components should be placed on dedicated
clusters. Where this is not possible, care
should be taken to ensure complete
segregation between workloads of different
security levels.

 x

16.2 Placing critical systems on the same
nodes as general application containers
may allow attackers to disrupt the security
of the cluster through the use of shared
resources on the container cluster node.

a. Critical systems should run on dedicated
nodes in any container orchestration cluster.

 x

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

27

 Applicable to Use Case

Threat Best Practice Baseline
Case

Development and
Management of
Containerized
Applications

Containerized
Services that

Transmit or Process
Account Data

Containerization
in a Mixed

Scope
Environment

16.3 Placing workloads with different
security requirements on the same cluster
nodes may allow attackers to gain
unauthorized access to high security
environments via breakout to the
underlying node.

a. Split cluster node pools should be enforced
such that a cluster user of the low-security
applications cannot schedule workloads to
the high-security nodes. x

16.4 Modification of shared cluster
resources by users with access to
individual applications could result in
unauthorized access to sensitive shared
resources.

a. Workloads and users who manage
individual applications running under the
orchestration system should not have the
rights to modify shared cluster resources, or
any resources used by another application.

 x

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

28

3.2 Example Use Cases

The following example use cases illustrate some possible threat scenarios and the application of best
practices to address the threats. Each example case provides:

 A description of the use case

 A graphic representation of a possible implementation

 A description of a threat, and

 The corresponding best practices are taken from Section 3.1.

These example best practices are not an all-inclusive list. It is possible that different best practices could be
applied to address the described threat scenario.

3.2.1 Baseline Use Case

3.2.1.1 Description

A common baseline use case includes the use of a container orchestration system to deploy and
manage the lifecycle of production workloads in a payment environment. In such cases, multiple
users may have access to deploy workloads to their respective namespaces and several applications
are run on a group of underlying cluster nodes.

3.2.1.2 Graphic Representation of the Use Case

Figure 5: Baseline Use Case

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

29

3.2.1.3 Example Threat Scenario

A common configuration for cloud-based container orchestration systems exposes the API server
directly on the Internet. If anonymous access is allowed to those API servers, or if attackers can make
use of an unpatched security vulnerability in the software, they can compromise not only the
applications running in the cluster, but also any credentials stored by those applications for use in
other parts of the environment. As container orchestration APIs effectively allow for remote command
execution on cluster nodes, an attacker who gains access to the orchestration system API can often
gain privileged access to those cluster nodes.

This threat scenario has been exploited in the real-world on several occasions, and it is a well-known
attack path.

Example implementation of selected best practices:

Best Practice Result of Best Practice to Address the Security Threat

1.1.a All access to orchestration tools components
and supporting services—for example, monitoring—
from users or other services should be configured to
require authentication and individual accountability.

Applying this best practice reduces the risk of compromise of
the orchestration system or API server by an unauthorized
individual using either anonymous access or authorized access
without accountability.

4.2.a Access to orchestration system components and
other administrative APIs should be restricted using an
explicit allow-list of IP addresses.

Restricting access to the APIs to a limited set of known IP
addresses reduces the attack surface of the system and
prevents trivial enumeration of valid systems which could then
be attacked.

7.1.a Access to the orchestration system API(s)
should be audited and monitored for indications of
unauthorized access. Audit logs should be securely
stored on a centralized system.

Detection of unusual access activity through monitoring and
logging of system API access provides an opportunity to both
address an ongoing attack and to provide evidence required for
a forensic investigation.

10.1.a All container orchestration tools should be
supported and receive regular security patches, either
from the core project or back-ported by the
orchestration system vendor.

Ensuring that orchestration system components are receiving
regular security updates will reduce the risk of an attacker
gaining network level access to the API server and exploiting a
vulnerability to compromise the service.

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

30

3.2.2 Development and Management of Containerized Applications

3.2.2.1 Description

Creating and managing a container-based workflow for application development and deployment
involves several steps, including the initial creation of the container images to be used by the
application, the flow of the images as artifacts through the companies CI/CD pipeline, secure storage
of the images in a container registry, and their ongoing management and updating.

