Osecuring

Damian Rusinek

From web apps to smart
contracts: tools, vulns,

standards and SCSVS

Blockchain Working Group

20th Apr 2022

Osecuring Jdrdr_zz www.securing.pl

Introducing Decentralized Applications by analogy to Web Apps

Damian Rusinek OSQCuring

) drdr_zz

Head of Blockchain Security
Security Researcher

damianrusinek @ github

Osecuring

Decentralized Apps

WHAT IS IT?

And why are they becoming important?

OSGCUFing erdr_zz www.securing.pl
What 1s so special about Decentralized Apps?

* Trustlessness: Use blockchain to store code and data (state).
* No one can turn it off permanently (anyone can bring it to live).

« Everyone can have it (like keeping the database of FB or Reddit locally).

Osecuring ©) drdr_zz

Where is the main difference?
Architecture

Web Application
\FrontendJ
Static
Files API

Bkend Database

Frotend
Webserver

www.securing.pl

Decentralized Application

‘@00 W
—> —
¥Frontend
Static
Files AP
Blockchain

OSeCUring Odrdr_zz www.securing.pl

Where is the main difference?

Architecture
Web Application Hybrid Decentralized Application
ﬂooo | J
Frontend Frontend
Static Static
Files API Files API

:
e

Blockchain

Frontend Backend Database Frontend
Webserver Webserver

Osecuring

Decentralized Apps

ARE THOSE SECURE?

OSECU r ng i drdr_zz www.securing.pl
Are Decentralized Apps secure?

 Indestructible: No one can turn it off
* Cryptographically secure: All transactions are digitally signed

* Publicly verifiable: Anyone can verify the code of smart contracts
e But still....

OSGCUring Odrdr_zz www.securing.pl

Are De & rekt

[)
IndeSt 1. Ronin Network - REKT Unaudited 8. Badger - REKT Unaudited
° Cryptc $624,000,000 | ©3/23/2022 IiC $120,000,000 | 12/02/2021
. Publi 2. Poly Network - REKT Unaudited t 9. Qubit Finance - REKT Unaudited
plellle $611,000,000 | ©8/108/2021 $80,000,000 | ©1/28/2022
e But st 3. Wwormhole - REKT Weodyme 10. Ascendex - REKT Unaudited
$326,000,000 | ©2/02/2022 $77,700,000 | 12/12/2621
4. BitMart - REKT N/A 11. EasyFi - REKT Unaudited
$196,000,000 | 12/04/2021 $59,000,000 | 04/19/2621
5. Compound - REKT Unaudited 12. Uranium Finance - REKT Unaudited
$147,000,000 | 09/29/2021 $57,200,000 | 04/28/2021
6. Vulcan Forged - REKT Unaudited 13. bZx - REKT Unaudited
$146,000,000 | 12/13/2021 §55,000,000 | 11/85/2021

7. Cream Finance - REKT 2 Unaudited 14. Cashio - REKT Unaudited
$130,000,0008 | 10/27/2021 $48,000,000 | 03/23/2022

Osecuring drdr_zz www.securing.pl

Ar Expectations

&

tas vv N
o™ ..

Reality

’.

\

Unaudited
922 'iC

Unaudited

021 tl

822

udited {

021 V i A
Unaudited ‘
821 ~ j

2 Unaudited
821

Osecuring

From web apps to smart contracts

WE NEED SECURITY!

Osecuring erdr_zz www.securing.pl

Security needs

Technical Business
 Build secure applications. « Make sure that the application is
 Omit the insecure patterns. Secure.
» Find ane remediate the security * The status: List of green and red

bugs (vulnerabilities). points.

Osecuring erdr_zz www.securing.pl

Security Projects & Standards

Web Apps Decentralized Apps
* Most common vulnerabilities? Most common vulnerabilities?
« OWASP Top 10 DASP Top 10 (https://dasp.co)
* The end-to-end security checklist to * The end-to-end security checklist to
perform an audit? perform an audit?