Phases of the deployment process include:

 Initial development targets application deployment using a container based on a common base
image. The container image is used by Continuous Integration processes in the SDLC.

 The container image is placed into a container registry during testing and deployment.

 The container image is deployed into a production environment to be managed by a container
orchestration system.

3.2.2.2 Graphic Representation of the Use Case

Figure 6: Container Build Process

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

31

Figure 7: Container Use Process

3.2.2.3 Example Threat Scenario

When building container images, a common requirement is to use secrets—for example, credentials
or API keys—to access private data stores to retrieve information. If those secrets are embedded in
the resulting container images, attackers can extract the secrets and gain unauthorized access to
resources including source code repositories, CI/CD systems, or even container orchestration APIs.

Example implementation of selected best practices:

Best Practice Result of Best Practice to Address the Security Threat

6.1.a All secrets needed for the operation of
applications hosted on the orchestration platform
should be held in encrypted dedicated secrets
management systems.

Where secrets are required for running containers, a dedicated
secrets management system is employed to ensure that secrets are
securely encrypted and made available to only the containers which
require them. These systems can determine which containers
require access to a specific secret and then inject those secrets into
the running container as a mounted file.

12.4.a Secrets should not be included in
application images. Where secrets are required
during the building of an image (for example to
provide credentials for accessing source code),
this process should leverage container builder
techniques to ensure that the secret will not be
present in the final image.

If an attacker can access source code repositories, CI/CD systems,
or the container API, proper management of secrets—for example,
not being included in application images, including binary files—
prevents these secrets from being used to access additional
resources. Ensuring that secrets are not embedded in images can
be achieved by using techniques such as multi-stage builds. Here
separation between source code compilation and the final container
image is achieved by having multiple build processes, and only
copying compiled application programs and necessary configuration
files to the final stage.

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

32

3.2.3 Use of Containerized Services that Process/Transmit Payment Card Account Data

3.2.3.1 Description

Implementation of containerized services to process and transmit payment card account data while
conducting payment transactions, including capturing, authorizing, settlement, and chargeback. This
use case applies to:

 Example 1 – See Figure 8 below: Any container workload that receives payment card account
data as an input or provides this data as an output to both a process and the container host
system providing the container runtime environment:

 Application services performing business logic

 Combined application and web presentation tier platforms

 Example 2 – See Figure 9 below: Container workloads and infrastructure responsible for
connecting other workloads where CHD is present:

 Container host servers that provide container runtime services

 Container and container orchestration infrastructure providing network services such as
basic IP packet routing or network proxy services

 Application and/or network load-balancing containers such as HAProxy

 Containers responsible for providing information security services

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

33

3.2.3.2 Graphic Representation of the Use Case

Figure 8: Example 1− Multiple Containerized Services Accessing a Payment API

Figure 9: Example 2 − Multiple Merchant Services Integrated into an Orchestrated,
Autoscaling, Containerized Payment API

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

34

3.2.3.3 Example Threat Scenario

When developing sensitive applications that could impact the security of payment card account data
and that operate in a shared container cluster, attacks can result from excessive permissions to the
container orchestration APIs. A user with valid credentials may be able to escalate their rights to
interact with sensitive applications and, in doing so, gain unauthorized access to payment card
account data, either by directly executing commands in the container (via the orchestration API) or by
gaining access to shared cluster nodes hosting multiple workloads. With access to the shared cluster
node, it may be possible to access payment card account data from any workload scheduled to that
system.

Example implementation of selected best practices:

Best Practice Result of Best Practice to Address the Security Threat

2.1.a Access granted to orchestration systems for
users or services should be on a least privilege
basis. Blanket administrative access should not
be used.

The inappropriate use of administrator access, providing
unnecessary rights to a user or service, provides an attacker with
additional resources with which to mount the attack. Rights to
interact with running containers and to schedule new containers to
the cluster should be carefully controlled to reduce the risk of
unauthorized access to these workloads. The availability of the
minimum privileges required to perform the required tasks reduces
the opportunity for an attacker to leverage provided privileges to
inappropriately access sensitive information, including cardholder
data stored, processed, or transmitted by the container services.

3.1.a Workloads running in the orchestration
system should be configured to prevent access to
the underlying cluster nodes by default. Where
granted, any access to resources provided by the
nodes should be provided on a least privilege
basis, and the use of “privileged” mode
containers should be specifically avoided.

If an attacker can access source code repositories, CI/CD systems,
or the container API, proper management of secrets—for example,
not being included in application images, including binary files—
prevents these secrets from being used to access additional
resources. Ensuring that secrets are not embedded in images can
be achieved by using techniques such as multi-stage builds. Here
separation between source code compilation and the final container
image is achieved by having multiple build processes, and by only
copying compiled application programs and necessary configuration
files to the final stage.

8.2.a Controls should be implemented to detect
both the adding and execution of new binaries
and any unauthorized modification of container
files to running containers.

Patterns of access which are unexpected—for example starting a
shell in a running containercan be detected and alerts sent to
security teams to trigger an investigation.

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

35

3.2.4 Use of Containerization for a Mix of Services with Different Security Levels

3.2.4.1 Description

Container orchestration systems provide the option to have different workloads running in a single
cluster. It would be technically possible to run containerized applications requiring different security
levels in the same cluster.

3.2.4.2 Graphic Representation of the Use Case

Figure 10: Multi-tenant Cluster hosting a mix of workloads requiring different security levels

3.2.4.3 Example Threat Scenario

In a multi-tenant cluster, a user with access to a single application might gain unauthorized access to
other applications through a lack of workload isolation. Such isolation can prevent vulnerabilities in
one workload from impacting others where workloads may share computing, networking, or other
container orchestration tool resources. Many container orchestration tools provide a default flat local

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

36

network for all containers, making it easy for an attacker to target those services. The orchestrator
may also offer service discovery features that make it easy for attackers to find which applications to
target. Additionally, attackers may try to break out to underlying cluster nodes. There have been
several container breakout vulnerabilities found which could facilitate this attack so that an unpatched
container runtime may be exploitable.

Example implementation of selected best practices:

Best Practice Result of Best Practice to Address the Security Threat

4.1.a Container orchestration tool networks
should be configured on a default deny basis,
with only access explicitly required for the
operation of the applications being allowed.

Deploying a default deny network policy on a multi-tenant cluster is a
key control to reduce the risk of network attacks across the container
network. Workloads should only be able to communicate with white-
listed services both inside the container network and externally to
reduce the risk of compromise.

4.2.a Access to orchestration system
components and other administrative APIs should
be restricted using an explicit allow-list of IP
addresses.

Access to orchestration system components and other administrative
APIs should be restricted using an explicit allow-list of IP addresses.

16.1.a Where practical, higher security
components should be placed on dedicated
clusters. Where this is not possible, care should
be taken to ensure complete segregation
between workloads of different security levels.

Though not always practical or possible, the placement of
containerized applications with different security levels on different
dedicated clusters restricts the susceptibility of attack from a lower
security or untrusted application.

16.3.a Split cluster node pools should be
enforced such that a cluster user of the low-
security applications cannot schedule workloads
to the high-security nodes.

Where applications of different security levels are deployed to a
single cluster, dedicated node pools should be provided for each
environment and administrative controls put in place to prevent
inappropriate deployments to a given node pool. This reduces the
impact of the attacker breaking out to the underlying node.