« OWASP ASVS
Application Security Verification
Standard

https://dasp.co/

OSECUI’iﬂg Jdrdr_zz www.securing.pl

Smart Contracts S C S V S
Security Verification Standard

- Smart Contracts Security Verification Standard

OSeCUﬁng Odrdr_zz www.securing.pl

SCSVS - Objectives

Smart Contracts

¢ O bj e Ct i Ve S : Security Verification Standard

* A checklist for architects, developers and security reviewers. Q=

* Technical needs 8:
* Help to mitigate known vulnerabilities by design.
* Help to develop high quality code of the smart contracts.

 Business needs

* Provide a clear and reliable assessment of how secure the
smart contract is in relation to the percentage of SCSVS
coverage.

* 14 categories of security requirements.
* Format similar to ASVS.

OSQCU ring erdr_zz www.securing.pl

Software Development Life Cycle

6

Maintenance

5 THE
Deployment SOFTWARE

DEVELOPMENT
LIFE CYCLE

SCSVS covers all stages
of SDLC process.

2

Design

Osecuring erdr_zz www.securing.pl

From web apps to smart contracts .

Maintenance

SDLC

- Analysis & Requirements

Osecuring erdr_zz www.securing.pl

SDLC - Analysis & Requirements

Similiarities
* Threat modelling

urity Verification Standard

~o~ | 1.1 Verify that the every introduced design change is preceded by an earlier threat
=| | modelling.

1.2 Verify that the documentation clearly and precisely defines all trust boundaries
=| | in the contract (trusted relations with other contracts and significant data flows).

Osecuring erdr_zz www.securing.pl

SDLC - Analysis & Requirements

Differences - Sensitive data

Web Apps Decentralized Apps
« Stored in protected database » Stored on public blockchain
* Forever

« Anyone can read

Security Verification Standard

o~ | 3.1 Verify that any data saved in the contracts is not considered safe or private
3=| | (even private variables).

S
Security Verification Standard

o~ | 3.2 Verify that no confidential data is stored in the blockchain (passwords, personal
9=| | data, token etc.).

Osecuring erdr_zz www.securing.pl

SDLC - Analysis & Requirements

Differences - Randomness and oracles

Web Apps Decentralized Apps

« A matter of a function call * Not trivially achieved in the
decentralized computer

* No local parameters can be used
* but...

« ETH2.0 going to change that a little
bit.

OSGCUI'ing Odrdr_zz www.securing.pl

SDLC - Analysis & Requirements

Differences - Randomness

« EOSPIay hack e DiceGame
e 30k EOS stolen (~120k USD) * my finding presented on EthCC

What happens?

At 9/13/2019 the EOSPlay DApp was hacked. The hacker exploited a flaw
of the implementation of the EOSplay Random Number Generator (RNG),

which allows him to take away about 30,000 EOS from the EOSPlay smart

contract.

aaaaaaaaaaaaaaaaaaaa

o~ | 7.5 Verify that the contract does not generate pseudorandom numbers trivially
3=| | basing on the information from blockchain (e.g. seeding with the block number).

O securing O drdr_zz

SDLC — Requirements & Analysis

New threat actors for Decentralized Apps

 Miners/Validators
* Validate transactions and add new blocks

Blockchain — new types of insider threat

c

| H‘w‘;f 2

i "

1.4
e -

www.securing.pl

Osecuring erdr_zz www.securing.pl

SDLC - Requirements & Analysis

New threat actors for Decentralized Apps

Security Verification Standard

—o~ | 8.1 Verify that the contract logic implementation corresponds to the
=| | documentation.

Security Verification Standard

—o~ | 8.3 Verify that the contract has business limits and correctly enforces it.

S
Security Verification Standard

~o~ | 9.3 Verify that the contract logic does not disincentivize users to use contracts (e.g.
=| | the cost of transaction is higher than the profit).

Osecuring erdr_zz www.securing.pl

From web apps to smart contracts .