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

37

Appendix A: Other PCI SSC Reference Documents

The following resources are also available from the Document Library on the PCI Security Standards website:
https://www.pcisecuritystandards.org/document_library:

 PCI DSS

 Information Supplement: PCI SSC Cloud Computing Guidelines

 Information Supplement: PCI DSS Virtualization Guidelines

Additionally, common terms in the payment card industry used within this document are listed in the Payment
Card Industry (PCI) Data Security Standard Glossary, Abbreviations and Acronyms:
https://www.pcisecuritystandards.org/pci_security/glossary

https://www.pcisecuritystandards.org/pci_security/glossary

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

38

Appendix B: Other Non-PCI SSC Reference Documents

 CIS Benchmarks: https://media.defense.gov/2021/Aug/03/2002820425/-1/-
1/1/CTR_KUBERNETES%20HARDENING%20GUIDANCE.PDF

 CSA: https://cloudsecurityalliance.org/artifacts/best-practices-for-implementing-a-secure-application-
container-architecture/

 Docker: https://docs.docker.com/engine/security/

 Kubernetes: https://kubernetes.io/docs/concepts/security/

 NIST: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf

https://media.defense.gov/2021/Aug/03/2002820425/-1/-1/1/CTR_KUBERNETES%20HARDENING%20GUIDANCE.PDF
https://media.defense.gov/2021/Aug/03/2002820425/-1/-1/1/CTR_KUBERNETES%20HARDENING%20GUIDANCE.PDF
https://cloudsecurityalliance.org/artifacts/best-practices-for-implementing-a-secure-application-container-architecture/
https://cloudsecurityalliance.org/artifacts/best-practices-for-implementing-a-secure-application-container-architecture/
https://docs.docker.com/engine/security/
https://kubernetes.io/docs/concepts/security/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

39

Acknowledgments

PCI SSC would like to acknowledge the contribution of the Best Practices for Container Orchestration
Special Interest Group (SIG) in the preparation of this document. The Best Practices for Container
Orchestration SIG consists of representatives from the following organizations:

1stSecureIT LLC (dba GM SECTEC) PagSeguro Internet S/A

Acumera, Inc. Paladion Networks Private LTD

Agio, LLC Panacea InfoSec (P) Ltd.

Ally Financial Inc. Pine Labs Pvt. Ltd

Amazon Privity Systems Inc.

Aqua Security Protiviti

Armor Defense Inc. Qualys

AT&T Consulting services Resources Connection LLC

AWS Security Assurance Services LLC Right Time Limited

AXENIC LIMITED Risk Associates Europe Ltd.

Banco PAN S.A. RSM US LLP (formerly McGladrey LLP)

Bank of New Zealand Schellman & Company, LLC

Barclaycard Schwarz IT KG

BDO USA, LLC Secure Logic pty Ltd

BSI Cybersecurity and Information Resilience SecureTrust, Inc.

Ireland Limited, dba BSI Group Securisea

Cadence Assurance, an affiliate of The Cadence Security Compass

Group Sentor Managed Security Services

Center for Internet Security SERVADUS

Certus Cybersecurity Solutions, LLC Shopify

Coalfire Systems SIX Payment Services Ltd

Computer Services Inc Southwest Airlines

ControlGap Square

Crowe Horwath LLP SRC Security Research & Consulting GmbH

CVS Caremark Stripe, Inc.

Fiserv Solutions Inc. Synchrony Financial

Foregenix Sysxnet Limited DBA Sysnet Global Solutions

Fujitsu Services Ltd TELUS Security Solutions

Global Payments Direct Inc. Thales

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

40

Information Exchange Inc. Thales Transport & Security (Hong Kong) Ltd.

IQ Information Quality TRG

JP Morgan Chase U.S. Bancorp

Kirkpatrick Price, Inc. dba Raven Eye usd AG

Lattimore, Black Morgan and Cain, PC Verifone

Microsoft Verizon

Nationwide Mutual Insurance Company Virtual Inc.

NCC Services VMware, INC.

Online Enterprises DBA Online Business Systems Wells Fargo

Oracle Corporation

 Information Supplement • Guidance for Containers and Container Orchestration Tools • September 2022

 The intent of this document is to provide supplemental information. Information provided here
does not replace or supersede requirements in any PCI SSC Standard.

41

About the PCI Security Standards Council

The PCI Security Standards Council is an open global forum that is responsible for the development,
management, education, and awareness of the PCI Data Security Standard (PCI DSS) and other standards
that increase payment data security. Created in 2006 by the founding payment card brands American
Express, Discover Financial Services, JCB International, Mastercard, and Visa Inc., the Council has more
than 700 Participating Organizations representing merchants, banks, processors, and vendors worldwide. To
learn more about playing a part in securing payment card data globally, please visit: pcisecuritystandards.org.

	Document Changes
	1 Introduction
	1.1 Intended Audience
	1.2 Terminology

	2 Overview of Containers and Container Orchestration Tools
	2.1 Containerization
	2.1.1 What is a container?
	2.1.2 Basic Container Architectures
	2.1.3 Differences between containers and traditional hypervisors
	2.1.4 Container Isolation

	2.2 Container Orchestration Tools
	2.2.1 Container Orchestration Tool Architecture
	2.2.2 Common Features of Container Orchestration Tools
	2.2.3 Advantages and Disadvantages of Using Container Orchestration Tools
	2.2.4 When Containers and Container Orchestration Tools Should Not be Used

	3 Use-case-based Container Orchestration Tools Threats and Best Practices
	3.1 Threats and Best Practices
	3.2 Example Use Cases
	3.2.1 Baseline Use Case
	3.2.1.1 Description

	A common baseline use case includes the use of a container orchestration system to deploy and manage the lifecycle of production workloads in a payment environment. In such cases, multiple users may have access to deploy workloads to their respective ...
	3.2.1.2 Graphic Representation of the Use Case
	3.2.1.3 Example Threat Scenario

	A common configuration for cloud-based container orchestration systems exposes the API server directly on the Internet. If anonymous access is allowed to those API servers, or if attackers can make use of an unpatched security vulnerability in the sof...
	This threat scenario has been exploited in the real-world on several occasions, and it is a well-known attack path.
	Example implementation of selected best practices:
	3.2.2 Development and Management of Containerized Applications
	3.2.2.1 Description

	Creating and managing a container-based workflow for application development and deployment involves several steps, including the initial creation of the container images to be used by the application, the flow of the images as artifacts through the c...
	Phases of the deployment process include:
	3.2.2.2 Graphic Representation of the Use Case
	3.2.2.3 Example Threat Scenario

	When building container images, a common requirement is to use secrets—for example, credentials or API keys—to access private data stores to retrieve information. If those secrets are embedded in the resulting container images, attackers can extract t...
	Example implementation of selected best practices:
	3.2.3 Use of Containerized Services that Process/Transmit Payment Card Account Data
	3.2.3.1 Description

	Implementation of containerized services to process and transmit payment card account data while conducting payment transactions, including capturing, authorizing, settlement, and chargeback. This use case applies to:
	 Example 1 – See Figure 8 below: Any container workload that receives payment card account data as an input or provides this data as an output to both a process and the container host system providing the container runtime environment:
	 Example 2 – See Figure 9 below: Container workloads and infrastructure responsible for connecting other workloads where CHD is present:
	3.2.3.2 Graphic Representation of the Use Case
	3.2.3.3 Example Threat Scenario

	When developing sensitive applications that could impact the security of payment card account data and that operate in a shared container cluster, attacks can result from excessive permissions to the container orchestration APIs. A user with valid cre...
	Example implementation of selected best practices:
	3.2.4 Use of Containerization for a Mix of Services with Different Security Levels
	3.2.4.1 Description

	Container orchestration systems provide the option to have different workloads running in a single cluster. It would be technically possible to run containerized applications requiring different security levels in the same cluster.
	3.2.4.2 Graphic Representation of the Use Case
	3.2.4.3 Example Threat Scenario

	In a multi-tenant cluster, a user with access to a single application might gain unauthorized access to other applications through a lack of workload isolation. Such isolation can prevent vulnerabilities in one workload from impacting others where wor...
	Example implementation of selected best practices:

	Appendix A: Other PCI SSC Reference Documents
	Appendix B: Other Non-PCI SSC Reference Documents
	Acknowledgments
	About the PCI Security Standards Council