Maintenance

SDLC

- Design

Osecuring Odrdr_zz www.securing.pl

SDLC - Design

Similiarities
 Least privilege rule

» Access control
* Public and known to everyone
* Centralized and simple

S
aaaaaaaaaaaaaaaaaaaaa

o | 2.3 Verify that the creator of the contract complies with the rule of least privilege and
8=| | his rights strictly follow the documentation.

Security Verification Standard

-0~ | 2.11 Verify that all user and data attributes used by access controls are kept in trusted
§=| | contract and cannot be manipulated by other contracts unless specifically authorized.

Osecuring erdr_zz www.securing.pl

SDLC - Design

Differences - Loops

Web Apps Decentralized Apps

* Infinite loops -> DoS * Unbound loops -> DoS

Osecuring Odrdr_zz www.securing.pl

SDLC - Design

Differences - Loops

» GovernMentals GovernMental's 1100 ETH jackpot payout is stuck
A ponzi scheme because it uses too much das
e |teration over a huge array As the operator of http://ethereumpyramid.com I am of course
. watching the "competition” closely. ;-) One of the more popular
1100 ETH frozen contracts (by transaction count) is GovernMental (Website:
o https//b|t|y/2kVXWaJ http://governmental.github.io/GovernMental/ Etherscan:

http://etherscan.io/address/0xf45717552f12ef7cb65e95476f217ea0081
67ae3). Probably in part of the large jackpot of about 1100 ETH.

nnnnnnnnnnnnnnnnnn

—o~ | 7.3 Verify that the contract does not iterate over unbound loops.

Security Verification Standard

—o~ | 8.8 Verify that the contract does not send funds automatically, but it lets
=| | users withdraw funds on their own in separate transaction instead.

https://bit.ly/2kVXwaj

Osecuring Odrdr_zz www.securing.pl

SDLC - Design

Decreasing the risk
* Decentralized Applications keep cryptocurrencies
* The higher the amount the bigger the incentive for hackers

S
Security Verification Standard

1.9 Verify that the amount of cryptocurrencies kept on contract is controlled and at
3=| | the minimal acceptable level.

Osecuring erdr_zz www.securing.pl

From web apps to smart contracts .

Maintenance

SDLC i

- Implementation

Osecuring erdr_zz www.securing.pl

SDLC - Implementation

* Great tools

e ¢ ¢ Hardhat

remix Ethereum Studio Foundry

* Perform basic security analysis

« But we still make bugs.

e Sounds familiar? ©

Osecuring erdr_zz www.securing.pl

SDLC - Implementation

Similarities - Arithmetic bugs

Web Apps Decentralized Apps
* Not that common * Overflows and underflows

. ...yep, still after 0.8 with unchecked

OSGCUFing erdr_zz www.securing.pl

SDLC - Implementation

Similarities - Arithmetic bugs

* Multiple ERC20 Smart Contracts

* Allow to transfer more than
decillions (10760) of tokens

e https://bit.ly/2IWa9ma
* https://bit.ly/2ksNEF1

&

-

. »

https://bit.ly/2lWa9ma
https://bit.ly/2ksNEF1

Osecuring Odrdr_zz www.securing.pl

SDLC - Implementation

Similarities - Arithmetic bugs

* Tellor * my finding presented on EthCC
* Not trivial
« Required staking
* Reported
* No funds stolen

SCAN ME

OSeCUring Odrdr_zz www.securing.pl

SDLC - Implementation

Similarities - Arithmetic bugs

Security Verification Standard

~o~ | 5.1 Verify that the values and math operations are resistant to integer
=| | overflows. Use SafeMath library for arithmetic operations before solidity 0.8.*.

Security Verification Standar

~o~ | 5.2 Verify that the unchecked code snippets from Solidity 0.8.* do not
=| | introduce integer under/overflows.

S
Security Verification Standard

~o~ | 5.3 Verify that the extreme values (e.g. maximum and minimum values of the
=| | variable type) are considered and does change the logic flow of the contract.

OSeCUﬁng Odrdr_zz www.securing.pl

SDLC - Implementation

Differences - Recursive calls

Web Apps Decentralized Apps

* Must be explicitly included in the » Executing some logic multiple times
logic in one call
 The DAO hack
* Recursive withdrawals
e 3.6 min ETH stolen
e httng//bit Iv/?2h (leg

~o~ | 4.5 Verify that re-entrancy attack is mitigated by blocking recursive calls from
=| | other contracts. Follow CEIl pattern.

Smart Contracts

aaaaaaaaaaaaaaaaaaaaaa

~o~ | 4.6 Verify that the result of low-level function calls (e.g. send, delegatecall,
=| | call) from another contracts is checked.

https://bit.ly/2hBQjKq

Osecuring erdr_zz www.securing.pl

From web apps to smart contracts .

Maintenance

SDLC i

- Testing

¥

Osecuring Odrdr_zz www.securing.pl

SDLC - Testing

Similarities - Great tools for automatic scans

Web Apps Decentralized Apps

Q l Scrlbble https: //b|t ly/2mpal3U
MythX
SLITH E R https://mythx.io/

o~ | 1.12 Verify that code analysis tools are in use that
9=| | can detect potentially malicious code.

https://bit.ly/2mpaL3U
https://mythx.io/

Osecuring Odrdr_zz www.securing.pl

SDLC - Analysis & Requirements

Similiarities - Ensuring the testing takes place

Security Verification Standard

—o~ | 12.1 Verify that all functions of verified contract are covered with tests in the
=| | development phase.

nnnnnnnnnnnnnnnnnnnnnnn

—o~ | 12.2 Verify that the implementation of verified contract has been checked for
=| | security vulnerabilities using static and dynamic analysis.

nnnnnnnnnnnnnnnnnnnnnnn

—o~ | 12.3 Verify that the specification of smart contract has been formally verified.

nnnnnnnnnnnnnnnnnnnnnnn

~o~ | 12.4 Verify that the specification and the result of formal verification is included in
=| | the documentation.

nnnnnnnnnnnnnnnnnnnnnn

o~ | 1.3 Verify that the SCSVS, security requirements or policy is available to all
?=| | developers and testers.

OSECU I’iﬂg drdr_zz www.securing.pl

SDLC - Analysis & Requirements

Similiarities - Business logic errors

* Hard to find using automated scans https://rekt.news/value-rekt3/

+ Value DeF S T
* Incorrect assumptions : ""“j eeeeeee rmcated e
. 10m$ lost
* ,improper use of a complex (éiz){
exponentiation power() function” ,‘?fzpﬁﬁipa‘;iégg

uin
po po m1nP,|
pl pl minP;
(re po) (r1 pl);

Smart Contracts
Security Verification Standa

—o | 1.11 Verify that the business logic in contracts is consistent. Important changes in the logic
$=| | should be allowed for all or none of the contracts.

Smart Contracts
ity Verification Stand:

SSSSS ~o~ | 8.2 Verify that the business logic flows of smart contracts proceed in a sequential step order
and it is not possible to skip any part of it or to do it in a different order than designed.

=

https://rekt.news/value-rekt3/

Osecuring erdr_zz www.securing.pl

From web apps to smart contracts .

Maintenance

SDLC o 4_“

- Deployment

Osecuring erdr_zz www.securing.pl

SDLC - Deployment

Differences - Initialization stage

Web Apps Decentralized Apps
« Setting up configurations and Setting up configurations and
integrations integrations

« Performed once during deployment < What if one can (re-)initialize the
contract?

Osecuring Odrdr_zz www.securing.pl

SDLC - Deployment

Differences - Initialization stage

« Parity Wallet hack:

 Kill contract shared by hundreds of
other contracts

500k ETH frozen
* https://bit.ly/2kIBYhA
 https://bit.ly/2kpfKkm

Ethereum’s Parity Hacked, Half a Million ETH Frozen

® November 7, 2017 1:58 pm

A security vulnerability in Ethereum’s second most popular client, Parity, has
been exploited by this address earlier today.

https://bit.ly/2kIBYhA
https://bit.ly/2kpfKkm

Osecuring Odrdr_zz www.securing.pl

SDLC - Deployment

Differences - Initialization stage

nnnnnnnnnnnnnnnnnnnn

o~ | 11.7 Verify that all storage variables are initialised.

aaaaaaaaaaaaaaaaaaaa

2.8 Verify that the initialization functions are marked
=| | internal and cannot be executed twice.

Security Verification Standa

o~ | 9.1 Verify that the self-destruct functionality is used only
3=| | if necessary.

Osecuring erdr_zz www.securing.pl

From web apps to smart contracts .

Maintenance

SDLC &R

- Maintenance

oseCUfing Odrdr_zz www.securing.pl

SDLC - Analysis & Requirements

Differences - Security Alert and Fix

Web Apps Decentralized Apps
« Application goes down e e e
* The bug is fixed (patch) * The bug is fixed (patch)
« Application redeployed * Smart contract deployed again

nnnnnnnnnnnnnnnnnnnnnn

-o~ | 1.7 Verify that there exists a mechanism that can temporarily stop the sensitive functionalities of the contract in
8=| | case of a new attack. This mechanism should not block access to the assets (e.g. tokens) for the owners.

S
urity Verification Standard

o~ | 1.4 Verify that there exists an upgrade process for the contract which allows to deploy
3=| | the security fixes or it is clearly stated that the contract is not upgradeable.

Osecuring @ drdr_zz

www.securing.pl

Security Projects & Standards

Web Apps
« Most common vulnerabilities?
« OWASP Top 10

* The end to end security checklist to
perform an audit?

« OWASP ASVS (Application

Decentralized Apps

« Most common vulnerabilities?
« DASP TOp 10 (https://dasp.co)

* The end to end security checklist to
perform an audit?

Smart Contracts
Security Verification Standard

Security Verification Standard) o

3:: SCSVS

https://dasp.co/

OSGCUring Odrdr_zz www.securing.pl

SCSVS meets your security needs

Technical Business
 Build secure applications. « Make sure that the application is
 Omit the insecure patterns. Secure.
» Find ane remediate the security * The status: List of green and red
bugs (vulnerabilities). points.
SmartCotln
—O—
— Go for SCSVS!
b=

——

OSECUI’iﬂg Jdrdr_zz www.securing.pl

Smart Contracts S C S V S
Security Verification Standard 2 O
a

- The Future

Osecuring

SCSVS 2.0

COMPOSABILITY

Osecuring erdr_zz www.securing.pl

SCSVS 2.0 - categories

e G: General e C: Components
o G1: Architecture, design and threat modeling o C1: Token

o G2: Policies and procedures o C2: Governance

o G3: Upgradeability o C3: Oracle

o G4: Business logic o C4: Vault

o Gb5: Access control o Cb: Liquidity pool
o G6: Communications o C6: Bridge

o G7: Arithmetic e |: Integrations

o G8: Denial of service o I1: Basic

o G9: Blockchain data o |12: Token

o

o

o

G10: Gas usage & limitations

G11: Code clarity

G12: Test coverage

o |3: Governance

o 14: Oracle

o 15: Flash loan provider

o 16: Liquidity pool

OSGCUI'ing Odrdr_zz www.securing.pl

SCSVS 2.0 - how to use

You can use the SCSVS checklist in multiple ways:

As a starting point for formal threat modeling exercise.

As a measure of your smart contract security and maturity.

As a scoping document for penetration test or security audit of a smart contract.

As a formal security requirement list for developers or third parties developing the smart contract for you.

As a self-check for developers.

To point areas which need further development regarding security.

As Architect =7 As Business Owner [Founder &

As Developer i As Auditor {&

Osecuring

m Want to develop secure
- smart contracts?
: Want a security audit of
] smart contract?

e — .,—_,._';—: ; [—

S £ o Y. X ‘ ‘S

e R Go for SCSVS' E

Ok, Thank you! @ \“"&N

Damian.Rusinek@securing.pl

